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Introduction 

Remote sensing ET models are being used in agricultural irrigation water 
management. These models either rely on distributed information on surface vegetation 
indices (visible and near infra-red bands) or/and on surface temperature images 
(Gowda et al., 2008). RS of ET models perform better on certain regions, environments 
and surface conditions. Therefore, there is a need to assess a reliable RS of ET model 
for Colorado. Furthermore, a main challenge regarding RS imagery, is that the temporal 
resolution of multispectral satellite images is not adequate (e.g., every 16 days in the 
case of Landsat 8) to estimate daily crop ET. If there is cloud cover during a satellite 
overpasses then estimates of ET for a month will not be possible. Using airborne RS 
platforms may be cost-prohibited (~$5,000 per campaign/farm) and may not be 
available on demand (due to the nature of their commercial applications and 
commitments). Therefore, it is believed that with the integration of multispectral sensors 
in a small unmanned aircraft system (sUAS), a robust and dependable high spatial 
resolution ET model can be developed.  

With this project it was possible to acquire and instrument a small Unmanned Aerial 
Vehicle (sUAV). Multispectral RS sensors were mounted on the aerial platform. 
Additional funds were secured from the Borland Hydrology Grant (CSU Civil and 
Environmental Engineering Department). 

The research reported in this document used remote sensing (RS) sensors mounted 
on a small unmanned aerial system (sUAS). Data derived from the aerial RS platform 
were used to apply and evaluate a RS algorithm of crop evapotranspiration (ET) method 
for suitable for eastern Colorado.  
The type of information that was sought to be gained included: a) suitable RS of crop 
ET algorithm for eastern CO; b) ability to map (monitor) ET at high spatial resolution 
with the UAS; and c) documentation of spatial crop water stress and ET not used.  

The objectives of the research, for the 2015 crop growing season, included: use of 
the sUAS remote sensing data in remote sensing of crop evapotranspiration (ET) 
methods and adjustment of most promising method, if needed, for eastern Colorado for 
the crops used in the study. 

 
Methodology 

The different research locations, were RS data were collected using the UAS, 
include: a) turf grass plots, managed under sprinkler irrigation, near Berthoud, CO (at 
Northern Water, NW); b) a furrow irrigated sorghum field, near Rocky Ford, CO (CSU 
Arkansas Valley Research Cener, AVRC); where two large weighing lysimeters are 
located; and c) irrigated corn plots available at CSU Agricultural Research Development 
and Education Center (ARDEC), near Fort Collins, CO.      



Remote Sensing data from the UAS were used in five ET algorithms: a) a two-source 
energy balance (TSEB) model, b) a surface aerodynamic temperature EB model (SAT), 
c) a crop water stress index (CWSI) model, d) a reflectance based NDVI or Normalized 
Difference Vegetation Index adjusted crop coefficient model, and e) a reflectance based 
fractional vegetation cover (fc) adjusted crop coefficient model. Resulting actual crop ET 
(ETa) values were evaluated with ET derived from a soil water balance (SWB) 
approach. For the SWB, soil water content (SWC) sensors/instrument (i.e., neutron 
probe, NP), and lysimetric ET data, were used along with rainfall and irrigation amounts. 
 
A description of each RS of ET method used in this study, with the CSU UAS, can be 
found in Appendix A. 
 
Description of the data acquisition location:  At ARDEC, irrigation treatments range from 
full (100%) to limited (at crop establishment and at reproductive stages) to drought 
where only one irrigation was applied. Four replicas of each treatment were available at 
field 1070 (ARDEC). Figure (1) shows the location of the experiment and irrigation 
treatments at ARDEC. Irrigation was with a self-propelled linear move. Corn was grown 
at field 1070. Other crops included sorghum (at AVRC) and turf grass (NW). 
 

   
Figure 1. The pictures on the left side show CSU Agricultural Research Development 
and Education Center (ARDEC), near Fort Collins, CO. In this picture, field 1070 (red 



rectangle) displays the three irrigation treatments and four replicas. The picture on the 
right side shows field 1070 being partially irrigated (linear move).      
 
A small UAS was used to collect multispectral remote sensing data. The CSU Tempest 
UAS is a fixed wing commercially available UAS. The USA is operated by an 
Autonomous Flight Control (AFL) from launch to recovery. The CSU Tempest UAS is 
capable of conducting RS missions with an eleven pound payload. Besides the AFL, a 
manual radio frequency (RF) control is available with the system. The system technical 
specifications are detailed in table 1 below. The UAS is shown is Figure 2.  
 
Table 1. CSU Tempest UAS technical specifications. 
 

 
 

  
Figure 2. The CSU Tempest UAS mounted on a tripod for display. 

Wingspan 127" (251 mm) 
Wing Area 1016 sq in (0.65 sq m)
Empty Weight 10 lbs (4.54 kg)
Nominal GTOW 11 lbs (5 kg)
Maximum GTOW 20 lbs (9.07 kg)
Wing Loading 20.6 oz/sq ft
Length 61.375" (1524 mm)
Airfoil MH-32
Center of Gravity 3.5" from leading edge of the wing (89mm)
Stall Speed 20 mph
Cruise Speed 50 mph
Max Speed 100 mph
Max Range 60 mi (52.14 NM)
Radio Range 10 mi (8.69 NM)
Flight Time 1.5 HR

Specifications



The CSU Tempest UAS was initially integrated with five (5) sensors designed to collect 
data over the Blue, Green, Red, Near Infrared, Mid Infrared, and Thermal wavelengths 
of the Electromagnetic Spectrum. The sensors are controlled through the Tempest 
Autopilot (except the MSR5, described below, which was controlled by a separate 
board). Table 2 describes the specifications of the sensors while Figure 3 shows 
pictures of the cameras used.  
 
Table 2. Description of sensors mounted on the CSU UAS. 
 

 
 
 

 
 

 

 FLIR Tau 2 640 Tetracam ADC SNAP Sony A6000 

Figure 3. Pictures of cameras integrated into the CSU Tempest UAS. 
 
