Instream Flow Recommendation:

Unnamed Tributary to Rough and Tumbling Creek (Headwaters to the confluence with Rough and Tumbling Creek)

Contact Information:

Colorado Parks and Wildlife
Jay Skinner
6060 Broadway
Denver, Colorado 80216
(303)291-7260; jay.skinner@state.co.us

Introduction:

This document contains the necessary information to form the scientific and biological basis for an instream flow (ISF) recommendation for an unnamed tributary to Rough and Tumbling Creek in Park County, Colorado. The Unnamed Tributary to Rough and Tumbling Creek (Unnamed Tributary) watershed provides critical habitat for the boreal toad (Bufo boreas boreas). In 2014, CPW and CWCB were contacted by members of the Park County Advisory Board on the Environment (ABE); ABE is a citizen advisory sub-committee that was established by the Park County Board of County Commissioners (BOCC) to assist them with community outreach on environmental issues in the county. ABE's initial interest in ISF protection in the county was triggered by some of the Colorado Water Plan public meetings that were going on at that time in various locations around the state. CPW and CWCB met with ABE and the Park County BOCC to discuss existing ISF water rights in the county and places where significant resource values exist in the county without ISF protection. After several meetings that included ABE, the BOCC and local representatives of the Colorado Cattlemen Association, a list of priority streams and lakes in Park County was generated by CPW, CWCB and ABE; the Unnamed Tributary was one of the priority streams that emerged from this collaborative process. CPW believes that the information compiled in this document provides the basis for the findings necessary for an ISF appropriation as stated by the ISF statutes and in ISF Program Rule 5(i).

The State of Colorado's Instream Flow and Natural Lake Level Program (ISF/NLL Program) was created in 1973 when the Colorado General Assembly passed Senate Bill 97. This bill recognized, "the need to correlate the activities of mankind with some reasonable preservation of the natural environment (C.R.S. §37-92-102 (3))." Creation of this state program identified the CWCB as the only state agency with the ability to appropriate and acquire instream flow and natural lake level water rights. In an effort to promote participation in the ISF/NLL Program by other entities, the state statute requires the Board to consider instream flow recommendations by local, state, or federal agencies. CPW is recommending this reach of an unnamed tributary to Rough and Tumbling Creek for inclusion in the ISF/NLL Program because

we believe that there is a natural environment that can be preserved to a reasonable degree with an instream flow water right.

CPW is sending this instream flow recommendation to the Board in order to meet CPW's legislative declaration, "... that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and it's visitors... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities (C.R.S. § 33-1-101 (1))," and, "... that the natural, scenic, scientific, and outdoor recreation areas of this state are to be protected, preserved, enhanced and managed for the use, benefit, and enjoyment of the people of this state and visitors of this state... and that to carry such program and policy there shall be a continuous operation of acquisition, development, and management of outdoor recreation lands, waters, and facilities (C.R.S. §33-10-101 (1))."

In addition to these broad statutory guidelines, CPW's current strategic planning document (*CPW Strategic Plan*, 2015) explains current agency goals to, "[c]onserve wildlife and habitat to ensure healthy sustainable populations and ecosystems." In order to, "protect and enhance water resources for fish and wildlife populations," by pursuing, "partnerships and agreements to enhance instream flows, protect reservoir levels, and influence water management activities," and to, "[a]dvocate for water quality and quantities to conserve aquatic resources." In addition to the CPW strategic plan, the agency's fish and wildlife conservation activities are also directed by the State Wildlife Action Plan (2002, Revised 2015). The goals and priorities from these documents direct CPW to advocate for the preservation of the state's fish and wildlife resources and natural environment, and therefore link CPW's mission to the goals and priorities of CWCB's ISF/NLL Program.

Stream Reach and Location Information

Recommended Reach: Unnamed Tributary to Rough and Tumbling Creek from its headwaters to the confluence with Rough and Tumbling Creek (Figure 1)

Upper Terminus: Headwaters

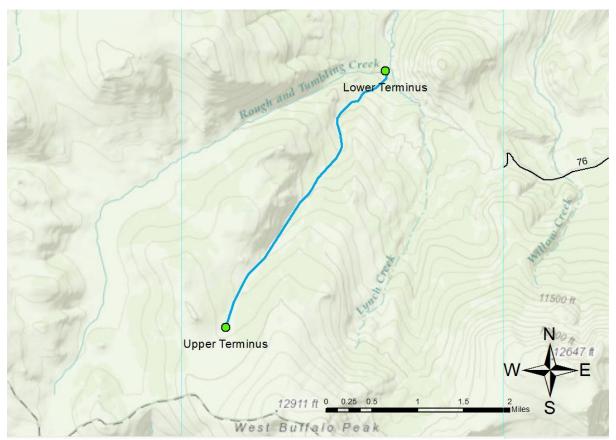
UTM North: 4318074.93951; UTM East: 401245.58891

Elevation: 11,776 feet

Lower terminus: Confluence with Rough and Tumbling Creek

UTM North: 4321559.18652; UTM East: 403468.051847

Elevation: 10,157 feet


Water Division: 1
Water District: 23

CPW Water Code: none

Approximate segment length in miles: 2.8 miles

County: Park County

Major Drainage Basin: South Platte River USGS quad maps: South Peak and Jones Hill

Figure 1. Map of the recommended reach of the Unnamed Tributary to Rough and Tumbling Creek (blue line), the green dots are the upper and lower termini of the ISF recommendation.

Natural Environment

The boreal toad is Colorado's only alpine species of toad, and is a genetically distinct species of toad apart from species found in other parts of the western United States. This species has been classified as an endangered species by Colorado Parks and Wildlife. Two of the biggest factors that are caused a decline in species abundance are the loss of habitat and infections from chytrid fungus (*Batrachochytrium dendrobatidis*), also referred to as Bd (CPW 2016). Continued persistence of this unique species is crucial in maintaining Colorado's biodiversity; state actions to protect usable occupied habitat for the boreal toad can be an effective conservation strategy. Since boreal toads need aquatic habitat for successful reproduction, ISF/NLL water rights are an effective tool to protect habitat. Boreal toad conservation issues have been addressed within the CWCB's ISF program before in the context of inundation settlements, injury with mitigation proposals, and ISF appropriations.

Rough and Tumbling Creek Watershed:

As stated above, the ISF reach being recommended in this report is an unnamed headwater tributary to Rough and Tumbling Creek. This watershed is located southwest of Fairplay, CO and west of Antero Reservoir. Rough and Tumbling Creek is a headwater tributary stream to the South Fork of the South Platte River. The watershed area of Rough and Tumbling Creek is approximately 24.5 square miles, has a mean basin elevation of 9,497 feet, and a mean annual precipitation of 23.5 inches. Watershed area for the Unnamed Tributary is approximately 2.1 square miles; mean basin elevation is 11,500 feet that receives 26.4 inches of annual precipitation. Overall, the Rough and Tumbling Creek watershed is a high elevation watershed that is mostly forested (approximately 90 to 95%) with a small part of the watershed (about 5 to 10%) situated above timberline. 100% of the watershed is owned and managed by the USFS.

