RGDSS Memorandum

То:	Mike Sullivan, P.E. Colorado Division of Water Resources						
	Andy Moore, P.E. Colorado Water Conservation Board						
From:	HRS Water Consultants, Inc.						
	Eric J. Harmon, P.E., G. Eric Saenger, CPG, Steven K. Barrett						
Subject:	Hydrogeologic Review and Data Collection, Rio Grande, Del Norte to Rio						
	Grande – Alamosa County Line						
Date:	July 17, 2012						

Introduction

This memorandum documents two stages of hydrogeologic investigation done by HRS in the reach of the Rio Grande and its floodplain between Del Norte and the Rio Grande / Alamosa County Line (see Figure 1). The first stage of work, done in 2009, consisted of hydrogeologic data review and field observations. The 2009 work is documented in a separate memorandum.¹ The second stage of work was done in two parts: the first part in November, 2011, and the second part in April – May, 2012. The 2011 - 2012 work consisted of field observations, test drilling, aquifer testing, and evaluation of lithology in and adjacent to the Rio Grande streambeds in the study area. The 2011 - 2012 part of this investigation was done with the authorization of the State, based on recommendations made by HRS in the 2009 the hydrogeologic evaluation. This memorandum documents the 2011-2012 work.

¹ HRS Water Consultants, Inc., July 17, 2012, RGDSS memorandum: 2009 Hydrogeologic Evaluation of Del Norte – Sevenmile Plaza Area.

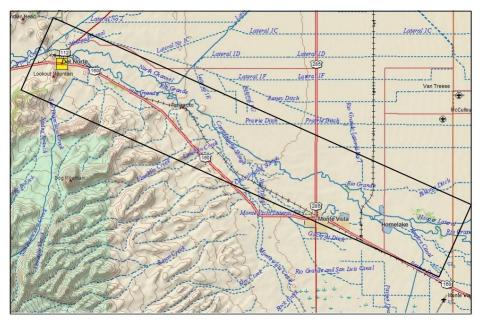


Figure 1: General location of the study area: Rio Grande valley from Del Norte to Rio Grande – Alamosa County Line.

Statement of the Problem

Work done as part of the RGDSS Peer Review Team (PRT) has raised questions about the nature of the hydrogeology of the Rio Grande and its floodplain in this reach, including:

- Base flow evaluation by PRT members showed relatively little gain/loss of water in the river observed in the Del Norte Monte Vista reach of the Rio Grande, as compared to a gaining reach from Monte Vista to Alamosa, from base flow estimates (see figures 2 and 3).
- Anomalous water levels exist in the unconfined aquifer in the Del Norte Sevenmile Plaza area, including indications of a perched water table in some areas (see figure 4)
- The presence and relative stability during historic times of two separate channels of the Rio Grande (North Channel and South Channel) between Del Norte and Sevenmile Plaza, in contrast to a single channel below this reach. In contrast, there is evidence of recent

channel meander, cutoff, channel avulsion² and lateral channel migration within the present Rio Grande floodplain downstream of Sevenmile Plaza and Monte Vista³.

- Calibration efforts of the RGDSS model indicate an improvement in match to observed gain/loss using relatively low streambed conductance values in the Del Norte – Monte Vista reach, of the Rio Grande.
- HRS was asked by the State and the PRT to investigate the hydrogeology of the nearsurface deposits in the Rio Grande floodplain, to see whether these questions could be answered by observations and data collection building upon the earlier HRS preliminary study of part of this study area (HRS, 2009).

HRS studied the hydrogeology of the Del Norte – Sevenmile Plaza reach, a subset of the Del Norte – County Line Road study area in the 2009 evaluation, and concluded that there is a shallow, perched water table in some localities in this area, and also that there may be some shallow normal faulting in the area.⁴ One recommendation of the 2009 HRS work was to drill shallow test holes to check near-surface formation materials in the Rio Grande floodplain in this reach to test the hypothesis that a relatively fine-grained layer of low hydraulic conductivity exists in and adjacent to the Rio Grande streambeds in this reach. The 2011-2012 work confirmed this hypothesis.

² Avulsion: abandonment of a river channel to a new channel course.

³ Jones, L.S., 1996, The Evolution of the Modern Rio Grande Floodplain, San Luis Valley, Colorado: Implications for Alluvial Stratigraphy. Ph.D. Thesis, University of Wyoming. 147p. plus appendixes.

⁴ HRS Water Consultants, Inc., July 17, 2012, RGDSS memorandum: 2009 Hydrogeologic Evaluation of Del Norte – Sevenmile Plaza Area.

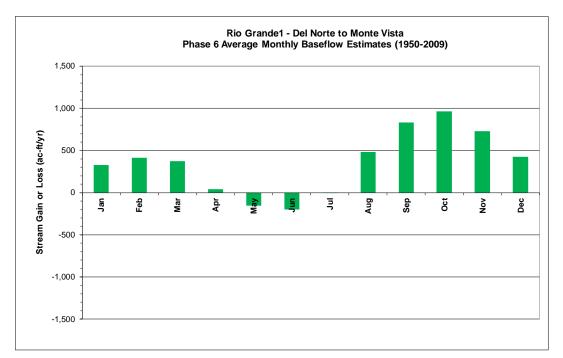


Figure 2: Base flow in Rio Grande, Del Norte to Monte Vista (source: RGDSS Phase 6).

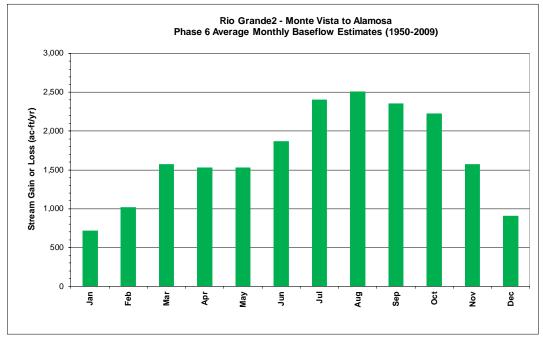


Figure 3: Base flow in Rio Grande, Monte Vista to Alamosa (source: RGDSS Phase 6)

Figure 4: SW to NE Cross Section from driller's logs of water wells. Located approximately 2 ¹/₂ miles NW of Sevenmile Plaza.

Review of the Rio Grande County soil survey⁵ indicates a prevalence of soils that are sandy loam or sandy clay loam that have a substantial percentage of silt/clay materials (passing a no. 200 sieve) (see Figure 5). A problem in these data sources is the lack of information on the nature of the soil materials in the river channels. The driller's logs are somewhat general in their descriptions, and wells are not drilled within the present river channels. The soil survey is quite detailed in its descriptions of material types in the floodplain, but again, offers no data on the nature of the soil material in the present river channels.

⁵ USDA Soil Conservation Service, 1980, http://soildatamart.nrcs.usda.gov/manuscripts/CO631/0/riogrande.pdf

Soil Series	Map Symbol	Depth Range (inches)	USDA Texture	Unified Soil Classification	Percent passing no. 200 sieve (0.074 mm)		
Typic Torrifluvents	Tu	0-15	gravelly sandy loam	SM	20-30		
		15-60	gravel and sand	GP or SP	0-5		
Dunul	Du	0-10	cobbly sandy loam	SC-SM or SM	15-30		
	Du	10-60	very gravelly sand	GP or SP	0-5		
Gerrard	Ge	0-14	loam	ML	50-75		
	Ge	14-60	very gravelly clay loam	GM or SM	10-20		
Alamosa	Am	0-9	loam	ML	60-75		
	Am	9-48	clay loam, sandy clay loam	CL	70-80		
	Am	48-60	sand and gravel	SM-SP	5-10		
Shawa	Sma	0-60	loam	ML	60-75		
Schrader	Sh	0-7	sandy loam	SM	30-40		
	Sh	7-60	fine sandy loam, and loam	SM or ML	45-60		

Call Turses Bradominant in the Die Cronde Flood Blair

Figure 5: soil types in the Rio Grande flood plain, Del Norte – Sevenmile Plaza

Based on the 2009 hydrogeologic review and in subsequent discussions with the State and the Peer Review Team (PRT), HRS was requested to conduct a preliminary field investigation to observe and sample riverbed material to determine whether further testing and/or drilling would be warranted for the RGDSS. This work is discussed in the 2011 Investigation part of this memorandum. The initial observations indicated to the State and the PRT that further investigation was warranted, and HRS was asked to design and implement a test hole drilling program (2012 Investigation part of this memorandum). This memorandum discusses the results of the 2011 - 2012 investigations.