At ARDEC field 1070 there were five (5) UAS RS campaigns. The dates were: July 15, 
22, and 30, August 13, and September 10 of 2015. The CSU AVRC and NW fields were 
covered on September 18 and 23, respectively. 
Below follows details on the flights’ settings of integrated sensors: 

• Flight elevation levels: 150 – 400 ft AGL (Above Ground Level) 
• UAS speed: 18 m/s 
• Imagery pixel resolution: 

Sensor Collection Priority Wavelengths 130 m (AGL) Resolutions
Blue 450-520 nm

Green 520-600 nm
Red 630-690 nm
NIR 760-900 nm

Thermal 1550-1750 nm
Exergen Infrared Thermometer Thermal 6.5-14 μm 17.61 m

FLIR Tau 2 640 Thermal 7.5-13.5 μm 11.76 cm
NIR
Red

Green
Sony A6000 Visible 450-690 nm 9.5 cm

CSU Tempest RS Payload

24.77 m MSR5 Multispectral Scanner

Tetracam ADC SNAP 520-920 nm 6.5 cm



– RED, NIR bands: 2.4 – 6.5 cm (Tetracam Snap ACD) 
– Thermal camera: 4.4 – 11.7 cm (FLIR TAU 2 640) 
– Visible: 3.5 – 9.5 cm (Sony A6000) 
– Multi-Spectral scanner: 9.3 – 24.8 m (MSR5) 
– Infra-red Thermometer: 8.8 – 17.6 m (Exergen IRT) 

– Autonomous Flights for data collection with manual control backup. 
– The imagery were geo-referenced with GPS data from reference markers 

installed at field 1070. 
 
Imagery Pre-processing procedure 

• Raw Data Conversion: 
– Multispectral – PixelWrench 2 Software convert the raw data file to the 

False Color (NIR, Red, Green) Digital Number (DN) .tiff formatted file. 
– Thermal – ThermalViewer Software converts the raw data file to a 

Radiometric or DN .tiff 
• Sensor Geometric Calibration: 

– A6000 and FLIR Tau 2 imagery were geometrically calibrated, using 
ERDAS Imagine software to remove distortion from the imagery. 

– The PixelWrench 2 Software was use to perform the geometric calibration 
for the Tetracam ADC Snap. 

• Geo-Rectification: 
– All of the “.tiff” formatted files were geo-rectified using ERDAS Imagine. 

• Image Mosaicking: 
– Images were mosaicked using ERDAS Imagine to produce the Thermal, 

Multispectral and Visible Imagery of the target area (field). 
• Spectral Calibration: 

– Thermal Imagery – The thermal images were further calibrated for the 
current conditions (removing atmospheric effects) utilizing the data from 
the ground based IRTs. 

– Multispectral optical imagery were calibrated for the current condition 
(removing atmospheric effects) utilizing the data from the ground based 
MSR5 multispectral scanner. 

– Calibration data was collected from both the ground and by UAS over the 
White, Black and Soil References. 

• White Reference – Spectralon reflectance panel (Figure 4, right) 
• Black Reference – Black Panel (Figure 4, left) 
• Soil Reference – Bare Soil 

 



    
Figure 4. Black (left) and white (right) reflectance panels used for optical imagery 
reflectance calibration. 
 
Once surface reflectance and temperature were obtained with the UAS then the ET 
algorithms detailed in Appendix A were used to map crop water used. Estimated actual 
ET values were compared to ET values derived from a SWB. The SWB approach 
followed was: 
 

ETa = (VWCi-1 – VWCi) x 1000 x Rz + Pe + Ie          (1)  
 
where: ETa is actual crop evapotranspiration (mm/d), VWC is soil volumetric water 
content (m3 m-3) measured with a neutron probe soil moisture sensor at intervals of 0.3 
m in the soil profile from 0.3 – 1.5 m of soil depth. Subscript “i” indicates a particular day 
of the year. Therefore, for a daily SWB, VWC would be measurements from two 
consecutive days.  Soil water status (VWC) data were collected at eight (8) locations 
(NP access tubes) within the corn plots in field 1070. The 1000 factor is to convert the 
VWC values from m3 m-3 to mm/m (mm of water per m of soil depth), Rz is the soil root 
zone depth, Pe (mm) is the effective precipitation or rainfall (gross amounts taken from 
on-site weather station), and Ie is the effective irrigation (mm). To convert from gross to 
effective we used a factor of 0.9.  

 
Statistical Analysis 
Comparison was made between the crop actual ET (ETa), estimated using the remote 
sensing algorithms, with the crop ETa derived from the soil water balance. The 
comparison was done using the mean bias error (MBE) and the root mean square error 
(RMSE) parameters, which are defined below. 
The MBE is usually used to determine the average model bias or average over- or 
under-prediction. MBE is obtained by summing up the differences between predicted 
and observed values. Positive values indicate model over-estimation bias, and negative 



values indicate model under-estimation bias (Willmott 1982; Katiyar et al., 2010), and 
zero is interpreted as absence of bias and not necessarily absence of error. 

                                                               MBE = 1
n
∑ (ni Mi − Oi)                                       (2) 

where O is the observed (measured) value and M is the predicted or derived (remote 
sensing based in this case) value. 
The RMSE is commonly used as an error index statistic. A smaller RMSE value 
indicates a smaller error spread and variance and therefore a better model 
performance. It measures the magnitude of the spread of errors, squaring errors before 
averaging them. Therefore, the RMSE gives a relatively high weight to large errors. 
Willmott (1982) defines RMSE as: 

                                                             RMSE = �1
n
∑ (ni Mi − Oi)2                                 (3) 

 
Results 
During the first three flights/dates the thermal camera system did not store data and the 
shortwave optical camera was intermittent. The cameras’ interface and autopilot 
program were modified to fix the problem. Thus, in this study, for the ARDEC field 1070 
only was possible to have complete data sets (optical and thermal) for August 13th and 
September 10th. On July 22nd and 30th only optical (visible and near infra-red bands) 
data were obtained. For those days when only the optical imagery were available then 
only the reflectance based crop coefficients methods (based on NDVI and Fc), to obtain 
ETa, were applied. 
The verification of the thermal imagery surface temperature values performed with 
ground based IRTs and a FLIR handheld camera (thermography, Figure 5) indicated 
the thermal imagery surface temperature RMSE was around 0.5 °C. This is considered 
a very good result and the thermal imagery (data) were determined to be accurate. 