Recommended Segment:

As summarized above, this recommended reach is a headwaters stream. The recommended ISF covers the entire length of the stream. The entire length of the Unnamed Tributary is a first order stream – there are no other tributaries; this is a very small stream with very little flow. This high elevation stream's hydrology is almost completely snow-melt driven; since the watershed is so small, the peak runoff season is very brief and this is likely the only time during the hydrologic year when flow in the creek extends outside of the main channel and into the floodplain. This stream exhibits a well defined, single thread channel in the lower portion of the reach. The headwaters of the creek are alpine wetland habitat where multiple channels of flowing water are present. As the stream travels downstream the valley becomes more confined and, as a consequence, the stream channel becomes more defined; these lower portions of the creek have a well defined forest canopy. In general, the Unnamed Tributary is quite steep – the overall average slope of the stream is nearly 10%; therefore, the majority of the stream has plunge-pool aquatic habitat with very few riffles or runs. The substrate of the creek is highly variable ranging from sand and silt to large cobble. High amounts of detritus and organic matter was observed during field visits to the creek. This is indicative of good connectivity between the terrestrial and aquatic environment. The primary riparian vegetation was observed to be dominated by willows and alders.

Table 1. Estimate of the percentage of public and private land within the unnamed tributary to Rough and Tumbling Creek.

Upper	Lower	Total Length	Approximate Land Ownership				
Terminus	Terminus	(miles)	%Private	%Public			
	Confluence with						
Headwaters	Rough and	2.8	0	100+			
	Tumbling Creek						

^{+ = 100%} of the public lands are managed by the USFS.

Aquatic Environment

As noted above, this stream reach is a mix alpine and forested/montane habitat types with snowmelt driven hydrology. The aquatic habitat of the Unnamed Tributary is very typical of headwaters boreal toad habitat; no fish have ever been sampled in the Unnamed Tributary. On 7/28/2004, CPW aquatic biologist Jeff Spohn captured an adult boreal toad in the Unnamed Tributary. Ever since this initial discovery of toads in 2004, CPW, the USFS, and the Colorado Natural Heritage Program (CNHP) have engaged in studies of toad populations here and elsewhere in the South Platte drainage.

The boreal toad is present throughout most of western North America, but it's believed that there is a distinct Southern Rocky Mountain population of this species. This species ranges from Wyoming to Southern Colorado; the toad is believed to be extirpated from New Mexico. Colorado, New Mexico, and Wyoming have all placed state designations on the boreal toad (State Endangered or Protected) (Jackson 2006). In Colorado, the boreal toad is found throughout the Rocky Mountains from the northern state border south to Hinsdale and Mineral County (CPW 2016). Toads are found from 7,500 to 12,000 feet in elevation, but are more commonly found at 8,500 to 11,500 feet (CPW 2016). Boreal toads prefer habitats in close proximity to ponds, mountain lakes, wetlands, meadows, and subalpine forests (CPW 2016). It is thought that the main limiting factor to this species is proximity to suitable breeding habitat (CPW 2016). Breeding habitat consists of shallow lakes, ponds, marshes and bogs that have plentiful exposure to solar radiation (CPW 2016). Two boreal toad breeding sites have been documented in the Rough and Tumbling Creek drainage. These breeding sites seem to follow beaver activity and therefore come and go as beaver ponds come and go. Fortunately, the Rough and Tumbling Creek sites have tested negative for chytrid fungus, which makes these breeding sites and the drainage as a whole even more valuable from a conservation perspective. The toads have also been found from time to time outside of the usual monitoring sites in this drainage.

Most of the suitable boreal toad habitats in the Unnamed Tributary are found in the upper half of the recommended ISF reach (see the description of habitat preferences above). The riparian corridor that follows the Unnamed Tributary has potential toad habitat in the form of areas with low water velocities and disconnected pools (these habitat features are also important for toad survival). These habitat features are also prominent in and around the confluence with the Rough and Tumbling mainstem (the lower terminus of the Unnamed Tributary ISF recommendation). In summary, CPW believes that boreal toads are utilizing a number of sites within the ISF segment proposed herein; therefore we believe that there is a natural environment in the form of critical boreal toad habitat that could benefit from the protection afforded by a CWCB ISF water right.

Table 2. Natural environment information the Unnamed Tributary to Rough and Tumbling Creek.

Species Name	Scientific Name	Status
boreal toad	Bufo boreas boreas	State Endangered+

^{+ =} A State of Colorado species recovery plan is in place for the boreal toad

ISF Quantification

R2CROSS Results:

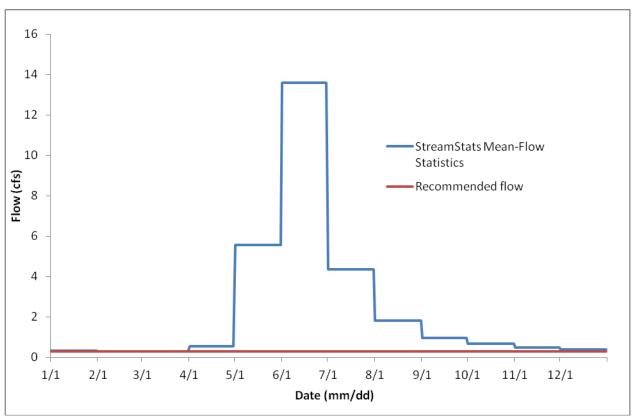
In 2016, CPW staff collected stream cross-section data at two sites within this reach of the Unnamed Tributary. Initial biological instream flow recommendations were developed utilizing the standard application of the R2CROSS methodology (Espegren 1996). R2CROSS uses field data that has been collected in a riffle stream habitat types; riffles are the limiting habitat type in streams during low flow events. The field data includes a survey of stream channel geometry, a longitudinal slope of the water surface, and a streamflow measurement at the designated cross section. After processing this data with R2CROSS, both a winter and summer flow recommendation was developed utilizing the typical R2CROSS criteria described in Nehring (1979) and Espergren (1996); the R2CROSS hydraulic criteria are average depth, average velocity and wetted perimeter – depth and wetted perimeter are probably most important to boreal toad habitat. Specific to this flow recommendation for the unnamed tributary and its natural environment indicator (boreal toad), CPW believes that the maintenance of an ISF in the channel supports all the appurtenant habitats important for boreal toad survival. Table 3 (below) summarizes the R2CROSS results for the two data collection sites for the Unnamed Tributary ISF recommendation discussed herein.

Table 3. Summary of the R2CROSS transect measurements and results for the Unnamed Tributary to Rough and Tumbling Creek. Q measured is the discharge measured in the field, 40%-250% is the confidence interval in which flow criteria must be met, flow meeting two criteria leads to a winter season flow recommendation, and flow meeting three criteria leads to a summer season flow recommendation

Entity	Date Measured	Q measured	40%-250%	Flow Meeting Two Criteria	Flow Meeting Three Criteria
CPW	9/27/16	0.14 cfs	0.1 – 0.3 cfs	0.77 cfs ¹	Not Applicable ²
CPW	9/27/16	0.18 cfs	0.1 – 0.4 cfs	0.52 cfs ¹	1.69 cfs ¹

^{1 =} Flow recommendations outside the range of R2CROSS model accuracy for this site measurement.