Part 1: 2011 Investigation

Methods of Investigation

During the 2011 investigation of the Rio Grande floodplain hydrogeology, HRS performed the following:

- Compared the stream geomorphology in terms of the expected sequence of floodplain deposits with the aquifer materials observed in water wells in the present Rio Grande floodplain.
- Compared the present river channels in the study area (Del Norte to County Line Road) based on recent satellite imagery, against historical maps of the area to see whether historic-era channel changes can be identified and correlated with streambed materials.
- Visited and photographed accessible sites along the Rio Grande accompanied by Mr. Steve Baer, District 20 Water Commissioner, to check suitability for sampling and observations.
- Sampled Rio Grande streambed materials at several locations, and described the material types observed.
- Performed two constant-head permeameter tests at upstream and downstream locations within the study area, on the stream bank adjacent to the present river channel.

Observations

Several observations were made in the field and by review of maps and related information after HRS' November 2011 field trip to the study area. The following characteristics were noted with respect to the streambed and channels of the Rio Grande progressing from upstream to downstream in the study area.

- The stream gradient changes from relatively high at Del Norte and the North Channel South Channel "split" to a more moderate gradient below Monte Vista.
- The two-channel Rio Grande is now, and historically has been, relatively constant in location from the "split" to a point about one mile above Sevenmile Plaza since at least the early 1870's as shown by comparison of new imagery with old maps.
- The location of the Rio Grande channel has been less stable in historic times below Sevenmile Plaza, and certainly below Monte Vista, than it has been upstream of Sevenmile Plaza.
- The streambeds between Del Norte and approximately Sevenmile Plaza are cobble-lined. Below Sevenmile Plaza there is progressively smaller cobble and a decrease in the percentage of cobbles. The material lining the streambed becomes progressively finergrained in a downstream direction.
- Many of the shallow (less than 3 feet) test holes hand-augered or hand-dug into the streambed or adjacent bank at various locations in the study area showed the presence of a fine-grained organic rich layer containing sand, silt, and clay either just below, or intermixed with, the streambed cobble.
- A constant-head permeameter test of the organic-rich material at one location showed a relatively low hydraulic conductivity (K), on the order of 1 feet/day. At a second location, a K test was not successful due to frost in the soil material.

River Channel Morphology

The Rio Grande channel in the Del Norte to Sevenmile Plaza reach of the study area is in two separate stream channels, both of which are sinuous and "meandering" in conformation, as shown on Figure 6. The average gradient of the Rio Grande valley in this 6 mile reach is approximately 0.0036 feet/feet, as compared to an average gradient of 0.0018 feet/feet in the $6\frac{1}{2}$ miles between Monte Vista and County Line Road, which is also a meandering (although single) channel (see Figures 6 and 7).

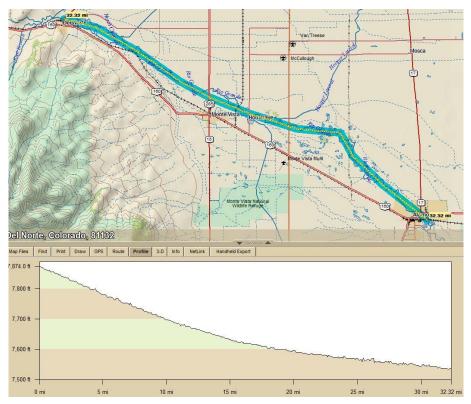


Figure 6: Elevation profile of Rio Grande, Del Norte to Alamosa.

It is notable that the vast majority of the Rio Grande alluvial fan, which covers an estimated 400 to 500 square miles, is composed of alluvial deposits from braided-stream deposition, as can be seen by observing satellite imagery of remnant stream patterns (see Figures 7 and 8) as well as by review of well logs in the unconfined aquifer in the Closed Basin. By contrast, the present Rio Grande flood plain is composed entirely of meandering stream patterns (see Figure 9).

As a secondary objective, the PRT asked HRS to address whether there is any geologic evidence that may help explain why the Rio Grande channel type has changed from braided, as observed in the alluvial fan area, to meandering, as observed in the present floodplain area. One hypothesis is that the change from braided to meandering morphology in the late Pleistocene to early Holocene period (i.e. after the most recent glacial period, ~ 10,000 years ago) may represent the natural evolution of the stream system in response to a dramatic change in climate and reduction in sediment transport capacity following the end of the most recent glacial period.⁶ The Rio Grande flood plain also may be undergoing downcutting in response to a lowering of regional base level in the post-glacial period.

⁶ Madole, R.F., and others, 2008, On the origin and age of the Great Sand Dunes, Colorado. In Geomorphology. Pp. 99-119.

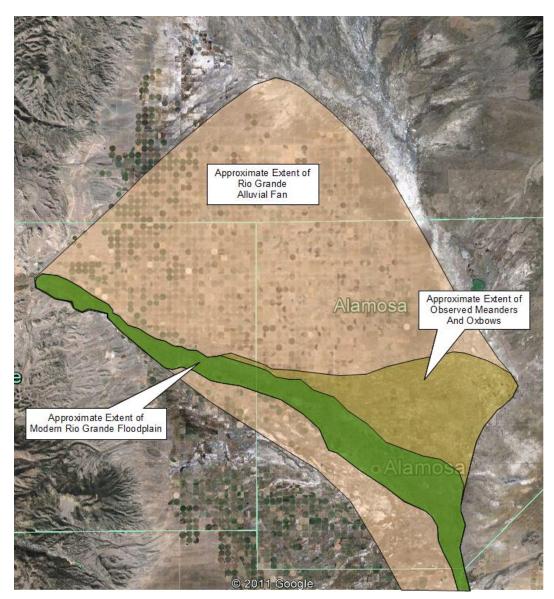


Figure 7: Approximate extent of Rio Grande alluvial fan, observed extent of meanders and oxbows, and the modern Rio Grande floodplain. (see Madole, R.F., et al, 2008).

The topographic gradient of the ancestral Rio Grande channels, as observed on the Rio Grande alluvial fan, and the topographic gradient of the present course of the Rio Grande are virtually identical, and the available sediment in the Rio Grande headwaters in the San Juan mountains has not changed, implying that there has been a change in another factor: possibly the amount of

runoff or the seasonal variation (e.g. "flashiness") of runoff. Generally speaking there are several factors that determine the hydrologic conditions leading to formation of braided streams⁷:

- Streambanks composed of erodible material: Banks that are not readily eroded, either by material cohesiveness or by vegetation, in general are less apt to form braided streams.
- Sediment: Most braided rivers transport large volumes of bed load material (i.e. sediment transported along the bottom of a stream as opposed to material carried in suspension) such as boulders, cobbles, and gravel.
- Rapid variation in discharge: In general large, frequent variations in discharge tend to produce alternating deposition and erosion needed for a braided stream configuration.

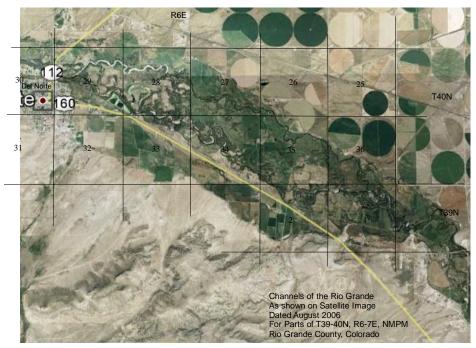


Figure 8: Rio Grande stream channels Del Norte – Sevenmile Plaza, August 2006 (source: Google Earth.)

⁷ Ritter, D.F., 1986, Process Geomorphology. Wm C. Brown Publishers. Pp. 239-240.