  
Figure 5. Handheld FLIR 650C Thermal camera captured RGB picture (left) and thermal 
image (°C) of field 1070 (CSU ARDEC) on 10 September 2015. Different locations were 
sample at plots/treatments and on soil, water, and surrounding fields as well for the 
evaluation of the UAS thermal imagery. 



A sample of the data collected with the UAS multispectral RS system is displayed in 
Figures 6 and 7 below.  

  
Figure 6. A6000 RGB digital camera picture (left) and FLIR Tau 2 thermal image 
acquired on 13 August 2015 at 11:30 a.m. MDT. The surface temperature obtained from 
the thermal imagery indicated that the ranged from 14 to 36 °C. The A6000 camera 
acquired regular RGB pictures at a spatial resolution of 9.4 cm per pixel. The thermal 
camera spatial resolution was 11.7 cm per pixel for a flight altitude of 121 m AGL.  
 
The individual shortwave bands, captured with the Tetracam, were combined (stack, 
NIR first, followed by Red and by Green bands, in that order) after rectification and 
calibration to produce a false color 3-band imagery (Figure 7). In the 3-band image 
(right), the green color of leaves are shown as red and it is evident from the reflectance 
image that the four plots on the east side of field 1070 had less red color which meant 
less biomass or leaves. This was expected for the drought irrigation treatment located 
on that side of the field. Therefore, the Tetracam camera was able to capture 
appropriately the reflectance of the different irrigation treatments.  
 



  
Figure 7. From left to right: Green, NIR, Red bands, and a resulting 3-band stack false 
color image. Data acquired on 13 Aug 2015 over field 1070 at ARDEC. 
 
After obtaining field surface reflectance and temperature imagery and applying the 
different RS of ET algorithms, ETa values, from the UAS, were compared to similar 
values derived from the NP SWB. Figure 8 plots VWC for one of the NP access tubes.  
 

  
 
Figure 8. Soil volumetric water content (m3 m-3), measured with a neutron probe at 
different soil depths on different date throughout the corn growing season, at a fully 
irrigated treatment in field 1070 ARDEC. 

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2 0.25 0.3

De
pt

h 
(c

m
)

VWC (m3/m3)

VWC vs Depth

6/29/2015 7/11/2015 7/15/2015 7/22/2015 7/30/2015 8/5/2015

8/10/2015 8/20/2015 8/26/2015 9/3/2015 9/10/2015 9/17/2015



From the NP seasonal data it was determined that the corn was extracting water from 
the soil profile from all depths (layers) where data were collected (up to 1.5 m). This 
result is an indication that the fix irrigation schedule (once a week) and amount (of 1 
inch or 25.4 mm) for field 1070 fully irrigated plots did not return the soil water content to 
field capacity throughout the crop root zone. As the crop season progressed, the corn 
extracted more water from deeper soil layers. Therefore, it was expected that even the 
“fully” irrigated plots would have suffered from some water stress. 
To verify this finding another soil water balance was performed. This SWB was based 
on estimates of crop water use (ETc) for non-stressed corn using weather data from the 
in-situ COAGMET weather station and the irrigation and rainfall data. The methodology 
indicated in Andales and Chávez (2011) and Andales et al. (2011) were followed to 
apply the new SWB. Figure 9 shows the resulting SWB. 

 
Figure 9. Soil water depletion at ARDEC field 1070 throughout the 2015 corn growing 
season based on weather station data derived ET in soil water balance. 
 
From Figure 9 plot, it is evident that after August 1st the soil water content in the crop 
root zone was not sufficient to sustain a full ET rate. The plant roots had extracted water 
from the soil beyond the set soil management (or allowed) depletion, potentially causing 
water stress and an ET rate less than “potential” or optimal. Thus, this result confirms 
the findings of seasonal soil water depletion (extraction) found with the neutron probe 
data.    
Estimated values of actual corn ET (for ARDEC) using the different (5) RS of ET 
algorithms were plotted versus ETa values derived from the NP data and the SWB  



 

 
Figure 10. Comparison of corn actual ET estimated with a RS algorithm and 
corresponding values of ET derived from a SWB and measured soil water. 
 
method. Figure 10 shows the scatter plot where the x-axis is the ET from the SWB 
(ET_swb) while the y-axis is the ET from one of the RS methods (i.e., TSEB for the 
Two-Source-Model, SAT for the surface aerodynamic temperature energy balance 
model, CWSI for the Crop Water Stress Index method, NDVI for the reflectance based 
crop coefficient based on NDVI, and F_c for the reflectance based crop coefficient 
based on fractional vegetation cover). The graph also shows a 1:1 line (black line), 
denoted SWC_NP, to visually observe how close estimated ET values were to 
“measured” values. This is, the closer the points to the 1:1 line the more accurate the 
method in estimating actual crop ET. 
Maps of ETa (mm/d) for the different ET methods and locations can be found in 
Appendix B. 
From Figure 10 visual observation one can see that both methods based on adjusting 
the crop coefficient (i.e., using NDVI and fc from RS) had points closer to the 1:1 line. 
Thus, the NDVI and F_c ET points seem to estimate corn ET more accurately than the 
other RS of ET methods.  
 
The statistical analysis is shown in Table 3 where the Kc_NDVI (or NDVI) method 
resulted with the lowest ETa (mm/d) MBE and RMSE values, followed by the Kc_fc (or 
Fc) method. The third best performing RS of ET algorithm was the SAT method based 
on the land surface energy balance which showed acceptable errors. One possible 
cause of the somewhat over estimation of ETa by this SAT method may be the fact that 
wind speed data were obtained from the COAGMET weather station when the method 
calls for measuring wind speed on-site; ie., about 2 m above the corn canopy. The 
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CWSI method also over estimated actual corn ET values. Perhaps this result may have 
been caused because air temperature and relative humidity were obtained from the 
COAGMET weather station and not measured on-site as the method prescribes. The 
worst performing method was the TSM (TSEB). This method is very data and 
processing intense and there are many instances in which errors can be committed.   
 
Table 3. ETa (mm/d) mean bias error (MBE) and root mean square error (RMSE) 
results. 

 
Note: n is the sample size. 
 