ISF Recommendation:


Based on of the R2CROSS results (see Table 3) and the natural environment of the Unnamed Tributary, CPW believes that a single year-round flow in the 0.3 to 0.4 cfs range is both necessary and appropriate for the Unnamed Tributary. Flows in this range are the highest flows that can be accurately predicted with the R2CROSS data sets that we currently have. The average of these two values is 0.35 cfs. It is important to note that flows in this range fall short

^{2 =} The third R2CROSS hydraulic criterion (average velocity) was never met on the R2CROSS staging table - due to low gradient.

of the flows needed to meet even two of the R2CROSS hydraulic criteria but we believe that flows in this range will be adequate to protect the boreal toad habitat present in this stream segment. We also believe that flows in this very small watershed will be limited by water availability considerations and that this small amount of flow protection is important for the survival of the state endangered boreal toad; these issues will be addressed in the Water Availability section (below).

Water Availability:

Division of Water Resources data indicates that there are no existing water rights on the Unnamed Tributary. Since there is not a nearby stream gage and the Unnamed Tributary's watershed is so small, CPW staff believes we believe that the USGS StreamStats tool is marginally appropriate for a preliminary water availability determination.

Figure 2. Hydrograph showing the StreamStats mean monthly flows statistics and the R2CROSS ISF recommendation for the Unnamed Tributary to Rough and Tumbling Creek.

Seasonal ISF Recommendation

The above hydrograph (Figure 2) shows that any flow above 0.3 cfs is not available for an ISF appropriation in this very small creek. Therefore, CPW revises and refines the above range of acceptable flows and concludes that a 0.3 cfs year-round ISF

recommendation (see Table 3 and the discussion above) appears to be both necessary and available for appropriation on the Unnamed Tributary of Rough and Tumbling Creek. CPW is of the opinion that (for the reasons described in this report) this flow is necessary to preserve the natural environment to a reasonable degree.

Citations

- Capesius, J.P. and V.C. Stephens, 2009, Regional regression equations for estimation of natural streamflow statistics in Colorado, Scientific Investigations Report 2009-5136. (USGS StreamStats)
- Colorado Parks and Wildlife. *Colorado Parks & Wildlife Species Profiles*. N.p., n.d. Web. 29 Nov. 2016.
- Colorado Parks and Wildlife. *Colorado Parks & Wildlife Boreal Toad Research*. N.p., n.d. Web. 29 Nov. 2016.
- Jackson, T. (ed.), 2006, Report on the status and conservation of the boreal toad (*Bufo boreas*) boreas) in the Southern Rocky Mountains 2006. Boreal Toad Recovery Team. 134 pp.
- Epegren, G.D., 1996, Development of Instream Flow Recommendations in Colorado Using R2CROSS, Colorado Water Conservation Board.
- Nehring, B.R., 1979, Evaluation of Instream Flow Methods and Determination of Water Quantity Needs for Streams in the State of Colorado, Colorado Division of Wildlife.

Appendices

Appendices A: R2CROSS output for two cross-sections performed on this reach of the unnamed tributary to Rough and Tumbling Creek.

Photos:

Figure 3: View of the R2CROSS sites on the Unnamed Tributary to Rough and Tumbling Creek looking downstream at cross-section number one (in the background) and number two (closest).

Figure 4: Unnamed Tributary to Rough and Tumbling Creek at R2CROSS site number two.

Figure 5: Unnamed Tributary to Rough and Tumbling Creek at R2CROSS site number two, looking downstream.

Figure 6: Unnamed Tributary to Rough and Tumbling Creek at R2CROSS site number one.

Figure 7: View of Unnamed Tributary to Rough and Tumbling Creek looking upstream at R2CROSS site number one (closest) and site number two (in background).

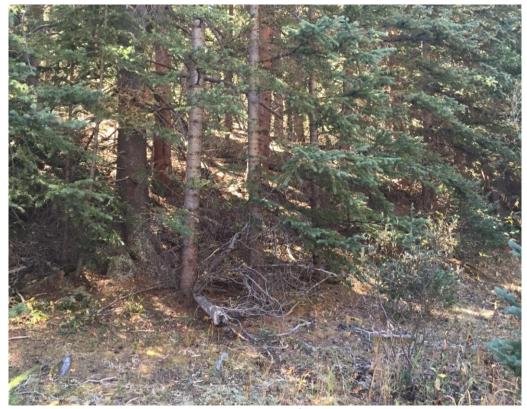


Figure 9: The surrounding terrestrial near the lower terminus of Unnamed Tributary to rough and Tumbling Creek.

151

FORM #ISF FD 1-85

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER CONSERVATION BOARI	o ==		1	. 1	LOC/	ATIO	N IN	IFO	RMA	TION	4							ON.	OF WIL
STREAM NAME: Una	med	Tribi	nt a	ՐԱ	40	R	Dua	رام	an	d -	Tu m	bli	A.C.			C		ECTION	NO.
CROSS-SECTION LOCATION:		200	- 1	16.3	F 1€0		Λ ⁴	0~		امما	,			W/	/		, ,		
L	ynch	- 4	rk	•										- 1	83				
9/2///0	ERVERS:	TI	J5		ŋ						,								
LEGAL ' % SEC DESCRIPTION	TION:	21	ECTION			TO	HZNWC			N,		RANGE	:			/W	PM:		
COUNTY: Park		WATERSHE S.F.	D:	5. 1	0/27.	te		WA	TER DI	VISION:	=(1)				DOW W		хо р е: 444		
MAP(S): USGS:	= Lat	-: 39.	036	73	1	Lo	neg.	-10	4.11	564	5								
SUPPLEMENTAL DATA																			
					SUF	PLE	ME	NTA	L DA	ATA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YES/N	O ME	TER TY	PE:								<u> </u>					**		
METER NUMBER:		DATE RATI	ED:			CALIE	B/SPIN:			sec	TAPE W	/EIGHT			os/foot	TAPE	TENSI	ON:	lbs
CHANNEL BED MATERIAL SIZ	E RANGE:							PHOTO	OGRAP	HS TAK	EN: E	DVO		NUMB	ER OF F	нотос	SRAPHS	3:	
		=	···		CHA	NN	EL P	ROF	ILE	DAT	A				·	- .		_	
STATION	DI FR	STANCE OM TAPE	t)	1 11	ROD	READ	ING (ft	, =					(3)	9				L	EGÉND:
X Tape @ Stake LB		0.0					li .		_				<u> </u>					- Sta	ike 🕱 🗈
Tape @ Stake RB		0.0			00/	, 1	\\ <u></u>		S K E T	Se	0,	=						Station (1)	
1 WS @ Tape LB/RB		0.0		0	1/2	-01	0		투 C	Se cor	13/	27.	TAPE			7		Ph	olo 🗘
2 WS Upstream					1	No.	el 0	_	H 	6	elo							-	
3 WS Downstream									-				(2	6)				Direc	tion of Flow
SLOPE X51=0		= XS	52:											<i></i>					
	0.035			AC	UAT	ic s	ÂM	PLIN	G SI	UMM	ARY							100	
STREAM ELECTROFISHED:	YES/NO	DISTANCE	E ELEC	TROFIS	HED _		- 44	F	ISH CA	UGHT	YES/NO			WATE	R CHEN	AISTRY	SAMPL	ED YES	S/NO
		LENGTH	- FREQ	UENC	OISTA	IBUTIO	ON BY	DNE-IN	CH SIZ	ZE GRO	UPS (1.	D-1.9, 2	2.0-2.9,	ETC.)					
SPECIES (FILL IN)	ill.		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
		.							2:-	-									
		1.8 (1)		B	535-70														
		955 ¹¹ 5	ŝ	1	8		0070			17.85									
AQUATIC INSECTS IN STREAM	M SECTION B	Y COMMON	OR SCI	ENTIFK	ORDE	RNAM	IE:												
	(3)			· :		_				4									
	3/			·		CC	OMM	ENT	S	% /				-					. // =
0		<u>.</u>	<u> </u>	- [0.6		į.			+			18	7.5	, ,	<u>a</u>		- 1	e13
10-				-			Ē.		-		, , , ,				<u>@</u>	<u> </u>		- 1	n 600
10.90	1	18-54/			10-5	2.				10	10.4	14	- 70	1,2	8	- 14		-	300