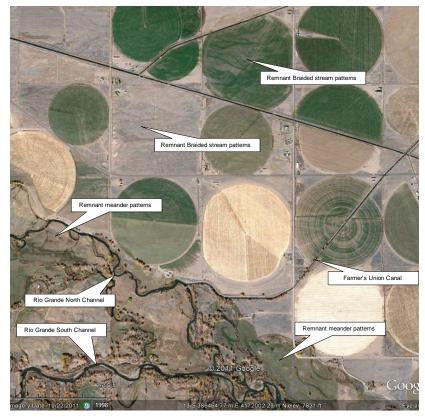
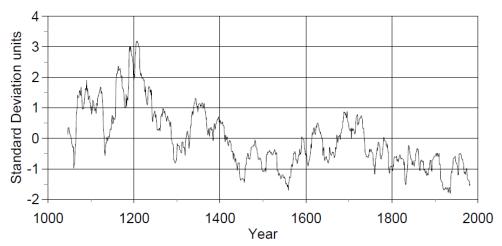



Figure 9: Remnant stream channel patterns in T 39-40N, R6-7E, NMPM near Farmer's Union Canal headgate. (Google Earth satellite image Oct 22, 2011).

A climate-reconstruction study based on dendrochronology research at the Great Sand Dunes, although it may not be capable of accurately reproducing exact climatic conditions for any given year, has shown a relatively strong trend of reduced variability in precipitation over the past \sim 1,000 years compared to earlier years, culminating in low annual variability in precipitation in this area in the late 19th and early 20th Centuries (see Figure 10).⁸

⁸ Grissino-Mayer, H.D., Baisan, C.H., Swetnam, T.W, 1998, A Multicentury Reconstruction of Precipitation for Great Sand Dunes National Monument, Southwestern Colorado. U.S. Dept of the Interior, National Park Service.

Figure 7. Running variance for the precipitation reconstruction calculated for overlapping 25-year periods, represented as a 10-year cubic smoothing spline. The graph clearly shows declining variability in precipitation during the past 1000 years in this part of southern Colorado.

Figure 10: (includes caption from source; see footnote 6).

A recent study by the U.S. Geological Survey in the San Juan Mountains, using techniques including reconstruction of Holocene tree line along with radiocarbon dating and pollen analysis of alpine bog deposits, suggests that the summer monsoon circulation in the San Juan Mountains was probably more intense during the early Holocene (~9,000 years BP) than it is today.⁹ Also, as noted earlier, a change in climate and reduction in sediment transport capacity following the end of the most recent glacial period, around 9,000 to 10,000 years BP.¹⁰

These sources suggest that reduction in annual precipitation variability and reduction in sediment transport capacity during the Holocene (~9,000 to 10,000 years before present) may be a factor in the change of the Rio Grande in the study area from a braided stream to meandering stream, and also may be a factor in the relative stability of the Rio Grande channels in the Del Norte – Sevenmile Plaza reach. Another factor may be a change in local base level of the stream, thus changing its characteristics for erosion and aggradation. These are hypotheses, and would require investigation beyond the scope of the RGDSS to evaluate.

⁹ Carrara, P.E., 2011, Deglaciation and Postglacial Treeline Fluctuation in the Northern San Juan Mountains, Colorado. U.S. Geological Survey Professional Paper 1792, pp. 37-40.

¹⁰ Madole, R.F., and others, 2008, On the origin and age of the Great Sand Dunes, Colorado. In Geomorphology. Pp. 99-119.

Regardless of the cause, the stream channels in the present and ancestral Rio Grande are important in evaluating the hydrogeology of the study area because stream channel morphology helps determine the sequences of sediment that are deposited, and therefore is a factor in whether or not a relatively low hydraulic conductivity layer of sufficient lateral persistence to cause perching of the river above the regional water table is likely to be common in the present Rio Grande floodplain.

Braided and Meandering Stream Deposits

There are differences in the sequences of materials deposited by meandering streams (as we observe along the Rio Grande) as compared to braided streams (as we observe on the Rio Grande fan north of the present Rio Grande floodplain). Figure 10 shows the two types of sedimentary deposition generally observed in meandering channels and braided channels.

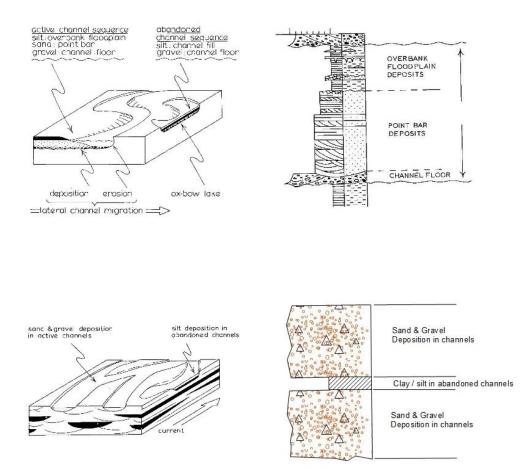


Figure 11: typical sedimentary deposits by meandering stream channels (top) and braided stream channels (bottom). Modified from R. C. Selley, Ancient Sedimentary Environments, figures 2.1, 2.2, 2.13.

Meandering channels typically show laterally continuous deposits of fine sand, silt, and clay due to "overbank" deposition when stream discharge is sufficiently high to inundate the flood plain and the resulting quiet water during recession of the flood water allows sedimentation of the fine-grained materials. Below the overbank deposits we typically see sand and fine gravel due to lateral migration of point bars, underlain by deposits of channel-floor gravel or cobble beds. By contrast, sediments deposited by braided streams typically show relatively thick deposits of sand, gravel and cobble, with relatively thin and discontinuous deposits of silt and clay in longitudinal bars that are deposited by quiet water in abandoned stream channels. It should be noted, also, that the percentage of fine grained silt and clay deposits increases, and the largest grain size decreases, in a downgradient direction on an alluvial fan such as the Rio Grande fan.

WELL LOG

FROM FEET		TYPE OF MATERIAL
0	8	Cand and Grovel
8	11	Clay
11	36	Hopk and Gravel
36	44	Clay
44	52	Sand and Gravel
<u>9</u> 3	57	Clay
57	27	Sand
77	78	Alue Clay

Figure 12: driller's log from well 4322F, SW SW 14, T39N, R7E, NMPM approximately 2 miles NW of Monte Vista and ¹/₄ mile north of Rio Grande.

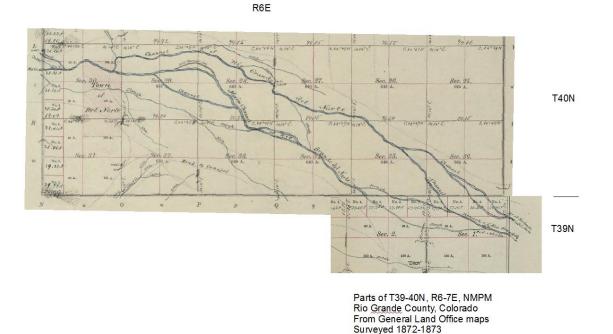
		WELL LOG
From	То	Type and Color of Material
0 58 9 28 60 63 80 94	78 9 26 80 70 45 28 9 28 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	top soil gravel slay gravel slay gravel sand clay

Figure 13: driller's log from well 6026-R-R, NW NE 34, T40N, R7E, NMPM approximately 2 miles west of Highway 285 and 4 miles north of the Rio Grande.

Figures 12 and 13 illustrate the difference in sedimentary deposits in the study area. Figure 12 shows the driller's log from Well 4322F, which is located only about ¹/₄ mile north of the Rio Grande, inside the present meander-belt floodplain. Figure 13 shows the driller's log from Well 6026-R-R, located approximately 4 miles north of the Rio Grande, in an area of the Rio Grande fan clearly subject to braided stream deposition. Although nominally these are similar and quite

simple well logs, composed only of alternating sand/gravel and clay layers, the two logs are actually quite different. Well 4322-F, reflective of meandering stream deposition, has clay layers indicated at 3, 8, and 5 feet thick down to 77 feet (above the clay at 77 feet – 78 feet, which may be indicative of lacustrine clays and thus may not be part of the fluvial deposits (see Figure 12). Clay constitutes 21% of the thickness of the drilled deposits in Well 4322-F above the basal clay.