The statistical analysis was further broken down, for the ARDEC data, into RS 
days/campaigns to observe in more detail the performance of the RS of ET methods 
under different conditions. Tables 4, 5 and 6, below, show the actual ET errors for July 
22nd and 30th, August 13th, September 11th, respectively. 
 
For the vegetative growth stage of corn at ARDEC, the reflectance based crop 
coefficient adjusted with NDVI resulted with less error than the crop coefficient adjusted 
with fractional vegetation cover (Fc), as shown in Table 4. 
 
Table 4. Actual corn ET for July UAS flights for the reflectance-based crop coefficient 
method (i.e., NDVI and Fc). 

 
 
By mid August the corn had reached the reproductive growth stage and the fully 
irrigated treatment had reached full cover. Under these conditions, the Fc method 
performed very well resulting with the lowest MBE±RMSE of 0.13±0.75 mm/d. This 
method performance was closely followed by the NDVI crop coefficient (Kc) method and 
then by the SAT energy balance method with acceptable ETa estimation errors. The 
other two methods, the TSM (TSEB) and the CWSI method had errors that are deemed 
large for purposes of improving irrigation water management. 
 
 
 

TSEB SAT CWSI NDVI Fc
MBE 2.50 0.97 1.26 0.28 0.96
RMSE 2.63 1.21 1.63 1.07 1.38
n 16 16 16 24 32

22-Jul 30-Jul
Method Fc NDVI Fc
MBE, mm/d 1.64 1.46 1.81
RMSE, mm/d 1.30 0.82 1.05
MBE, % 21.7 7.4 16.2
RMSE, % 23.9 18.0 22.3



Table 5. Actual corn ET for all methods for the August 13th UAS flight. 

 
 
For the UAS RS flight of 10 Sept 2015, a similar performance of RS of ET methods was 
obtained. This is, the NDVI based Kc and the Fc Kc methods performed better; followed 
by the SAT energy balance method. Larger errors in estimating ETa were found for the 
CWSI method. 
 
Table 6. Actual corn ET for all methods for the September 10th UAS flight. 

 
 
Results of ETa, from the UAS flight on September 18th over a sorghum field at the CSU 
AVRC facility near Rocky Ford, CO, were as followed: TSM = 5.6 mm/d, SAT = 4.2 
mm/d, and Fc (or Kc, Kcr) = 4.0 mm/d. While the lysimeter measured sorghum ETa was 
4.6 mm/d. The alfalfa reference ET (ETr) was 6.6 mm/d on that day and the expected 
non-water-stress sorghum ET (ETc) was about 5.2 mm/d (as per tabulated crop 
coefficients). Thus, the SAT method produced an ETa rate closer to the measured by 
the lysimeter at Rocky Ford. Most probably this better performance of the SAT method 
over a sorghum field has to do with weather data collected in-situ (mainly wind speed) 
and the fact that the field was large and therefore ensuring sufficient fetch (footprint) for 
the valid application of the method. The reflectance based coefficient (Fc) performed 
relatively well. However, the TSM overestimated ET by 1.0 mm/d.  
 
Results of ETa, from the UAS flight on September 23rd over turf grass at NW near 
Berthoud, CO, were as followed: TSM = 2.5 mm/d, CWSI = 1.3 mm/d, SAT = 3.4 mm/d, 
NDVI Kc = 2.6 mm/d, and Fc Kc = 2.9 mm/d. While the soil moisture sensor derived ETa 
was 2.3 mm/d. For the grass vegetation the NDVI Kc RS of ET method resulted with the 
more accurate estimation of ETa followed by the TSM method and by the Fc Kc method.  
Both the CWSI and SAT methods did not performed well in this case.  
 
 
 

13-Aug
Method TSEB SAT CWSI NDVI Fc
MBE, mm/d -1.12 0.79 1.14 -0.29 0.13
RMSE, mm/d 1.43 1.12 1.40 0.81 0.75
MBE, % -16.9 11.9 17.3 -4.4 2.0
RMSE, % 21.7 16.9 21.1 12.3 11.3

11-Sep
Method TSEB SAT CWSI NDVI Fc
MBE, mm/d 1.20 1.15 1.38 0.54 0.89
RMSE, mm/d 1.37 1.30 1.83 0.82 1.05
MBE, % 13.8 13.3 16.0 6.2 10.3
RMSE, % 15.8 15.0 21.2 9.5 12.2



Conclusions 
A fix-wing small unmanned aerial system (sUAS) was equipped with multispectral 
remote sensing sensors. Some issues were encountered regarding the integration of 
the sensors with the on-board autonomous control system that prevented the 
acquisition of a large number of images (flight campaigns) during the crops growing 
season. However, the CSU Tempest UAS is capable of acquiring optical and thermal 
data (images) for input into algorithms to estimate crop water use, for instance. 
Five different remote sensing of ET algorithms were applied using the UAS data. 
Evaluation of the actual ET values obtained revealed that the reflectance based crop 
coefficient methods (i.e., NDVI and vegetation fractional cover) performed better (more 
accurate) than the full land surface energy balance methods (i.e., TSM and SAT), being 
the least accurate the CWSI method.  
For corn, the SAT performed relatively well and it seems that if weather data are 
collected in-situ the method has potential to perform better.  
For sorghum, the SAT and the vegetation fractional cover adjusted crop coefficient 
methods performed better. While for turf grass, the TSM and the reflectance based crop 
coefficient (based on NDVI) performed better. 
From these results, it can be concluded that the CSU Tempest UAS has the potential to 
estimate crop water use with similar accuracy and errors as methods used with satellite 
and manned airborne platforms. Regarding the remote sensing of ET, the methods 
based on adjusting crop coefficients with reflectance images seemed to performed best 
for all vegetation types used in this study; followed by the SAT method. However, the 
application of one given method under different surface and environmental conditions 
may produce different results. This is, it seems that a give RS of ET method tends to 
perform better under certain conditions (e.g., field size, crop growth stage and biomass 
amount or LAI, weather conditions, soil moisture conditions, etc.). Further research is 
needed, using UASs, to incorporate a large set of data over a range of crop/vegetation 
and environmental conditions to establish (assess and calibrate) the best combination 
(hybrid) of ET methods for crops grown in Colorado. 
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APPENDICES 
 
 
APPENDIX A 
ET ALGORITHMS DESCRIPTION 
 
Crop Water Stress Index (CWSI) 
The CWSI method relies on the temperature difference (dT, ºC) between the vegetation 
canopy and the air (Tc – Ta), and on minimum and maximum differences in these “Tc – 
Ta” temperatures, as indicated in Equation A1. Air temperature measured at a height of 
2.0 – 3.0 m above the ground and in the crop field. 
 