FLOW

DISCHARGE/CROSS SECTION NOTES

ST	REAM NAME:							CROS	S-SECTION	NO.:	DATE:	SHEE	T OF
BE	GINNING OF M	EASUREMENT	EDGE OF W	ATER LOOKING (OWNSTREAM:	LEFT / RIGH	T G	age Re	ading:	n	TIME:	0,000	
Tes	Stake (S)	Distance From	Width (ft)	Total Vertical	Water Depth	Depth of	Revolu	ıtions		Veloci	y (ft/sec)		Discharge
Features	Grassline (G) Waterline (W) Rock (R)	Initial Point (ft)	1117	Depth From Tape/Inst (ft)	(ft)	Observation (ft)			Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
Γ'	5	0.0		9.20									
	GL	1.6	·	9.75									
		3,2		10.05							7		
_	WL	3.6		10.54	0						0		1
H		3.9	-	10.65	0.05						0.09		
\vdash		4.5		10.70					-	<u>-</u>	0.28		
\vdash		4.7		10,85	6.7								
-				10.70	0.25						0.19		
-	1	5.1 5.4		10.65	6.25						0,27		
-		5.7		10.75	0.3						0.44		
H	,	6		10.65	0.15						0.21		
-	WL	6,4		10.54	0			-			0.5		
\vdash	2 - 6	7.2		10.20									
1		9.3		9.85									
	GL	10.8		9.65									
	5 5	1218		9.45									
	5	۵		7,95									
L	GL	7.1		9.60		-		_					
L		3.3	r	9.70									
L	3 4	4		10.10		,			,				
	WL	4.5		10.44	0						0		
		.7		10.55	0.1						0.12		
	-	5.1		10.55	0.1						0.91		
\vdash		,4		10.55	6.2					Þ	1.27		
\vdash		17		10.30	0.15						0.52		
	W	62		10.41	0						0,00		
	* *	6,9		10.30									,
		6.3 6.9 7.5		10.41									
	GL .	9		9,55									
L		10,4		9,40									
L	5	12,2		9,20									
L													
\vdash					-								
							•						
			_										
				ė			,						
L						,							<u> </u>
L	TOTALS:	1	177										
E	nd of Measu	ement alli	ne:	Gage Readin	g:f	CALCULATION	ONS PE	RFORME	D BY:	-	CALCULATIONS (CHECKED BY	<u> </u>

					VERT	WATER				Tape to
	Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
	•				Total Da	ita Points = 16				
	Unamed Trib. to Rough and Tumbling		S	0.00	8.95			0.00	0.00	0.00
	200 m U/S from confl. w/ Lynch Cr.	1	GL	2,10	9.60			0.00	0.00	0.00
XS NUMBER:				3,30	9.70			0.00 0.00	0.00 0.00	0.00 0.00
OBSERVERS:	9/27/2016 CT_IS_TD		WL	4.00 4.50	10.10 10.44	0.00	0.00	0.00	0.00	0.00
OBSERVERS,	01, 33, 15		***	4.80	10.55	0.10	0.18	0.03	0.00	10.45
1/4 SEC:	Lat: 39.036707			5.10	10.55	0.10	0.81	0.03	0.02	10.45
	Long: -106.115703			5.40	10.55	0.20	1.27	0.06	0.08	10.35
TWP:				5.70	10.50	0.15	0.52	0.05	0.02	10.35
RANGE:			144	6.00	10.50	0.20	0.80	0.06	0.05	10.30
PM: į			WL	6.30 6.90	10.41 10.30	0.00	0.00	0.00 0.00	0.00	0.00 0.00
COUNTY: i	Park			7.50	9.85			0.00	0.00	0.00
	South Fork South Platte	1	GL	9.00	9.55			0.00	0.00	0.00
DIVISION:				10.40	9.40			0.00	0.00	0.00
DOW CODE:			S	12.20	9.20			0.00	0.00	0.00
USGS MAP:										
USFS MAP:										
TAPE WT:	D 0106 Level and Rod Survey ▼	bs / ft								
TENSION		bs								
SLOPE	0.032)f	t/ft								
CHECKED BY:	DATE									
OFFICIALD DT.										
ASSIGNED TO	:DATE	*****								

Totals 0.23 0.18

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION; XS NUMBER;		to Rough and Tumbling om confl. w/ Lynch Cr.
DATE: OBSERVERS:	27-Sep-16 CT, JS, TD	
1/4 SEC: SECTION: TWP: RANGE: PM:	Lat: 39.03670 Long: -106.11 0 0	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Park South Fork S 1	outh Platte
USGS MAP: USFS MAP:	0	
SUPPLEMENTAL DATA	•	*** NOTE *** Leave TAPE WT and TENSION
TAPE WT: TENSION:	0.0106 99999	at defaults for data collected with a survey level and rod
CHANNEL PROFILE DATA	<u>.</u>	
SLOPE:	0.032	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:		DATE

STREAM NAME: XS LOCATION:

FEATURE

S

1 GL

WL

WL

1 GL

S

Unamed Trib. to Rough and Tumbling 200 m U/S from confl. w/ Lynch Cr.

WATER

DEPTH

0.00

0.10

0.10

0.20

0.15

0.20

0.00

XS NUMBER:

DATA POINTS=

VERT

8.95

9.60

9.70

10.10

10.44

10.55

10.55

10.55

10.50

10.50

10.41

10.30

9.85

9.55

9.40

9.20

DEPTH

2

DIST

0.00

2.10

3.30

4.00

4.50

4.80

5.10 5.40

5.70

6.00

6.30

6.90

7.50

9.00

10.40

12.20

TOTALS -----

16

VEL

0.00

0.18

0.81

1.27

0.52

0.80

0.00

VALUES COMPUTED FROM RAW FIELD DATA

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.32	0.10	0.03	0.01	3.0%
0.30	0.10	0.03	0.02	13.7%
0.30	0.20	0.06	0.08	43.0%
0,30	0.15	0.05	0.02	13.2%
0.30	0.20	0.06	0.05	27.1%
0.31		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
1.84	0.2	0.23	0.18	100.0%
	(Max.)			

Manning's n = Hydraulic Radius= 0.0832 0.12249043 STREAM NAME:

Unamed Trib. to Rough and Tumbling 200 m U/S from confl. w/ Lynch Cr.