By contrast, in the braided stream deposition area on the Rio Grande fan, well 6026-R-R (see Figure 13) shows clay layers of 1, 2, and 3 feet thick, which is only about 6% of the thickness of the drilled deposits above the clay at 94 feet – 95 feet depth. From our experience reviewing well logs in the San Luis Valley, we have also found that clay or silt layers in the Rio Grande fan area typically are not laterally continuous in the unconfined aquifer. Clay layers near the Rio Grande, based on well to well comparison of driller's logs, typically show a higher degree of lateral continuity.


The differences in fluvial deposition discussed above suggest that, all other factors being equal, hydraulic conductivity (K) is likely to be higher in the braided deposits than in the meander deposits within the floodplain of the Rio Grande. In addition, and perhaps more importantly with respect to RGDSS ground water modeling, the ratio of vertical K to horizontal K (Kv : Kh) is likely to be lower in the meander belt than in the braided fan area due to the greater lateral continuity of the clay and silt layers.

Rio Grande Channel Stability: Implications for Hydrogeology

In the upper part of the study area, from Del Norte approximately to Sevenmile Plaza, the Rio Grande has a relatively high stream gradient (see Figure 6), and there is abundant bed load material composed of boulders, cobbles, and large gravel from the source area in the San Juan Mountains. In addition, although there are several reservoirs in the upper Rio Grande above Del Norte, they are of relatively small size and there are no large flood-control reservoirs. This would lead one to expect high runoff during high snowpack years. Also, in this situation, one would expect to see a river of high erosive capability, and large channel migration and relatively frequent channel avulsion.

However, large channel migration and frequent avulsion have not been observed in historic times in the Del Norte – Sevenmile Plaza reach. A comparison of early survey maps of the San Luis Valley with recent satellite imagery shows that the North Channel and the South Channel of the Rio Grande in this reach have remained relatively stable, with only minor channel changes observed. Below Monte Vista, there have been some channel avulsions documented, although major channel changes have been relatively infrequent.¹¹

Figure 14 is a map of the upper part of the study area composited from scans of two General Land Office maps.¹² The surveys for these maps were done in the 1872-1873 time period. For comparison, Figure 15 shows the river channels and "sloughs" (backwaters) from the GLO maps, overlaid on top of the contemporaneous Wheeler Survey map of the same area.

Figure 14: Composite of General Land Office maps of 1872-1873 showing parts of T39-40N, R6-7E, NMPM.

 ¹¹ Jones, L.S., 1996, The Evolution of the Modern Rio Grande Floodplain, San Luis Valley, Colorado: Implications for Alluvial Stratigraphy. Ph.D. Thesis, University of Wyoming. 147p. plus appendixes.
 ¹² http://www.glorecords.blm.gov/search/

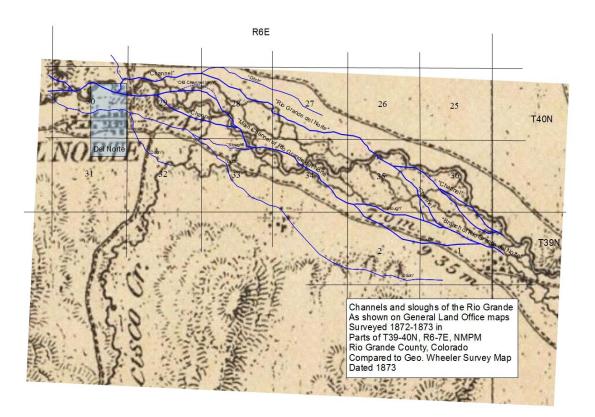


Figure 15: General Land Office mapped location of channels and sloughs, along with Section lines, overlain on Wheeler Survey map of 1873. The blue lines represent the location of channels and sloughs from the 1873 GLO maps.

As can be seen by comparison of the two maps, both from circa 1873, the comparison is rather poor. A third comparison, overlaying the GLO survey channels and sloughs on the Siebenthal map of 1906, is in agreement with the general channel locations from the GLO mapping (see Figure 16).

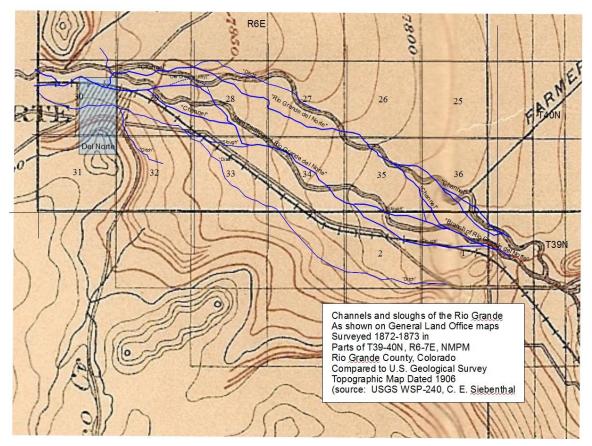


Figure 16: General Land Office mapped location of channels and sloughs, along with Section lines, overlain on Siebenthal map of 1906 (USGS WSP-240). The blue lines represent the location of channels and sloughs from the 1873 GLO maps.

Finally, we compared the 1873 GLO survey maps by overlaying the channel and slough locations on satellite imagery from August, 2006 (see Figure 17).

Channels and sloughs of the Rio Grande As shown on General Land Office maps Surveyed 1872-1873 in Parts of T39-40N, R6-7E, NMPM Rio Grande County, Colorado Compared to Satellite Image Dated August 2006

Figure 17: General Land Office mapped location of channels and sloughs, along with Section lines, overlain on a satellite image from August, 2006 (source: Google Earth[™]). The blue lines represent the location of channels and sloughs from the 1873 GLO maps.

The latter comparison (see Figure 17) presents the best comparison of the stream channels, and suggests that the General Land Office maps of 1872-1873 were the most accurate in terms of the depicted locations of the stream channels. The GLO maps compared to the satellite image from 133 years later shows a remarkably good comparison. Some lateral channel migration is evident, assuming that the ~1873 GLO maps did not generalize the smaller meanders. Overall, we find it remarkable that so little channel change occurred over the course of 133 years, in a stream reach that should be highly erosive, with high sediment bed load, moderate stream gradient, and highly seasonal runoff.

We believe that one major factor in the channel stability of this reach during historic times is the fact that much of the peak runoff is "shaved off" due to diversions by large irrigation canals in this reach (eight on the North Channel and three on the South Channel according to Mr. Steve

Baer, District 20 Water Commissioner). The Rio Grande Canal, in particular, is important in this respect, because it is the largest canal in the San Luis Valley¹³, and it diverts up to 1/3 of the water in the river just at the head of the study area at the northern terminus of the narrow water gap through which the Rio Grande passes at Del Norte. In addition, the Rio Grande Canal has a sluiceway just downstream of its diversion dam. In operation, sediment being carried downriver, including cobble- and boulder size material, is allowed to be diverted into the Rio Grande Canal and then is sluiced back to the Rio Grande about 200 yards downstream so that the canal and the diversion dam do not become sediment choked and thus rendered unusable.¹⁴ This diversion activity creates a situation where the Rio Grande has much lower peak flow than it did before the onset of surface water diversions, and so has significantly less energy available to move the bed load material, erode its banks, and allow its channels to migrate, but it has the same amount of sediment that it did in pre-irrigation time (approximately pre-1870).

