

- EDO is requesting GC guidance on the preferred approach to initial slurry wall project implementation
- Recap borehole testing
- Pilot-scale or full-scale configurations
 - Options for each
 - Pros and cons
 - Estimated costs
- Important considerations
- WAC made recommendation at Feb 28, 2017 meeting

Borehole Campaign

Approach

- Completed Aug-Oct 2016
 - Plum Creek, Elm
 Creek, Cottonwood
 Ranch,
 Lindstrom/Stall
 - More at Elm Creek in Feb 2017
- Results compiled by EDO, reviewed by Applegate

Results

 Low-perm layer
 South of river: ~30-40 ft deep
 North of river: ~20 ft deep

Initial Slurry Wall Options

Pilot-scale project Approach 1: Non-functional Approach 2: Functional □ Full-scale project Approach 3a: Aquifer storage ■ Approach 3b: Gravel pit storage □ NOT mutually exclusive Representative examples • Certain sites used to estimate costs, potential scores **D** Ballpark estimates to be revised and refined as needed

Other locations can be considered

Approach 1: Non-functional Pilot

Example based on Elm Creek (Bartels)
 10-20 acres
 18-20 ft depth to low-permeability layer
 About 3,000 lf slurry wall for 10-acre project
 No excavation
 No facilities to deliver or release water
 Dewatering and monitoring wells

Approach 1: Non-functional Pilot

Figure 1

Approach 1: Non-functional Pilot

□ Pros

- Tests construction and function of slurry wall and low-permeability floor
- **□** Fastest and least expensive option
 - Implementation time about 1 year
 - Cost \$700k (10-acre) to \$1.2M (20-acre)

□ Cons

- No functional storage for PRRIP after pilot test
- **D** Shallower than sites on south side of river
- Would not provide absolute certainty of continuity of low-permeability layer

Approach 2: Functional Pilot

- Example based on Elm Creek (Bartels)
 - Same scale as non-functional pilot
 - Excavated to provide open surface gravel pit storage
 - Includes delivery and release infrastructure
 - Could function as small WAP project
 - Establish process for project development and permitting
 - Test operations as well as structure and function
 - Kearney Canal could be used to convey water
 - Potential score of 150 AFY to 400 AFY

Approach 2: Functional Pilot

Figure 1

Approach 2: Functional Pilot

Timeframe about 2 years

- Extra time needed for more extensive design, permitting
- Excavation of alluvial materials and shaping of sloped inner walls

□ Cost

\$1.6M (10-acre) to \$3M (20-acre)
 Site with deeper low-perm layer may cost more
 Overall more thorough concept evaluation

Approach 3: Full-scale Project

Full-scale slurry wall project

- Skip pilot-scale testing
- Fully-functional WAP project with anticipated larger score
- Options
 - Slurry wall aquifer storage on PRRIP land
 - Slurry wall gravel pit at existing sandpit to be acquired

Approach 3a: Full-scale Project

Aquifer storage

- Use existing PRRIP lands (e.g., Plum Creek complex)
- No excavation of alluvial materials
- Water storage in void space
- Less yield that gravel pit for same land area
- Implementation time about 2 years
- Potential score
 - On the order of 800 AFY from 116-acre site
 - Highly dependent on inflow/outflow rates
- □ Cost about \$5M

Approach 3b: Full-scale Project

Gravel pit

Identify and acquire existing sand pit

- Assume about 60 acre surface area
- Fully-mined or nearly complete
- Could take 6 months to 2 years to acquire
- Project design and implementation another 2 years after site acquired
- Score on the order of 2,000-3,000 AFY
- □ Cost about \$6M

Important Considerations

- No known precedent for slurry wall storage in central Nebraska
- EDO anticipating significant yield (~15kaf) from slurry wall storage
- Pilot-scale project
 - Learning opportunity
 - Confirm that slurry wall storage can work in central Nebraska
 - Make better site selections and designs later
 - Use Program land (Elm Creek, Plum Creek, Lindstrom)
 - Start sooner
- Full-scale project
 - Delayed start to gravel pit project to acquire property
 - Can still lay groundwork during a pilot
 - EDO to develop screening of existing pits

WAC Recommendation

- Approach 1 (Non-Functional Pilot) generally unfavorable
 - Lack of functionality
 - Little or no use beyond pilot test
 - No beneficial score
- Approach 3a (Full-Scale Aquifer storage) generally unfavorable
 - Potential patent issues
 - Low yields compared to gravel pits
 - Well pumping issues
 - Significant limitations on inflow/outflow rates

WAC Recommendation

Approved motion recommending:

- Pursuit of a small-scale gravel pit pilot project on Program lands (Approach 2)
- Simultaneous search for existing sand and gravel pit(s) suitable for acquisition and development of a full-scale slurry wall gravel pit project (Approach 3b)

Snapshot of Options

Approach 1: Non-functional pilot study

- **D** Tests construction & performance of slurry wall
- **D** Time to implement: 1 year
- **C**ost: \$700,000 to \$1.2 million
- □ Score: 0 AF

Approach 2: Functional pilot study

- **D** Tests construction, performance & operation of slurry wall storage facility
- Time to implement: 1.5 2 years
- **C**osts: \$1.5 to \$3 million
- **G** Score: 150 to 400 AF

□ **Approach 3a, 3b:** Full-scale project

- **•** Skip pilot project and proceed to full-scale
- **D** Time to implement: 2+ years
- Cost: \$5-\$6 million
- □ Score: 800 AF (aquifer); 2,000 to 3,000 AF (gravel pit)

Questions?