XS LOCATION: XS NUMBER:

2

WATER LINE COMPARISON TABLE

WATER	MEAC	00110	
	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	0.23	0.16	-29.8%
10.18	0.23	0.78	245.6%
10.20	0,23	0.72	219.5%
10,22	0.23	0.66	194.0%
10.24	0.23	0.61	169.0%
10,26	0.23	0.55	144.5%
10.28	0.23	0.50	120.4%
10.30	0.23	0.44	96.9%
10.32	0.23	0.39	74.0%
10.34	0.23	0.34	52.4%
10.36	0.23	0.30	32.0%
10.38	0.23	0.25	12.9%
10.39	0.23	0.23	3.7%
10.40	0.23	0.21	-5.1%
10.41	0.23	0.19	-13.6%
10.42	0.23	0.18	-21.8%
10.43	0.23	0.16	-29.8%
10.44	0.23	0.14	-37.5%
10.45	0.23	0.12	-45.1%
10.46	0.23	0.11	-52.4%
10.47	0.23	0.09	-59.4%
10.48	0.23	0.08	-66.1%
10.50	0.23	0.05	-78.8%
10.52	0.23	0.03	-88.3%
10.54	0.23	0.01	-95.6%
10.56	0.23	0.00	-100.0%
10.58	0.23	0.00	-100.0%
10.60	0.23	0.00	-100.0%
10.62	0.23	0.00	-100.0%
10.64	0.23	0.00	-100.0%
10.66	0.23	0.00	-100.0%
10.68	0.23	0.00	-100.0%

WATERLINE AT ZERO AREA ERROR =

10.389

STREAM NAME:

Unamed Trib, to Rough and Tumbling 200 m U/S from confl. w/ Lynch Cr.

XS LOCATION:

XS NUMBER:

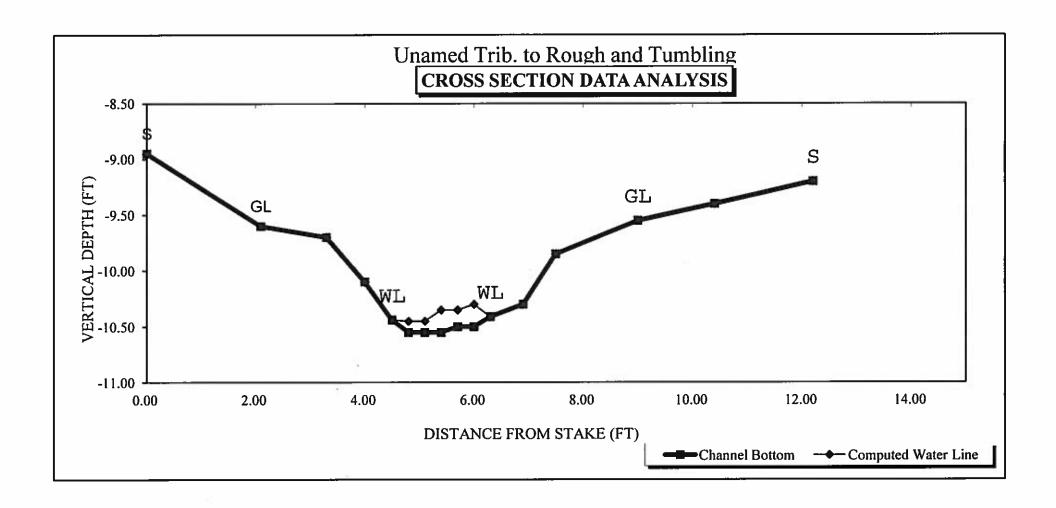
Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag

WL = Waterline corrected for variations in field measured water surface elevations and sag

_	DIST TO WATER (FT)	TOP WIDTH (FT)	AVG. DEPTH (FT)	MAX. DEPTH (FT)	AREA (SQ FT)	WETTED PERIM. (FT)	PERCENT WET PERIM (%)	HYDR RADIUS (FT)	FLOW (CFS)	AVG. VELOCITY (FT/SEC)
3L.	9,60	6.65	0.47	0.95	3.14	7.09	100.0%	0.44	5.84	1.86
	9.64	5.98	0.48	0.91	2.89	6.41	90.5%	0.45	5,44	1.88
	9.69	5.13	0.51	0.86	2.62	5.56	78.4%	0.47	5.06	1.93
	9.74	4.69	0.51	0.81	2,37	5.09	71.9%	0.47	4.56	1.92
	9.79	4.35	0.49	0.76	2,15	4.74	66.9%	0.45	4.05	1.88
	9.84	4.01	0.48	0.71	1.94	4.38	61.8%	0.44	3.59	1.85
	9.89	3.82	0.46	0.66	1.74	4.16	58.7%	0.42	3.12	1.79
	9.94	3.66	0.42	0.61	1.56	3.98	56.1%	0.39	2.66	1.71
	9.99	3,51	0.39	0.56	1,38	3.79	53.5%	0,36	2.24	1.63
	10.04	3.35	0.36	0.51	1.21	3.61	50.9%	0.33	1,85	1.54
	10.09	3.20	0.33	0.46	1.04	3.42	48.3%	0.30	1.50	1.44
	10.14	3.05	0.29	0.41	0.89	3.25	45.9%	0.27	1.19	1.34
	10.19	2.92	0.25	0.36	0.74	3.08	43.4%	0.24	0.91	1.23
	10.24	2.78	70.21	0.31	0.59	2.91	41.0%	0.20	0.66	1.11
	10.29	2.64	0.17	0.26	0.46	2.73	38.6%	0.17	0,44	0,97
	10.34	2.33	0.14	0.21	0.33	2.41	34.0%	0.14	0.28	0,97
VL*	10.39	1.99	0.11	0.16	0.22	2.04	28.8%	0.11	0.17	0.73
	10.44	1.70	0.08	0.11	0.13	1.74	24.5%	0.08	0.08	0.58
	10.49	1.40	0.04	0.06	0.06	1.42	20.0%	0.04	0.02	0.37
	10.54	0.69	0.01	0.01	0.01	0.70	9.8%	0.01	0.00	0.15


0.1 - 0.4

STREAM NAME: XS LOCATION: XS NUMBER: Unamed Trib. to Rough and Tumbling 200 m U/S from confl. w/ Lynch Cr.

2

SUMMARY SHEET

MEASURED FLOW (Qm)=	0.18	cfs	RECOMMENDED INST	TREAM FLOW:
CALCULATED FLOW (Qc)=	0.17	cfs		
(Qm-Qc)/Qm * 100 =	6.9	%		
			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	10.43	ft	8888888888	2232222
CALCULATED WATERLINE (WLc)=	10.39	-		
(WLm-WLc)/WLm * 100 =	0.3			
(445111-4450)/445111 100 -	0.3	70	•	
MAY MEADURED DEDTIL (D-)-				
MAX MEASURED DEPTH (Dm)=	0.20			···
MAX CALCULATED DEPTH (Dc)=	0.16			
(Dm-Dc)/Dm * 100	19.6	%		<u> </u>
MEAN VELOCITY	0.73	ft/sec		
MANNING'S N=	0.083			
SLOPE=	0.032	ft/ft		
.4 * Qm =	0.1	cfs		
2.5 ° Qm=	0.4	cfs		
		76		
RECOMMENDATION BY:		AGENCY		DATE:
CMCP DEVIEW BY-				DATE