From this mapping comparison and our discussions with the Water Commissioner and other water managers in the San Luis Valley, we believe the primary reasons for the relative stability of the Rio Grande in the upper reach of the study area are:

- Peak discharge is much lower than it was before the onset of surface water diversions (pre ~ 1870 's).
- Seasonal variability of precipitation in the last few thousand years may be less than it was in the early Holocene (~9,000 to 10,000 years BP). In addition, most of the braiding and fan deposits in the Rio Grande alluvial fan, north of the present floodplain, were deposited during glacial periods in the late Pleistocene (greater than ~ 10,000 years BP).
- Bank and channel maintenance activities, although limited, have been done in this reach for sediment removal and to maintain flows to canal headgates.
- Cattle ranching operations on the "island" between the North Channel and the South Channel, and on the north and south sides of these channels, have provided an incentive to maintain pasturelands for grazing. Although some bank degradation along the river due to livestock was noted during this field reconnaissance, overall the pasture vegetation

 ¹³ Steve Baer, District 20 Water Commissioner, personal communication 2011.
 ¹⁴ Ibid.

appears to aid in slowing the erosion rate of the channel meanders, as compared to poorly-vegetated or non-vegetated stream banks.

The hydrogeology of the stream channels of the Rio Grande have been affected by the relative stability of the channels in historic time. Overall, the stability of the channels over time strongly suggests that whatever materials lined the streambed at the onset of surface water diversions, cattle ranching, and other stability-inducing factors, are still in place today.

November 2011 Field Observations and Measurements

During the period November 14-16, 2011, HRS (Mr. Harmon) observed streambed conditions throughout the study area between Del Norte and the Rio Grande – Alamosa County line (see Figure 1). Part of that time was spent with Mr. Steve Baer, District 20 Water Commissioner. My activities included the following:

- Reconnaissance and familiarization with access to the Rio Grande North Channel and South Channel at many locations.
- Visiting and photographing some of the larger surface water diversions.
- Observing and sampling streambed and bank materials in various locations.
- Conducting two in-situ permeameter tests in stream bank materials.

1.1.1. Channel observations and photographs

Overall, the streambed and bank material in the study area, as would be expected, varies from a highly heterogeneous mix of cobbles > 10 inches in size along with finer-grained materials at the upper end near Del Norte and the "split", down to much finer grained streambed and bank material in the downstream area. The following sequence of photographs illustrates this.

Figure 18 is a photo of the North Channel of the Rio Grande just below the Kane-Callan Ditch headgate, about one mile downstream of the "split". Note cobbles up to ~16 inches on the right and left banks, and armoring the stream channel.

Figure 18: North channel of Rio Grande, approximately 100 feet downstream of Kane-Callan Ditch headgate. Looking downstream (east.)

Figure 19 is a photo of the North Channel of the Rio Grande just below the Raber Ditch headgate, about three miles downstream of the "split". Note cobbles up to ~10 inches on the right bank.

Figure 19: North Channel of Rio Grande at the Raber Ditch headgate. Looking downstream (east).

Figure 20 shows the South Channel at the Off Ranch Bridge located approximately three miles downstream of Del Norte. Note the cobbles up to ~10 inches armoring the streambed.

Figure 20: Rio Grande South Channel at Off Ranch bridge about 3 miles downstream of Del Norte.

Figure 21 shows the streambed of the Rio Grande looking upstream from the County Road 3W Bridge approximately 3 miles below Sevenmile Plaza (~10 miles below Del Norte). At this location, there is only one main channel of the Rio Grande. Note the presence of cobbles up to ~6 inches in size in the streambed.

Figure 21: Rio Grande channel at CR 3W bridge, looking upstream (west).

Figure 22 was taken looking downstream at the US 285 bridge just north of Monte Vista. The channel-centered bar is just downstream of a bridge pier. Note the cobbles are much smaller in size than they are further upstream. Largest cobbles are in the ~3 to 5 inch range. The stream channel is partially cobble-armored, with some deep channel scour evident.

Figure 22: Rio Grande at US 285 bridge, looking downstream (east).

Figure 23 shows the Rio Grande channel looking downstream to the bridge at the Rio Grande – Alamosa County line. There is a small percentage of cobble-sized material in the streambed and banks at this location. The channel is composed predominantly of sand and silt-sized material.

Figure 23: Rio Grande at Rio Grande – Alamosa County Line Bridge. Looking downstream (east). Note sand / silt channel at this location.

Shallow hand-dug test holes

At several locations, HRS attempted to dig or auger shallow test holes in the streambed. This was successful more often than not, but in the upper reach of the study area the cobble armoring of the streambed made digging difficult. No test hole exceeded 2 ½ feet depth, and most were 1 to 1 ½ feet. A notable observation was that at many locations we observed fine-grained, organic-rich clayey sand just below the armoring cobble layer at the streambed surface. At some locations cobbles were bedded in the clayey sand matrix. Following is a summary of the test holes dug or augered.

- Raber Ditch headgate, right bank of Rio Grande North Channel (located on the Off Ranch, accessed with owner's permission): 3 of 4 test holes showed at least a 6-inch thickness of organic (peat?) rich clayey sand within 18 inches of streambed level at the bank.
- Off Ranch bridge, left bank of Rio Grande South Channel: 2 of 5 test holes showed silty or sandy clay or clayey sand within 1 ½ feet of streambed level at the bank. Very difficult digging due to cobble armoring of streambed/banks.
- Sevenmile Plaza (Fivemile Road bridge): Lots of concrete and other debris in the channel. 3 of 4 test holes showed the presence of silty sand or clayey sand within 2 feet of streambed level at the bank. Cobble armoring is sporadic in this area.
- Bridge at County Road 3W, left bank: 0 of 3 test holes dug to 1 ¹/₂ feet depth showed silt or clay material. Primarily medium grained sand, with some cobble.
- Consolidated Slough at Road 3W: No test holes dug or augered. Some cobble and concrete debris observed in the channel.

- Highway 285 Bridge (sample locations from 30 feet to 100 feet downstream of gage, on left bank): 1 of 4 test holes showed clay or silt, with organic material, within 6 to 24 inches of streambed level at the bank.
- Soldier's Home Road Bridge: 4 of 4 test holes showed at least 6 inches of organic-rich silty or clayey sand within 2 ¹/₂ feet of streambed level.
- Rio Grande Alamosa County Line Road Bridge: Sample locations approximately 225 feet upstream of bridge on left bank: 3 of 3 test holes showed organic-rich silty or clayey sand within 2 feet of streambed level at the bank.

Although access to the center of the present stream channels was limited, the shallow test holes at the bank, or in the river within a few feet of the bank, showed that clayey or silty sand, often observed with peaty organic material, is common even in the upstream cobble-armored reach of the study area. This suggests that the cobble armoring, coupled with the reduced peak flows due to surface diversions, has protected the clayey sand in the streambed against erosion.

2011 Hydraulic Conductivity Tests

HRS tested the hydraulic conductivity (K) of the peaty silty-clayey sand at two locations in the study area, using a field-portable constant head permeameter.¹⁵ A photograph of the testing apparatus is shown in Figure 24, at the upstream test location.

¹⁵ Guelph PermeameterTM. Soilmoisture Equipment Corp. Use of trade names is for descriptive purposes only, and does not imply endorsement by HRS or the Colorado Division of Water Resources.

Figure 24: Field setup of Guelph constant-head permeameter. Near Kane-Callan headgate, looking upstream (west).

One test was in the upstream cobble-armored reach, near the Kane-Callan ditch headgate. The other was in the downstream, sand channel, near the Rio Grande – Alamosa County line. In both tests, we attempted to dig the shallow test hole and set up the test so that only the clayey / silty-sand layer was being tested. The manufacturer's recommended auger drilling, borehole cleaning, and testing procedures were followed at both tests.

At both sites, we tried to follow the streambed material to the adjacent bank by test holes, and perform the test in the same fine-grained material observed in the streambed. The test apparatus is not practical for use in a flowing stream.

The results of the permeability tests were as follows.

Upstream test:Observed material: organic-rich, black to gray clayey sand. $K = 1.5 \times 10^{-3}$ feet/dayResults were rejected due to observed frost in this material in an adjacent
test hole after test was completed.

Downstream test: Observed material: gray silty to clayey sand K = 0.93 feet/day

Due to the observed frost at the first test site, we do not believe the results are accurate. There was no frost in the ground at the second site, and the results, based on Mr. Harmon's experience, appear credible for the observed material.