CWSI = (dT – dTmin)/(dTmax – dTmin) (A1)  
 
where: subscripts “min” and “max” are the minimum and maximum dT (or Tc – Ta), 
respectively.  These dT boundaries can be estimated following the methodology 
developed by Idso et al. (1981). The dTmin and air water vapor pressure deficit (VPD, 
kPa) have a linear relationship for a fully irrigated (no water stress) crop under a given 
environmental condition.  The dTmax has a linear relationship with the so called water 
vapor pressure gradient (VPG), when the crop is experiencing maximum water stress 
(dry soil to a soil water tension of about 15 bars): 
 
dTmin = a (VPD) + b 

(A2)  

 
dTmax = a (VPG) + b 

(A3)  

 
where: the “a” and “b” coefficients are the slope and the intercept of the linear 
relationship between dTmin and VPD. The VPG is estimated as the difference between 
saturated air vapor pressure at air temperature and saturated air vapor pressure at air 
temperature plus the coefficient “b.” The value of dTmax has also been found to be 
relatively constant around 4 to 5 ºC for corn fields. 
The minimum dT occurs when the vegetation is not experiencing water stress. Under 
this condition the crop has sufficient water available in the soil root zone and the 
transpiration process is only limited by weather conditions. Appropriate coefficients for 
dTmin, for several crops, can be found in Idso et al. (1982). For this study, coefficients “a” 
and “b” were developed from in-situ field data (i.e., air temperature, vapor pressure, 
canopy temperature) collected one to two days after irrigation events (no water stress 
conditions) after corn had reach effective full cover. A linear regression was performed 
between dTmin and VPD (VPD calculation explained below). The resulting coefficients 
were slope “a = -1.99” and intercept “b = 3.04”. These coefficients were very close to 
those found by Idso (1981) for corn in Arizona; which were “a = -1.97” and “b = 3.11”. 
In the case of dTmax, it occurs when the vegetation is not transpiring because the soil is 
very dry (soil water tension of about 15 bars) and the plant can’t exert so much tension 
(negative pressure) to remove any more water from the soil. 
To compute the vapor pressure deficit one needs readings of air temperature (Ta, ºC) 
and relative humidity (RH, %) obtained just above the canopy (i.e., in field or in-situ 
measurements); preferentially from the middle of the field. In the case of our application 
of the CWSI method, RH and Ta were obtained from an in-situ weather station 
connected to the COAGMET network. The weather station name was CSU-ARDEC 
(ftc03). Canopy temperature was measured with the FLIR Tau 2 thermal camera. 
 
Vapor Pressure Deficit (VPD) Calculation 
Vapor pressure deficit (VPD, in units of kilo-Pascals, kPa) was computed as follows: 
 

VPD = es – ea             (A4) 



 
where, “es” is saturation vapor pressure (kPa) and “ea” is actual vapor pressure (kPa), 
both computed as show below (where Ta is air temperature in ºC). 
 

 ×
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T             (A5)  

 
ea = (RH/100) × es             (A6) 

  
where, RH is relative humidity in percent (%). 
 
Vapor Pressure Gradient (VPG) Calculation 
 
The VPG is the difference between saturated air vapor pressure at air temperature and 
saturated air vapor pressure at air temperature plus the coefficient “b.” Thus: 
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   (A7)  
 
Once the CWSI was computed the next step was to convert it to actual ET (ETa). This 
computation employs the stress index and the so called potential (no stress) crop (corn 
in our case) ET rate. Potential corn ET values were calculated by multiplying alfalfa 
reference ET (ETr) by the sum of tabulated basal corn crop coefficients (Kcb) and 
surface evaporation coefficients (Ke), Hoffman et al. (2007).  Daily ETr values were 
computed using weather data from COAGMET, using the standardized ASCE alfalfa 
reference Penman-Monteith equation (ASCE-EWRI, 2005). 
 
Surface Aerodynamic Temperature Model (SAT) 
The surface aerodynamic temperature method (SAT) was used to compute ETa values. 
This SAT method is a calibrated surface energy balance (EB) algorithm (Chávez et al., 
2005).   
Estimated corn actual water use (ETa), from the Apogee oblique IRT-based CWSI 
method, was evaluated using actual ET values derived from a surface energy balance 
algorithm (Chávez et al., 2005). For this surface energy balance algorithm a surface 
bulk aerodynamic resistance model was used to obtain sensible heat flux (H). 

 

where ρa is humid air density (kg m-3), Cpa is specific heat of dry air (1005 J kg-1 K-1), Ta 

 H= ρaCpa(Taero-Ta)/rah  (A8) 



is average air temperature (K), Taero is average surface aerodynamic temperature (K). 
Taero (in ºC) can be expressed as (Chávez, 2005):  

Taero=0.534 Ts+0.39 Ta+0.224 LAI - 0.192 U +1.67  (A9)  

where Ts is the surface radiometric temperature (°C) obtained using the FLIR Tau2 
thermal camera mounted on the UAS, Ta is air temperature (°C), LAI is the leaf area 
index (m2 m-2) derived from the TETRACAM camera mounted on the UAS, U is the 
horizontal wind speed (m s-1). Air temperature and wind speed were collected near the 
field at the COAGMET weather station CSU-ARDEC. Crop height was measured 
periodically through the growing season. LAI was estimated using surface reflectance 
data acquired with the TETRACAM:  
 

LAI=(4 OSAVI-0.8)×(1+4.73E-6 EXP[15.64 OSAVI])      (A10) 
 
where OSAVI is the optimized soil adjusted vegetation index. Sensible heat flux was 
corrected for atmospheric stability conditions using an iterating method as described in 
Chávez et al. (2005).  
 