				VERT	WATER				Tape to
Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
·				Total Da	ita Points = 17				
STREAM NAME: Unamed Trib. to Rough and Tumbling		S	0.00	9.20			0.00	0.00	0.00
XS LOCATION: 200 m U/S from confl. w/ Lynch Cr.	1	GL	1.60	9.75			0.00	0.00	0.00
XS NUMBER: 1 DATE: 19/27/2016		VAD	3.20	10.05 10.54	0.00	0.00	0.00	0.00	0.00
OBSERVERS: CT, JS, TD		WL	3.60 3.90	10.65	0.00 0.05	0.00 0.00	0.00 0.02	0.00 0.00	0.00 10.60
OBSERVERS, [01, 33, 10			4.20	10.65	0.05	0.00	0.05	0.00	10.50
1/4 SEC: [Lat: 39.036731			4.50	10.70	0.20	0.28	0.06	0.02	10.50
SECTION: Long: -106.115645			4.80	10.85	0.25	0.19	0.08	0.01	10.60
TWP:			5,10	10.70	0.25	0.27	0.08	0.02	10.45
RANGE:			5.40	10.65	0.30	0.44	0.09	0.04	10.35
PM;			5,70 6,00	10.75 10.65	0.25 0.15	0.42 0.21	0.08 0.05	0.03 0.01	10.50 10.50
COUNTY: Park		WL	6.40	10.54	0.00	0.00	0.00	0.00	0.00
WATERSHED: South Fork South Platte			7.20	10.20			0.00	0.00	0.00
DIVISION: 1			9,30	9.85			0.00	0.00	0.00
DOW CODE:	1	GL S	10.80	9.65			0.00	0.00	0.00
USGS MAP: USFS MAP:		S	12.80	9.45			0.00	0.00	0.00
TAPE WT: 0.0106 Level and Rod Survey ▼ lbs / ft									
TENSION: 99999 lbs									
255									
SLOPE: 0.035 ft / ft									
CHECKED BY:DATEDATE									
ASSIGNED TO:DATEDATE									

Totals 0.49 0.14

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:		to Rough and Tumbling om confl. w/ Lynch Cr.
DATE: OBSERVERS:	27-Sep-16 CT, JS, TD	
1/4 SEC: SECTION: TWP: RANGE: PM:	Lat: 39,03673 Long: -106,11 0 0	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Park South Fork So 1	outh Platte
USGS MAP: USFS MAP:	0	
SUPPLEMENTAL DATA		*** NOTE ***
TAPE WT: TENSION:	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod
CHANNEL PROFILE DATA	<u>.</u>	
SLOPE:	0.035	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:		DATE

STREAM NAME: XS LOCATION:

Unamed Trib. to Rough and Tumbling 200 m U/S from confl. w/ Lynch Cr.

WATER

DEPTH

0.00

0.05

0.15

0.20

0.25

0.25

0.30

0.25

0.15

0.00

XS NUMBER:

FEATURE

S

1 GL

WL

WL

GL

S

4

DIST

0.00

1.60

3.20

3.60

3.90

4.20 4.50

4.80

5.10

5.40

5.70

6.00

6.40

7.20

9.30

10.80

12.80

DATA POINTS=

VERT

9.20

9.75

10.05

10.54

10.65

10.65

10.70

10.85

10.70

10.65

10.75

10.65

10.54

10.20

9.85

9.65

9.45

DEPTH

17

VEL

0.00

0.00

0.09

0.28

0.19

0.27

0.44

0.42

0.21

0.00

VALUES COMPUTED FROM RAW FIELD DATA

WETTED	WATER	AREA	Q	% C
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.32	0.05	0.02	0.00	0.0%
0.30	0.15	0.05	0.00	2.9%
0.30	0.20	0.06	0.02	12.2%
0.34	0.25	0.08	0.01	10.4%
0.34	0.25	0.08	0.02	14.7%
0.30	0.30	0.09	0.04	28.8%
0.32	0.25	0.08	0.03	22.9%
0.32	0.15	0.05	0.01	8.0%
0.41		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
2.95	0.3	0.49	0.14	100.0%
	(Max.)			

Manning's n = Hydraulic Radius= 0.2971 0.16548241

TOTALS -----

STREAM NAME:

Unamed Trib. to Rough and Tumbling 200 m U/S from confl. w/ Lynch Cr_{\star}

XS LOCATION: XS NUMBER:

- 1

WATER LINE COMPARISON TABLE

WATER	MEAC	COMP	ADEA
LINE	MEAS AREA	COMP AREA	AREA ERROR
LINE	AREA	AREA	ERRUR
	0.49	0.39	-20.1%
10.29	0.49	1.19	143.8%
10.29		1.19	
	0.49	***	129.2%
10.33	0.49	1.05	114.8%
10,35	0.49	0.98	100.8%
10,37	0.49	0,91	86.9%
10.39	0.49	0.85	73.4%
10.41	0.49	0.78	60.1%
10.43	0.49	0.72	47.0%
10.45	0.49	0.65	34.2%
10.47	0.49	0.59	21.7%
10.49	0.49	0.53	9.4%
10.50	0.49	0.50	3.4%
10.51	0.49	0.47	-2.6%
10.52	0.49	0.45	-8.5%
10.53	0.49	0.42	-14.3%
10.54	0.49	0.39	-20.1%
10.55	0.49	0.36	-25.8%
10.56	0.49	0.33	-31.3%
10.57	0.49	0.31	-36.7%
10.58	0.49	0.28	-42.0%
10.59	0.49	0.26	-47.2%
10.61	0.49	0.21	-57.1%
10.63	0.49	0.16	-66.5%
10.65	0.49	0.12	-75.4%
10.67	0.49	0.09	-82.0%
10.69	0.49	0.06	-87.2%
10.71	0.49	0.04	-91.0%
10.73	0.49	0.03	-93.8%
10.75	0.49	0.02	-95.9%
10.77	0.49	0.01	-97.4%
10.79	0.49	0.01	-98.5%
10170	0,70	0.01	-50.070

WATERLINE AT ZERO AREA ERROR =

10.506

STREAM NAME:

Unamed Trib. to Rough and Tumbling

XS LOCATION:

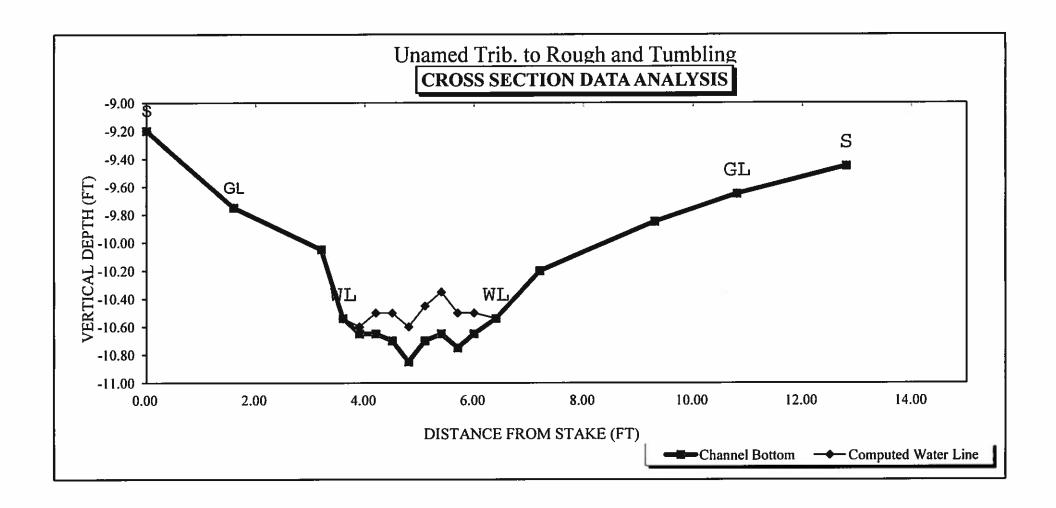
200 m U/S from confl. w/ Lynch Cr.