2012 Test Hole Drilling and Field Investigations

Based on the results of the 2011 part of the investigation, the PRT and the State requested that HRS develop and implement a program of shallow test hole drilling and sample data collection to refine the data in the near-surface sediments in and near the stream channels of the Rio Grande in the Del Norte – Rio Grande County / Alamosa County line study area. This part of the memorandum discusses the data collection and evaluation completed in 2012. Plate 1 shows the locations of the test hole sites.

Method of Investigation

During the week of April 30 through May 4, 2012, HRS Water Consultants, Inc. conducted field investigations in the Rio Grande floodplain approximately between Del Norte on the northwest (upstream) and the Rio Grande – Alamosa County Line Road (aka CR 6E). The investigations consisted of test hole drilling and slug tests on private and public property as close as could be managed to the active channels of the Rio Grande. A total of 20 test holes were drilled, and sediment samples collected, along the Rio Grande from Rio Grande County Rd. 6E (aka County Line Road), progressing west to the east edge of Del Norte (William Miller property). Eight slug tests were performed in eight different test holes. In addition, sieve analysis was done on seven samples from a representative set of the test holes. The purpose of the investigation was to better

define the type and characteristics of the sedimentary materials that make up the stream beds of the Rio Grande in the study area.

Property Access

HRS obtained access permission for the test drilling the week of April 16, 2012, from the following private owners and public agencies:

- Mr. William Miller
- Mr. Cory Off (Off Ranch)
- Mr. Craig Cotten
- Mr. Bob Homer
- Rio Grande County Road & Bridge Dept. (Mr. Patrick Sullivan, Supervisor)
- Colorado Division of Parks and Wildlife (Mr. Dave McCannon, Area Manager)

Mr. Harmon also visited each site with Mr. Steve Baer, District 20 Water Commissioner, and staked the approximate location of the test holes. Table 1 lists the various sites and the test holes drilled. Plate 1 shows the locations of the test holes. No test holes were drilled on Mr. Homer's property due to high water in several ditches/swales causing very soft ground, thus preventing the drill rig from reaching the river bank.

Location of Buried Utilities

Once all of the private land access and ROW access points were secured from the owners or the public representatives, buried utility location requests ("utility locates") were called in to the Utility Notification Center of Colorado on April 24 and 25. Eric Saenger of HRS checked the marked utility locates on April 29 and 30. Eric Saenger met with a utility location technician to verify the location of a high pressure gas line along the west side of County Rd. 3E. All sites were determined to be clear of buried utilities.

Test Hole Drilling and Sediment Sampling Procedures

Site Services Inc. of Golden, Colorado was contracted to do the test hole drilling using its Geo-Probe direct push track-mounted drilling rig. This rig uses a hydraulically-operated hammer to push and hammer hollow steel rods into the ground. There is no rotation of the drill pipe in this drilling method. Soil samples were recovered in plastic tubes of 1.75-inch (macro tube) or 1.4inch (dual tube) outside diameter. In using the Macro sampling method the rods with a plastic tube in the bottom five foot rod are pulled from the borehole to retrieve the sample tube. This method was used in the areas of very cobbly material at the surface to have a better chance of recovering soil materials: Cotten and CR 5W west to Miller. In the dual tube method the sample tube is attached to an inner rod and after penetrating five feet the inner rods and plastic tube are removed from the outer rods leaving the outer rods in the borehole. This method was used in the areas of finer grained material at the surface: east of Cotten and CR 3W. Table 1 lists the test holes that were sampled with each method.

Site Services mobilized to Monte Vista on April 30 and arrived at the first drill site at approximately 11:30 AM. Six test holes were drilled on April 30. Drilling was finished by the end of the day on May 2. A total of 20 test holes were drilled, and sediment samples collected, along the Rio Grande from Rio Grande County Rd. 6E (aka County Line Road) west to the east edge of Del Norte (Miller property). Table 1 shows which test holes were sampled within 10 feet of the bank of the river. The other test holes were not close to the river bank due to lack of access. Sample recovery ranged from zero in some of the 0 to 5 foot depth interval drives to 100% recovery, generally in the 10 to 15 foot depth interval drives. In general the 0 to 5 foot samples recovered less than half the tube (i.e. less than 2.5 feet) due to the softness and lack of consolidation of the soils. One sample tube split during drilling and the samples were placed into labeled sample bags. Several bags of samples from the drive shoe, representative of the bottom of the test hole, were also obtained at various sites.

After reaching total depth (generally 15 feet) a temporary casing consisting of 1-inch diameter PVC was placed inside the outer rods and the rods were then removed from the borehole.

Table 1: Test Holes Information

Land Owner	Location		Test Hole Name	Lafitude	Longitude	Map Label	Total Depth of Test Hole below ground level (fL)	Date Drilled	Macro (M) or Dual Tube (DT) Sampling	Drilled on river bank within 10 ft. of river	Depth to Water below ground level (fL)	gro at	
Colorado Division of Parks & Wildlife	County Rd. 6E	N Parking Lot	SW corner	SWA CR 6E N lot SW	37.5708	-106.0398833	6ENSW	15	4/30/2012	DT	N	4.96	—
	County Rd. 6E	N Parking Lot		SWA CR 6E N lot SE	37.57078334	-106.0394833		15	4/30/2012	DT	N	3.63	
Colorado Division of Parks & Wildlife	County Rd. 6E	S Parking Lot	NW corner	SWA CR 6E S lot NW	37.56355	-106.0399167	6ESNW	15	4/30/2012	DT	N	3.12	
Colorado Division of Parks & Wildlife	County Rd. 6E	S Parking Lot	NE comer	SWA CR 6E S lot NE	37.56351667	-106.0396667	6ESNE	15	4/30/2012	DT	N	271	
Colorado Division of Parks & Wildlife	County Rd. 3E	Parking Lot	NW comer	SWA CR 3E NW	37.58243334	-106.0945833	3ENW	15	4/30/2012	DT	N	4.03	
Colorado Division of Parks & Wildlife	County Rd. 3E	Parking Lot	NE comer	SWA CR 3E NE	37.58246667	-106.0942833	3ENE	15	4/30/2012	DT	within 20 ft.	4.52	
Craig Cotten	N bank of River	east		Cattan E	37.6045	-106.134	Cat E	15	5/1/2012	M	Y	2.99	+
Craig Cotten	N bank of River	west		Caltan W	37.60475001	-106.1346167	Cot W	15	5/1/2012	M	Y	14.31	
Rio Grande County	County Rd. 3W ea	ast edge	S hale	CR 3W E S hale	37.61731667	-106.2041667	3WES	15	5/1/2012	DT	N	11.65	
Rio Grande County	County Rd. 3W ea	.astedge	N hale	CR 3W E N hale	37.61793334	-106.2041	3W E N	15	5/1/2012	DT	N	12.64	
Rio Grande County	County Rd. 3W w	vest edge	N hale	CR 3W W N hole	37.622	-106.2043	3W W N	15	5/1/2012	DT	N	11.01	
Rio Grande County	County Rd. 3W w	<i>r</i> est edge	S hale	CR 3W W S hole	37.62135	-106.2042833	3W W S	15	5/1/2012	DT	N	10.01	
	County Rd. 5W at		edge of river	CR 5W E	37.64695	-106.2405667	5W E	15	5/1/2012	M	Y	11.03	
Rio Grande County	County Rd. 5W at	It County Rd. 5N	next to slough	CR 5W W	37.64703334	-106.2411	5W W	15	5/1/2012	M	an slough	8.24	
Bill Miller	SW corner of brid	lge		B Miller	37.68288334	-106.34155	Mil	15	5/2/2012	M	Y	9.69	
Off Ranch at Kane-Callen Ditch headgate	N bank of river W	/ of headgate	w	Off K-C ditch W	37.68575	-106.3284833	Off KC W	15	5/2/2012	M	Y	10.24	
Off Ranch at Kane-Callen Ditch headgate	N bank of river at	. headgate	Middle	Off K-C ditch Midd.	37.68543334	-106.3277167	OffKCM	15	5/2/2012	м	Y	10.48	
Off Ranch at Kane-Callen Ditch headgate	N bank of river E /	of headgate	E	Off K-C ditch E	37.68548334	-106.327	Off KC E	15	5/2/2012	M	Y	10.41	
Off Ranch at bridge	N bank of river NE	E of bridge	E	Off bridge E	37.67161667	-106.28425	OffE	14	5/2/2012	M	Y	12.52	
Off Ranch at bridge	N bank of river we	est of bridge	W	Off bridge W	37.67131667	-106.28505	OffW	15	5/2/2012	м	Y	11.85	

The bottom six inches of the PVC casing was slotted with a saw. This was done to be able to measure the groundwater level. Water level was measured in all of the test holes from one to three days after installation. Table 1 lists the measured depth to water and the date measured. For the test holes drilled on the river bank the river water level below ground level at the test hole was measured by leveling between the test hole and river.