Net radiation was calculated as:  
 

Rn=�1-α�Rs+εaσTa
4-εsσTs

4           (A11) 
 
where Rn is net radiation (W m-2), α is surface albedo, Rs is incoming shortwave 
radiation (W m-2), σ is the Stefan-Boltzmann constant (5.67E-08 W m-2 K-4), ε is 
emissivity, and T is temperature (K), with subscripts “a” and “s” for both air and surface, 
respectively.  
 
Soil heat flux was calculated as Chávez et al. (2005):  
 

G=[��0.3324+�-0.024 LAI��×�0.8155+�-0.3032 ln(LAI)���Rn]    (A12) 
 
where G soil heat flux in units of W m-2. Latent heat flux could then be calculated from 
the energy balance equation: 
 

    LE=Rn-G-H              (A13) 
 
where, LE is latent heat flux (W m-2). Hourly ET can be calculated using LE as:  
 

ETi=3600 LEi/(λv 𝜌𝜌𝑤𝑤)            (A14) 



 
where, ETi is the hourly crop actual ET (mm hr-1), ρw is the density of water (taken as 
1000 kg m-3), and λv is the latent heat of vaporization (J kg-1) equal to ((2.501 – 0.00236 
Ta) x 106), where Ta is in ºC. Daily ET can then be calculated, (Chávez et al., 2008), 
from hourly ET as: 
 

ETd= � ETi
(ETr)i

�×(ETr)d           (A15) 

 
where, ETd is crop ET daily (mm d-1), (ETr)i is the alfalfa reference hourly ET (mm hr-1), 
and (ETr)d is the daily alfalfa reference ET rate (mm day-1).  
 
Two-Source-Model (TSM) 
The TSM algorithm solves the land surface energy balance equation (A13) for LE after 
finding separately the canopy net radiation Rn and sensible heat flux H and the soil Rn, 
soil heat flux G and H components, i.e. the TSM partitions each of the surface energy 
balance components into fluxes generated from the vegetation canopy (first source) and 
the bare soil/background soil (second source).  
H is estimated by adding the soil sensible heat flux (Hso) that occurs between the soil 
surface and a point above the canopy (Zh), where air temperature (Ta) is measured, with 
the canopy sensible heat flux (Hc) generated between the vegetation canopy and a 
parcel of air at Zh, assuming a parallel resistance network.  
The TSM is based on the so called “ensemble or composite” temperature, which is the 
combination of vegetation and background soil in the field of view (and pixels) of the 
thermal camera used, defined by equation A16 as described below.  
 

Tsfc = [fc (Tc)4  + (1 - fc) (Tso)4]1/4                                (A16) 
 

where, Tc is canopy temperature (K), Tso is soil temperature (K), rso is the resistance to 
heat flow above the soil (s m-1), rah is aerodynamic resistance (s m-1) to heat transfer, Us 
is horizontal wind speed (m s-1) just above the soil surface, ρa is air density (kg m-3), and 
Cpa is specific heat of dry air (1,004 J kg-1 K-1). Tc and Tso are estimated using Eq. (A16) 
for a Nadir looking thermal infrared sensor/camera. The temperature measured with the 
UAS thermal camera was denoted Tsfc and is the so-called “ensemble (or composite) 
surface radiometric temperature,” and fc is the fractional vegetation cover, in Eq. A16 
(function of LAI).  
Below is the description of some steps followed to apply the TSM in this study. To find 
more details in the methodology used the reader is referred to the article published by 
Chávez et al. (2009) “Estimating hourly crop ET using a two-source energy balance 
model and multispectral airborne imagery“ and Norman et al. (1995) “A two-source 
approach for estimating soil and vegetation energy fluxes form observations of 
directional radiometric surface temperature.” 



First, to obtain H, an initial estimation of Hc, applying Priestly and Taylor (1972) model, 
is performed. Subsequently, the Hc value is used to derive an initial Tc value by inverting 
the Hc eq. assuming a neutral atmospheric stability condition. Next, the Tsfc eq. is solved 
for Tso and updated values of Hc and Hso are computed correcting rah for atmospheric 
stability using the Monin-Obukhov atmospheric stability length scale (similarity theory, 
Foken, 2006). 
Tc and Tso are verified by testing the estimated LE for the soil for a negative value, in 
which case temperatures are not correct, and the soil is assumed to have a dry surface. 
Thus, a new iteration cycle is needed, in which LE is set to zero for the soil component 
and Hso is re-calculated (Hso = (Rn – G)so) ignoring LE for the soil. A new Tso and Tc 
values are found and sensible heat flux components are again estimated, and canopy 
LE computed. Then once again, the overall LE result is verified for a positive/negative 
sign.  
Below is a list of equations used in the TSM application: 
1. Fractional vegetation cover (fc), Norman et al. (1995): 
  

   fc = 1- EXP(-0.5*LAI)            (A17) 
 
where LAI is leaf area index (m2 m-2) 
 
2. Local LAI (LAIL), Kustas and Norman (2000): 
    

   LAIL = LAI/fc              (A18) 
 
3. Fractional soil cover (Fs), Kustas and Norman (2000): 
 

   Fs = [fc*(EXP(-0.5* LAIL)]+(1-fc)           (A19) 
 
4. Clumping factor (Ω), Kustas and Norman (2000): 
 

   Ω = - LN(Fs)/(0.5*LAI)            (A20) 
 
5. New (updated) fractional vegetation cover (fc_nw), Kustas and Norman (2000): 
 

   fc_new = 1-EXP(-0.5* Ω*LAI)           (A21) 
 
6. Surface albedo (α), Brest and Goward (1987): 
 

α = 0.512*RED + 0.418*NIR           (A22) 
  



where: RED and NIR are reflectance in the RED and NIR bands, respectively, obtained 
with the UAS. 
 