XS NUMBER:

Constant Manning's n

GL = lowest Grassline elevation corrected for sag

STAGING TABLE *WL* = Waterline corrected for variations in field measured water surface elevations and sag


	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR	· <u>-</u>	AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL.	9.75	8.45	0.49	1,10	4.17	8.96	100.0%	0.47	2.34	0.56
	9.76	8.38	0.49	1.09	4.12	8.89	99.2%	0.46	2.31	0.56
	9.81	7.74	0.48	1.04	3.72	8.24	91.9%	0.45	2.05	0.55
	9.86	7.10	0.47	0.99	3.35	7.60	84.8%	0.44	1.82	0.54
	9.91	6.54	0.46	0.94	3.01	7.02	78.3%	0.43	1.60	0.53
	9.96	5.97	0.45	0.89	2.70	6.45	71.9%	0.42	1.41	0.52
	10.01	5.40	0.45	0.84	2.41	5.87	65.5%	0.41	1,25	0.52
	10.06	4,86	0.44	0.79	2.16	5.32	59.3%	0.41	1.10	0.51
	10.11	4.52	0.42	0.74	1.92	4.95	55.2%	0.39	0.96	0.50
	10.16	4.18	0.41	0.69	1.70	4.58	151.1%	0.37	0.82	0.48
	10.21	3.86	0.39	0.64	1.50	4.23	47.2%	0.36	0.70	0.47
	10.26	3.70	0.35	0.59	1.31	4.04	45.1%	0.33	0.58	0.44
	10.31	3.54	0.32	0.54	1.13	3.85	42.9%	0.29	0.47	0.41
	10.36	3,38	0.28	0.49	0.96	3.66	40.8%	0.26	0.37	0.38
	10.41	3.23	0.25	0.44	0.79	3.46	38.6%	0.23	0.28	0.35
	10.46	3.07	70.21	0.39	0.64	3.27	36.5%	0,19	0.20	0.31
'WL'	10.51	2.91	0.17	0.34	0.49	3.08	34.3%	0.16	0.13	0.27
	10.58	2.70	0.13	0,29	0.35	2.84	31.7%	0.12	0.08	0.23
	10.61	2.38	0.09	0.24	0.22	2.51	28.0%	0.09	0.04	0.18
	10.66	1.70	0.06	0.19	0.11	1.61	20.2%	0.06	0.02	0.14
	10.71	0.84	0.06	0.14	0.05	0.93	10.3%	0.05	0.01	0.13
	10.76	0.38	0.05	0.09	0.02	0.42	4.7%	0.04	0.00	0.11
	10.81	0.18	0.02	0.04	0.00	0.20	2.2%	0.02	0.00	0.07

1/3 · 0.19 RR = 0.30 0.3 cfs year-round

STREAM NAME: XS LOCATION: XS NUMBER: Unamed Trib. to Rough and Tumbling 200 m U/S from confl. w/ Lynch Cr. 1

SUMMARY SHEET

MEASURED FLOW (Qm)= CALÇULATED FLOW (Qc)=	0.14 0.13		RECOMMENDED INSTREAM I	
(Qm-Qc)/Qm * 100 =	2.9	%	FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	10.54	ft	=======================================	2022222
CALCULATED WATERLINE (WLc)=	10.51			
(WLm-WLc)/WLm * 100 =	0.3	%		
(· · · · · · · · · · · · · · · · · · ·	-
MAX MEASURED DEPTH (Dm)=	0.30	ft		
MAX CALCULATED DEPTH (Dc)=	0.34	-		
(Dm-Dc)/Dm * 100	-14.8			
(Bill-BojiBill 100	-14.0	76		
MEAN VELOCITY=	0.27	ft/sec		
MANNING'S N=	0.297	10300		
SLOPE=	0.237	E4184		
SLOPE-	0.033	INIT		
.4 * Qm =	0.1	cfs		
2.5 * Qm=	0.3			
2.5 - Qm=	0.3	CIS		
	Hardin (vi le)	0 10 020		
<u> </u>				W
Wall Company of the C				
1				
			The same of the sa	
				2000
RECOMMENDATION BY:		AGENOV	erroren barren en erroren en e	TENNON, POWERS NAMED AND DESCRIPTION
THE STREET STREET		AGENCI		1 -
CWCB REVIEW BY			DA	TF-

Discharge Measurment Field Visit Data Report (Filters: Name begins with Rough and Tumbling;)

Div	Name	CWCB Case Number	Segment ID	Meas. Date	UTM	Location	Flow Amount (cfs)	Meas #	Rating	Station ID
1	Rough and Tumbling Creek		16/1/A-005	08/27/2015	UTMx: 403474.769 UTMy: 4321538.382		0.19			
1	Rough and Tumbling Creek		16/1/A-005	07/28/2016	UTMx: 403431.2615 UTMy: 4321437.6043	Unnamed Tributary to Rough and Tumbling Creek Above Confluence with Rough and Tumbling	0.78	.001	Poor (>8%)	UTRTNRLT
1	Rough and Tumbling Creek		16/1/A-005	08/26/2016	UTMx: 403428.4981 UTMy: 4321431.0897	Unnamed Tributary to Rough and Tumbling Creek Near Confluence with Rough and Tumbling Creek	0.59	.002	Poor (>8%)	UTRTNRLT

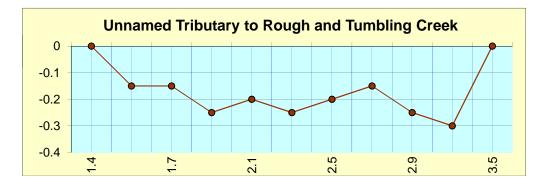
Friday, December 16, 2016 Page 1 of 1

Flow Mesaurement Calculations

Unnamed Trib to Rough and Tumbling Creek

Date: 8/27/2015 Time: 11:44 AM
Observers: Baessler / (intern) Cunningham

County: Gunnison


Water Division: 4 Note: Photos Taken

Location: Latitude: 39 02 15.28

Longitude: 106 06 55.07

Comments: Sunny, Clear

Distance from					
bank	Width	Depth	Velocity	Area	Discharge
1.4	water line	0	0		
1.5	0.15	0.15	0.38	0.0225	0.00855
1.7	0.2	0.15	0.33	0.03	0.0099
1.9	0.2	0.25	0.28	0.05	0.014
2.1	0.2	0.2	0.43	0.04	0.0172
2.3	0.2	0.25	0.31	0.05	0.0155
2.5	0.2	0.2	0.62	0.04	0.0248
2.7	0.2	0.15	0.58	0.03	0.0174
2.9	0.2	0.25	0.65	0.05	0.0325
3.1	0.3	0.3	0.51	0.09	0.0459
3.5	water line	0	0		
				FLOW =	0.19 CFS

0
-0.15
-0.15
-0.25
-0.2
-0.25
-0.2
-0.15
-0.25
-0.3
0

General Site Field Visit Data Report (Filters: Name begins with Rough and Tumbling;)