As each sample tube was removed from the drill rods, flexible plastic end caps were placed on the tube ends with a red cap at the top and black at the bottom. The tubes were marked with the name and number of the test hole and the depth interval, both on the tube and red end cap. Each sample tube was briefly described in the field. A more detailed lithologic description was performed in the office by cutting open the tubes to get an unobscured view of the samples. Certain of the samples were viewed under a low-power stereomicroscope to verify lithology, grain size, sorting, and rounding. After the material in each tube was described selected material from each tube was placed into a marked sample bag. The sample descriptions are appended at that back of this memorandum.

Summary of Sample Descriptions

The samples recovered, in general, were composed predominantly of sand and gravel with varying amounts of clay and silt matrix. Some thin intervals of very clayey sand and gravel to very sandy clay also were observed. Some of the samples showed weakly graded bedding with finer sediments at the top grading to coarser material downward. The shallowest five feet at each test hole site was generally very soft and uncompacted, as indicated by the drilling. This indicated the presence of poorly compacted, clay-rich organic soil and overbank deposits. When many of the samples were allowed to dry out, the material became very hard and cemented due to the presence of a clay matrix that cemented the sand and gravel together. Virtually all of the samples in every test hole showed the presence of some clay – often disseminated in the matrix of the poorly stratified samples.

Sieve Analysis

Several samples were selected for sieve analysis using standard dry sieving methods. The purpose of the sieve analysis was check the percentage of silt and clay material (minus 200 sieve size) and to obtain a first approximation value of hydraulic conductivity for a representative set of the test hole samples in and near the channels of the Rio Grande in the study area.

After drying the samples, it was found that sufficient clay was present that it had adhered to the larger, sand and gravel sized granular material. Test sieving showed that the clay coating was skewing the sieve analysis toward the larger grain sizes. The decision was made to have representative samples from seven test holes analyzed by Advanced Terra Testing, Inc. (ATT), of Lakewood, Colorado, using a standard wet sieve analysis method (ASTM D422¹⁶). In brief, this method involves wet-sieving the sample through a series of progressively finer sieve screens, then taking the wet material passing the No. 200-mesh sieve (i.e. silt and clay-sized material) and allowing it to settle over time through a clear cylinder, using a hydrometer to determine the particle distribution of the finest fraction of the sedimentary material. The ATT analysis sheets are appended to this memorandum.

The data from the ATT wet-sieve and hydrometer analysis showed that the clay fraction ranged from 4.8% to 6.7% by weight in all of the samples except for the CR 5W East test hole, which had a 34.4% clay fraction. CR 5W East sample was described by HRS as sandy clay with thin gravelly lenses. The rest of the samples were described by HRS generally as poorly sorted sand and gravel with some clay matrix.

The results of the ATT sieve analysis then were input to a spreadsheet, which was then used to estimate an effective grain size, and to calculate a first-approximation estimate of hydraulic conductivity. Hydraulic conductivity (K) was estimated using the Hazen Formula¹⁷:

$$\mathbf{K} = \mathbf{C}(\mathbf{D}_{10})^2$$

¹⁶ http://www.astm.org/Standards/D422.htm

¹⁷ Fetter, C.W., 1988, Applied Hydrogeology, page 81

- K is hydraulic conductivity in cm/sec
- D₁₀ is the effective grain size in cm
- C is a coefficient based on a set of empirical values listed below:

Very fine sand, poorly sorted	40-80
Fine sand with appreciable fines	40-80
Medium sand, well sorted	80-120
Coarse sand, poorly sorted	80-120
Coarse sand, well sorted, clean	102-150

The results of this analysis are shown in Table 2.

Summary of Estimated Kh Rang	ges from Gra	ain Size Analy	/sis		
	Estimated K	h (low range)	Estimated Ki	n (high range)	Distance Downstream of
Test Site		in (lett fallige)		· (g.: .age)	Rio Grande Bifurcation
	cm/sec	ft/day	cm/sec	ft/day	miles
Miller Bridge site	4.9E-03	1.4E+01	9.7E-03	2.8E+01	0.2
Off Ranch Kane-Callen West site	2.2E-02	6.3E+01	4.5E-02	1.3E+02	0.9
Off Ranch Bridge West site	2.0E-03	5.7E+00	4.0E-03	1.1E+01	3.4
County Rd 5W East site	5.6E-05	1.6E-01	1.1E-04	3.2E-01	6.2
County Rd 3W West side, North site	1.0E-03	3.0E+00	2.1E-03	5.9E+00	8.8
County Rd 3W East side, South site	2.0E-03	5.7E+00	4.0E-03	1.1E+01	9.0
Cotten East site	8.9E-04	2.5E+00	1.8E-03	5.1E+00	12.8

 Table 2: Summary of Hazen Analysis

This analysis shows that the vertical hydraulic conductivity of the alluvial material underlying the Rio Grande, from its bifurcation east of Del Norte to a point downstream approximately 13 miles, is relatively low in comparison with deeper alluvial material as described in water well driller's logs from the area. We conclude that the silt and clay fraction present in the very recent (Holocene) alluvial material within and adjacent to the present streambeds, will slow or impede the downward percolation of river water to the unconfined aquifer underlying the Rio Grande in this reach of the river. We believe this is a primary reason why the gain and loss of the Rio Grande in this reach is relatively low, and also is a primary reason for the perching of the river

and the associated water table in the very near surface Holocene material, as compared to a deeper water table noted on water well records in the area, as seen in the 2009 hydrogeologic study of the Del Norte – Sevenmile Plaza reach.

Slug Testing

Slug tests were attempted at a number of the test holes (see Table 1). The slug tests were performed by measuring the static water level and inserting a pressure transducer into the PVC tube and set far enough below the static water level to accommodate the slug. The pressure transducer was set to record data in milliseconds for some and seconds for others. A 0.8 foot long solid steel rod was used as the slug. After allowing the water level to equilibrate after insertion of the pressure transducer, the slug was inserted into the PVC so that it was fully submerged. The transducer readings of the height of water above the transducer were used to measure the resulting rise and then decline in water level due to the insertion of the slug. The decline in water level was very slow in nearly all tests. Most tests were stopped after one hour due to the slowness of recovery.

Analysis of the slug tests were done using the standard Bouwer and Rice method.¹⁸ The results indicate very low hydraulic conductivities (K) (see Table 3). The K values generally fall into the range expected of clay (about 1×10^{-9} to 1×10^{-6} cm/sec)¹⁹. These values are several orders of magnitude lower than the first-approximation values estimated from the sieve analyses. Although care was taken to scarify the test holes with a bottle brush before the slug tests we believe there was still a smearing layer present on the wall of the test holes due to the clay-size material in the sediments, so that the slug tests yield values of K representative of the clay-size materials, not the composite K of the materials representative of each test hole, as were analyzed from the sieve and hydrometer testing.²⁰

 ¹⁸ Bouwer, H., and Rice, R.C., 1976, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells. Water Resources Research, Vol. 12 No. 3, pp. 423-428.
 ¹⁹ Fetter, W., Applied Hydrogeology, Table 4.5, p.80.

²⁰ Yang, Y.J, Gates, T.M., 1997 Wellbore skin effect in slug-test data analysis for low-permeability geologic materials. Groundwater Journal, Vol. 35, no. 6, pp. 931-937.