7. Net radiation (Rn), Monteith (1973): 
 

 
( ) 4

ss
4
aasn TTR1R sε−sε+a−=

        (A23) 
 

a) Where the first term of Rn is the short wave radiation budget (Rsw): 
 

   Rsw = (1- α)*Rs               (A24) 
 
Where: Rs is the incoming short wave solar radiation, in W/m^2. 

 b) Calculate atmospheric/air long wave incoming radiation (Rlw_in): 
 

  Rlw_in = 
4

aa Tsε
             (A25) 

 
Where σ is the Stefan-Boltzmann constant (5.67E-08 Watts m-2 K-4), εa is emissivity and 
Ta temperature (K) from air. 
 

c) Air emissivity (εa), Brutsaer (1975): 
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            (A26) 
 
where, ea is actual vapor pressure (mb) and Ta is air temperature (K) from weather 
station measurements.   
 

d) Surface outgoing long wave radiation (Rlw_out): 
 

  Rlw_out = 
4

ss Tsε
            (A27) 

 
Where subscript “s” denotes surface emissivity and temperature respectively. 
 
e) Long wave radiation budget (Rlw): 
 



  Rlw = Rlw_in – Rlw_out           (A28) 
 
 
8. Extinction coefficient for canopy (K), Campbell (1986), Campbell and Norman (1998): 
 

   K = 1/(2*cos(θz*π/180))           (A29) 
  
 Where: θz is the solar zenith angle in degrees, and π is 3.1416. 
 
9. The components of “Rs”, i.e. the direct beam and the diffuse solar radiation parts. 
(Spokas and Forcella, 2006): 
 

   Rs = Rb + Rd             (A30) 
  
Where: Rb is direct beam and Rd the diffuse solar radiation. 
 
a) The optical air mass number (m).  
 

   m = P/(101.3*cos(θz*π/180))         (A31) 
 
Where: P is barometric pressure in kPa, from a weather station. 
 
b) Rb as:  Rb = Gsc x (τatm)m                    (A32) 

 
where Gsc is the solar constant (1360 W/m^2), and τatm is the atmospheric 
transmittance (which is calculated in MODTRAN) or transmissivity (ASCE EWRI, 2005). 
 
c) Rd as:  Rd = 0.3*(1- (τatm)m)*Gsc*cos(θz* π/180)            (A33) 

 
10. Fraction (fb) of incident PAR (photosynthetically active radiation) from Rb, 
Goudriaan (1977):  
 

  fb = Rb/(Rb+Rd)             (A34) 
  
11. Solar transmittance in the canopy (τc), Norman and Jarvis (1974): 
 

   τc = EXP((a*(1-0.47*fb))*LAI)/(((1-(1/(2*K)))*fb)-1))     (A35) 
 
12. Initial canopy net radiation (dRn), Norman et al. (1995): 



 
   dRn = Rn-(Rn*EXP(0.9*LN(1-fc_nw)))        (A36) 

  
13. Initial sensible heat flux for canopy (Hc_in), Priestly and Taylor (1972): 
 

   Hc_in = dRn*(1-(1.3*fg*Δ/(Δ*γ)))          (A37) 
 
Where: fg is fraction of the LAI that is green, Δ is the slope of the saturation vapor 
pressure versus temperature curve, and γ is the psychrometer constant. 
 
14. Initial aerodynamic resistance to heat transfer (rah_in). Monin-Obukhov similarity 
theory (Foken, 2006), and (Liu et al. 2006). Below, the iteration utilized to correct H and 
rah for stability is depicted. 
 
 
 

 
 
 
Where,   
 
Tc is canopy temperature in K. Tc is initially estimated using Hc_in and rah estimated 
for neutral atmospheric conditions. 
 








 −
=

om

m

Z
dZLn

Uu κ
*

Hc = ρa Cpa (Tc –  Ta) / rah  uk
z

d-z 
z

d-z

=r 2
ohom

a
















 lnln

Tc 

Hkg
CTu

L apaa
OM

ρ3
*

_

−
=

4
1

_

*161 








 −
−=

OM

m

L
dZx








 +
=

2
1*2

2xLnhψ( )
2

tan*2
2

1
2

1*2
2 πψ +−






 +
+





 +

= xaxLnxLnm











+








 −
−






 −
=

OM

om
m

OM

m
m

om

m

L
Z

L
dZ

Z
dZLn

Uu

__

*

ψψ

κ

κ

ψψ

*

__

u
L
Z

L
dZ

Z
dZLn

r OM

oh
h

OM

m
h

oh

m

ah











+








 −
−






 −

=

If rah_i-1 = rah_i   



Tc_in = ((Hc_in * rah)/(ρa * Cpa)) + Ta        (A38) 
 
Where, ρa is air densigy, Cpa specific heat of air, and Ta is air temperature. 
 
Then, tto correct H for atmospheric stability conditions: 
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where ψh is the stability correction factor for atmospheric heat transfer.  LM_O is Monin-
Obukhov length scale, (m). u* is friction velocity, (m s-1).   
 
According to Monteith and Unsworth (1990), LM_O can be expressed as follows: 
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where g is the earth gravity acceleration.  The stability correction factor for atmospheric 
heat transfer ψh, for unstable conditions (LM_O < 0), is: 
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The friction velocity under neutral conditions (LM_O ~ ∞), is: 
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Considering diabatic or non-neutral conditions the friction velocity is: 
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Where, ψm is the stability correction factor for momentum transfer. For unstable 
conditions it is: 
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15. The initial soil temperature (Ts_in) is, Norman et al. (1995): 
 

Ts_in = ((((Tsfc-273.15)^4)-(fc_nw*Tc_in)^4)/(1-fc_nw))^(1/4)   (A46) 
 
Where: Tsfc is the radiometric surface temperature (K), from the UAS thermal camera. 
 
16. The initial long wave radiation emitted by the canopy (Lc). 
 

Lc = (ε_c* σ *(Tc_in+273.15)^4)          (A47) 
 
Where, ε_c is canopy emissivity, which is set to 0.98 for a good green vegetation stand. 
 
17. Calculate the initial long wave radiation emitted by the soil (Ls). 
 

Ls = (ε_s* σ *(Ts_in+273.15)^4)         (A48) 
 
Where, ε_s is soil emissivity, which is set to 0.92 for bare soil with high reflective 
properties. 
 
18. Soil albedo (αs), Post el al. (2000): 
    

 αs = (0.785*NIR)-(0.745*BLUE)+(0.872*GREEN)+0.01    (A49) 
 
 where: BLUE and GREEN are reflectance in the blue and green bands. 
Note: Our TETRACAM does not have a BLUE band and therefore a linear calibration 
was used based on the GREEN band reflectance values. The calibration was 
developed with surface reflectance data obtained on the ground by a handheld 
multispectral scanner (MSR5, Cropscan). The MSR5 sensor has similar bandwidths as 
the ones from the TETRACAM and to Landsat 5 TM. 
 