Туре		Div	Name		CWCB Case Number	Segment	ID	Visit Date	L	ocation Description				
Stream		1	Rough and Tumbl	mbling Creek 16/1/A-005 8/26/2016 L						Unnamed Tributary to Rough and Tumbling Creek				
	Remarks	Date Remark												
		26/08/16 12:00	Depart truck to location.	hike to Un	named Tributary to	Rough and T	umbling M	Measurement						
		26/08/16 12:35	Arrive at Unnar	ned Tributa	ary to Rough and	Γumbling.								
		26/08/16 12:51	Ground on hike water droplets.	in and at 0	Q measurement si	te damp and v	egetation i	in the shade h	as					
		26/08/16 13:01	Set up x-section	n for spot o	lischarge measure	ement, UTRTN	NRLT.002							
		26/08/16 14:04	There is snow	on the Buff	alo Peaks, the hea	adwaters of Ro	ough and T	Fumbling Cree	ĸ.					
	GPS Log	GPS Date	Device	GPSPoin	t Name La	atitude	Longit	tude	JTM Z	Zone UTM Easting	UTMNorthing	Horizontal Accuracy	GPSDescription	
		26/08/16 11:57 Phone (BJE) UTRT0 26/08/16 12:18 Phone (BJE) UTRT0		UTRT	005 39.	030934	-106.10	05137				5.000000	Truck parking location, at the end of Forest Service Road 431.	
				006 39.	39.032374		09436				5.000000	Lynch Creek at Lynch Creek Trail crossing.		
		26/08/16 12:49	2:49 Phone (BJE) UTRT007 39.0366		036660	36660 -106.115753				5.000000	Discharge measurement cross- section.			
	Photo Log	Photo Date	Camera	Med	dia Type Pi	noto Video ID	Caption	Caption			Photo Comment			
		26/08/16 12:19	iPhone (BJE)	Pho	otograph		Lynch C	Creek at Lynch	Creel	k Trail crossing. Flowing, gravel, cobble and boulder bed, abundant riparian vegetation and sinuous.				
		Link: https://1b679d	d435a9c0cb855a4-5	e783ede76	62bf508243fd6d1	oa1484df.ssl.d	f2.rackcdr	n.com/iformbu	ilder.c	om/461577/_data461577	_cwcb_general_sub	oform_photos/fie	eld_1189406587582b9546bc311.jpg	
		26/08/16 13:29	iPhone (BJE)	Pho	otograph		Unname	ed Trib to Rou	gh and	d Tumbling Q meas X				
		Link: https://1b679	d435a9c0cb855a4-5	e783ede76	62bf508243fd6d1	oa1484df.ssl.d	f2.rackcdr	n.com/iformbu	ilder.c	om/461577/_data461577	_cwcb_general_sub	oform_photos/fie	eld_1085409855582b95483e7ae.jpg	
		1	Rough and Tumbl	ng Creek		16/1/A-00	5	7/28/2016	i	Jnnamed Tributary to Ro	ugh amd Tumbling (Creek		
	Remarks	Date	Remark											
		28/07/16 12:42	Arrive at Rich C	reek trailh	ead, GPS UTRT0	01.								
		28/07/16 14:48 Arrive Unnamed Trib Rough and Tumbling. From Rich Creek trailhead. The hike takes one hour.					kes							
		28/07/16 15:11	fly and stated th	nat she pull thout the b	y below Rough ar led some nice bro ridge, I observed	ke trout out of	the creek.	In big pool be	ng a ow					
		28/07/16 17:07	Begin hike out	of field site										

Friday, December 16, 2016 Page 1 of 2

	GPS Log	GPS Date	Device	GPSPoint Name	Latitude	Longitude	UTM Zone	UTM Easting	UTMNorthing	Horizontal Accuracy	GPSDescription			
		28/07/16 12:43	Phone (BJE)	UTRT001	39.068259	-106.116281	OTWI ZONE	O TIVI Lasting	OTWINGITHING	5.000000	Parking location to access Unnamed Trib Rough & Tumbling, "Rich Creek Trailhead"			
		28/07/16 14:51	Phone (BJE)	UTRT002	39.038018	-106.115267				5.000000	Arrive Unnamed Tributary to Rough and Tumbling Creek confluence with Rough and Tumbling Creek. Just above log bridge trail crossing over R&T. Actual location of proposed lower terminus.			
		28/07/16 15:21	Phone (BJE)	UTRT003	39.038153	-106.114637				5.000000	Actual location of confluence of Lynch Creek and Rough and Tumbling Creek.			
		28/07/16 16:05	Phone (BJE)	UTRT004	39.036578	-106.115805				5.000000	UTRTNRLT.001 Streamflow measurement cross section.			
	Photo Log	Photo Date	Camera	Media Type	Photo Video ID	Caption	Caption			Photo Comment				
		28/07/16 14:53	iPhone (BJE)	Photograph		Rough and Tumb	oling Creek		Photo taken just below trail crossing log bridge. Plunge pool environment. Abundant riparian vegetation. Single thread channel. Be is predominantly boulders with interspersed cobble and sand. Little sinuosity.					
		Link: https://620638672b84d7ed4da9-bca54e529e5752f1e6d63fb4a534334b.ssl.cf2.rackcdn.com/iformbuilder.com/461577/_data461577_cwcb_general_subform_photos/field_63800248657e1c3eea633d.jp												
		28/07/16 15:17	iPhone (BJE)	Photograph		Lynch Creek Conflu w/ Rough & Tumbling Standing in water on left edge of Rough and Tumbling Creek photographing the Inflow from Lynch Creek (center of photog Photo of UTRT003.								
		Link: https://620638672b84d7ed4da9-bca54e529e5752f1e6d63fb4a534334b.ssl.cf2.rackcdn.com/iformbuilder.com/461577/_data461577_cwcb_general_subform_photos/field_171676441057e1c3f01640b.jp												
		28/07/16 15:46	Panasonic Lumi DMC-TS2 (BJE		719	Unnamed Tributa	ary to Rough and ⁻	Tumbling Creek	Photo taken between confluence and streamflow measurement section From center of creek looking upstream.					
		Link:												
		28/07/16 15:47	Panasonic Lumi DMC-TS2 (BJE	1 0 .1	720	Unnamed Tributa	ary to Rough and	Tumbling Creek	Photo taken between From center of cree		nd streamflow measurement sec eam.			
		Link:												
		28/07/16 16:11	iPhone (BJE)	Photograph		UTRTNRLT.001	Measurement Cr	oss Section	From center of cree	ek looking upstr	eam.			
		Link: https://62063	8672b84d7ed4da9-	bca54e529e5752f1e6	d63fb4a534334b.ssl.d	cf2.rackcdn.com/ifo	rmbuilder.com/46	1577/_data461577	- 7_cwcb_general_sul	oform_photos/fi	eld_52867122957e1c3f3caa57.jp			
		28/07/16 17:05	iPhone (BJE)	Photograph		Confluence UTR	T and Rough & T	umbling Creeks	Photo left UTRT ar	nd right Rough	and Tumbling Creek.			
		28/07/16 17:05 iPhone (BJE) Photograph Confluence UTRT and Rough & Tumbling Creeks Photo left UTRT and right Rough and Tumbling Creek. Link: https://620638672b84d7ed4da9-bca54e529e5752f1e6d63fb4a534334b.ssl.cf2.rackcdn.com/iformbuilder.com/461577/ data461577 cwcb general subform photos/field 133277613857e1c3f57a492												

Friday, December 16, 2016 Page 2 of 2