19. Short wave radiation for soil (Sns), Kustas and Norman (2000): 
 

 Sns = τc*(1- αs)*Rs               (A50) 
 



Where Rs is incoming short wave radiation, W m-2 
 
20. Long wave net radiation from canopy (Lnc), Kustas and Norman (2000): 
 

 Lnc = (1-EXP(-Kl*Ω*LAI))*(Rlw_in + Ls – 2 * Lc)      (A51) 
 
 Where: Kl is an extinction coefficient set to 0.95.  
 
21. Long wave net radiation from soil (Lns), Kustas and Norman (2000): 
 

Lns = ((EXP(-Kl* Ω *LAI))*Rlw_in)+((1-EXP(-Kl* Ω *LAI))*Lc)-Ls  (A52) 
 
22. Net radiation for soil (Rns), Norman et al. (1995): 
 

 Rns = (Sns + Lns)             (A53) 
 
23. Net radiation for canopy, Norman et al. (1995): 
 

 Rnc =(Rn - Rns)             (A54) 
  
24. Sensible heat flux for canopy (Hc), Norman et al. (1995): 
 

 Hc = (Rnc*(1-(1.3*fg*(Δ/(Δ+γ)))))        (A55) 
 
25. Using Hc from previous step rah is updated, to “rah_new,” using the Monin-Obukhov 
iterative procedure outlined previously. 
 
26. Mean canopy leaf width (wc). For sorghum/corn it was assumed 0.09 m. 
 
27. Extinction coefficient for wind function (a_ext), Norman et al. (1995): 
 

 a_ext = 0.28*((Ω*LAI)^(2/3))*(hcc^(1/3))*(wc^(-1/3))     (A56) 
 
 where: hcc is crop height, m. 
 
28. Wind speed at the top of the canopy (Uc), Norman et al. (1995): 
 

 Uc = =u*(LN((hcc-d)/Zmo)/(LN((Zm-d)/Zmo)- ψm))     (A57) 



 
Where: u is horizontal wind speed from weather station, m/s. d is the zero plane 
displacement. Zmo is the roughness length for momentum transfer, and ψm (m) is the 
stability correction factor for momentum transfer. 
 
29. Wind speed close to the soil level (Us), Norman et al. (1995): 
 

 Us = =Uc*EXP(-a_ext*(1-(0.15/hcc)))          (A58) 
 
30. Resistance to heat flow just above the soil (rso), Norman et al. (1995): 
  

 rso = (1/(0.004+(0.012*Us)))            (A59) 
 
31. Total net radiation (Rn). 
 

 Rn = Rsw + Rlw                (A60) 
 
32. Soil heat flux (G), Chavez et al. (2005) or other proven equation: 
 

 G = (((0.3324+(-0.024*LAI))*(0.8155+(-0.3032*LN(LAI))))*Rn)   (A61) 
 
33. Updated canopy temperature (Tc). 
 

 Tc = ((Hc*rah_new)/(Rho*Cp))+Ta          (A62) 
 
34. Estimating an updated soil temperature (Tso), Norman et al. (1995): 
 

 Tso = (((Tsfc-273.15)^4 - (fc_nw*Tc)^4)/(1-fc_nw))^(1/4)    (A63) 
 
35. Compute sensible heat flux from soil (Hs), Norman et al. (1995): 
 

 Hs = =ρa*Cpa*(Tso-Ta)/(rah_new+rso)        (A64) 
 
36. Compute total sensible heat flux (H): H = Hc + Hs           (A65) 

 
37. Estimate latent heat flux for the soil (LEs): LEs = Rns – Hs – G       (A66) 

 
38. Verification that Tso and Tc are correct, Norman et al. (1995):  



If LEs >= 0 then correct and we have found a solution. If LEs < 0 then it is a dry soil, set 
LEs = 0 and make: 
 

  Hs = Rns – G               (A67) 
  
 Then recomputed Tso and Tc. 
 
39. Total latent heat flux (LE, W/m^2). 
 

 LE = Rn – H – G              (A68) 
 
 
Reflectance-based crop coefficient (Kc-NDVI) 
The methodology presented in Neale et al. (1989) was adopted. In this approach, the 
normalized difference vegetation index (NDVI) is use to infer on the reflectance-based 
basal (transpiration) crop coefficient (Kcb). The NDVI obtained over a crop growing 
season was transformed into a reflectance based Kcb (Kcr_NDVI). Linearly NDVI of bare 
soil was related to Kcb of bare dry soil; while the NDVI at (crop) effective cover was 
related to Kcb at the same crop growth stage.  
The equation shown below depicts the developed relationship for corn near Greeley, 
CO. 
 

K
cr_NDVI

  = 1.181 × NDVI - 0.026          (A69)

 
Where NDVI is: 
 

NDVI = (RNIR − RRED) / (RNIR + RRED)      (A70) 
  
Where RNIR is surface reflectance (from UAS) in the NIR band and for the Red band is 
RRED. 
Once NDVI and Kcr_NDVI have been computed, daily actual crop water use is calculated 
by multiplying Kcr_NDVI by the alfalfa reference crop coefficient (ETr). 
 

ET = Kcr_NDVI × ETr              (A71) 
 
 
Reflectance-based crop coefficient (Kc-fc) 
 
A similar approach, than the previous one, was developed by Trout and Johnson (2007) 
and by Johnson and Trout (2012). However, instead of using directly NDVI to update 



the crop coefficient, NDVI is converted to a vegetation fractional cover (fc) and then this 
“fc” in turn is converted to the reflectance based crop coefficient (Kcr) and then to crop 
actual transpiration, as illustrated below. 
 
NDVI → fc → Kcr → ETa  
 

fc = 1.22 × NDVI – 0.21           (A72) 
 

Kcr = 1.13 × fc + 0.14            (A73) 
 

ETa = Kcr× ETref              (A74) 
 
Where ETref is the reference ET calculated following the procedure outlined in ASCE-
EWRI (2005). 
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