Table 3: Summary of Slug Test Analysis

Test Hole No.	Total Depth (ft)	SWL (ft below GL)	Diameter	ID of temp PVC casing (2*rc) (inches)		Slotted Length (L) (ft)	Estimated Saturated Aquifer Thickness (D) (ft)	L/rw	Rw' ft	Rc ft	Coeff A	Coeff B	Coeff C	$\ln \frac{R_s}{r_w}$	t (sec)	t (days)	Initial SWL Displacement (y0) (ft)	SWL Displaceme nt at time t (y) (ft)	Kh estimated (ft/day)	Kh estimated (cm/sec)
Slug Tests Attempted																				
SWA CR 6E N lot SW	15	4.96	2.25	1.00	10.04	0.50	60	5.33	0.094	0.042	1.90	0.20	0.90	2.371	4,091	0.04735	8.029	7.899	5.2E-04	1.8E-07
SWA CR 6E N lot SE	15	3.63	2.25	1.00	11.37	0.50	60	5.33	0.094	0.042	1.90	0.20	0.90	2.364	4,494	0.052014	7.067	7.012	2.2E-04	7.9E-08
SWA CR 6E S lot NW	15	3.12	2.25	1.00	11.88	0.50	60	5.33	0.094	0.042	1.90	0.20	0.90	2.361	3,849	0.044549	7.59	7.558	1.4E-04	5.0E-08
SWA CR 6E S lot NE	15	2.71	2.25	1.00	12.29	0.50	60	5.33	0.094	0.042	1.90	0.20	0.90	2.359	3,755	0.043461	4.839	4.716	8.8E-04	3.1E-07
SWA CR 3E NW	15	4.03	2.25	1.00	10.97	0.50	80	5.33	0.094	0.042	1.90	0.20	0.90	2.379	4,001	0.046308	6.783	6.715	3.3E-04	1.2E-07
CR 3W E N hole	15	12.64	2.25	1.00	2.36	0.50	60	5.33	0.094	0.042	1.90	0.20	0.90	2.482	98	0.001134	1.27	1.206	7.2E-02	2.5E-05
CR 3W W N hole	15	11.01	2.25	1.00	3.99	0.50	60	5.33	0.094	0.042	1.90	0.20	0.90	2.433	poor data -	not evalua	ted			
CR 5W W	15	8.24	2.25	1.00	6.76	0.50	40	5.33	0.094	0.042	1.90	0.20	0.90	2.377	4,722	0.054653	5.585	5.563	1.1E-04	3.8E-08
<u>No Slug Tests</u> SWA CR 3E NE	15	4.52	2.25	1.00				R.C., 1976, A	0							Fetter, Ta	ble 4.5, p80:	clay K ~ 1e-9	to 1e-6 cm/s	ec
Cotten E	15	2.99	2.25	1.00				ulic Conduc			276022000000000	2 °c -		14						
Cotten W	15	14.31	2.25	1.00			•	Vith Comple			WATER		HLE.				· :			
CR 3W E S hole	15	11.65	2.25	1.00			-	Vells. Wate			Ť	<u>⇒</u> †	÷	And						
CR 3W W S hole	15	10.01	2.25	1.00		Research,	Vol. 12 No. 3	3, pp. 423-42	8.			1 17		C 10		/				
CR 5W E	15	11.03	2.25	1.00		E .	141 / 14	10			.					/				
B Miller	15	9.69	2.25	1.00		Est:	Kh / Kv	10			Î	1 2'	Ī	— E		1/		8		
Off K-C ditch W	15	10.24 10.48	2.25	1.00												/	. 11			
Off K-C ditch Midd. Off K-C ditch E	15 15	10.48	2.25	1.00									_	- +				2		
Off bridge E	15	10.41	2.25	1.00												/ /	11			
Off bridge W	14	11.85	2.25	1.00										— F						
CR AA E	20	7.01	2.25	1.00							. IN	PERMEABLE			5 10	50 100	500 1000 5000 L/ru			
CRAA Midd.	20	8.07	2.25	1.00						per	ig. 1. Geometry and s forated well in unconfir e around perforated set	ned aquifer with grave	penetrating, partially i pack or developed		Fig. 3. Curves relat	ing coefficients A, B, an				
CR AA W	20	7.91	2.25	1.00							,				1	-				

Conclusions

1. Shallow sediments composed in part of clayey sand or sandy clay (occasionally peat-rich) lies just below a cobble-rich armoring layer that forms the present streambed of the Rio Grande in the study area between Del Norte and the Rio Grande – Alamosa county line. The fine-grained material was observed in over half of the shallow (1 ½ to 2 ½ feet) hand-dug test holes, and in all of the direct-push test holes. The fine-grained material is also present in the streambed downstream as far as County Line Road, but in the lower part of this reach there is a decreasing amount of armoring of the streambed with cobble-sized sediment. The fine-grained layer is of relatively low hydraulic conductivity based on the 2011 constant head test and the 2012 wet-sieve analyses of the drill cuttings. The relatively low K serves to impede the downward percolation of water from the stream to the ground water system.

- 2. The cobble armoring layer and the relative lack of lateral migration or downstream migration of the stream channels during historic times appear to be the primary reasons that the channels, and the fine-grained layer at and below the streambed in the study area, have been relatively well protected from erosion. At the same time, the cobble-armored stream channels, although modified to some extent by the actions of man (channel modification, canal headgates, etc.) appear to have remained relatively stable in terms of location since at least the 1870's. We conclude that this is due in part to the fact that canal diversions in the Del Norte area since at least the 1870's have reduced peak runoff significantly, thus reducing the erosive capability ("stream competence") of the Rio Grande in this reach.
- 3. The ratio of vertical K to horizontal K (Kv:Kh) is likely to be lower in the meander belt that is roughly coincident with the current Rio Grande floodplain, and higher in the braided Rio Grande alluvial fan just to the north, due to greater lateral continuity of the clay and silt layers in the meandering stream area.

- 4. The organic-rich silty clay material in and adjacent to the streambeds, within about 10 feet of streambed elevation, has not been described in previous work on the Rio Grande in the study area as far as we know. It is not described in the USDA Rio Grande County soil survey because most of this sediment is deeper than 5 feet below the surrounding land surface due to stream incision of 4 to 8 feet in most places (most soil surveys stop describing soils past 5 feet depth). It is not described on driller's logs because typically they do not drill in the streambed, and the fine-grained sediments may be too shallow or perhaps too thin to be noticed by drillers.
- 5. Two constant-head permeameter tests in apparently the same clayey material, at two separate locations, both on the stream bank (not in the streambed). At the upstream test (near the Kane-Callan Ditch headgate, adjacent to the Rio Grande North Channel; see Plate 1) the test showed a K of 1.5 x 10⁻³ feet/day. This is probably in error, because the clayey material was partially frozen. The downstream test located near Soldier's Home Road (CR 3E) bridge resulted in a K of approximately 0.9 feet/day.
- 6. Slug tests were not successful in obtaining reliable K values for the in-place streambed material, although the eight slug tests performed did show a relatively consistent low hydraulic conductivity (1.1 x 10⁻⁴ ft/day to 8.8 x 10⁻⁴ ft/day; with one test of 0.072 ft/day), showing that clay-rich material is present at most sites tested.
- 7. Wet-sieve analyses of samples from seven different test holes in the study area show a significant percentage of silt and clay in every sample. These analyses shows that the vertical hydraulic conductivity of the alluvial material underlying the Rio Grande, from its bifurcation east of Del Norte to a point downstream approximately 13 miles, is relatively low in comparison with deeper alluvial material as described in water well driller's logs from the area. We conclude that the clay fraction present in the very recent (Holocene) alluvial material within and adjacent to the present streambeds, will slow or

impede the downward percolation of river water to the unconfined aquifer underlying the Rio Grande in this reach of the river. We believe this is a primary reason why the gain and loss of the Rio Grande in this reach is relatively low, and also is a primary reason for the perching of the river and the associated water table in the very near surface streambed material, as compared to a deeper water table noted on water well records in the area.

8. This investigation has shown that a fine-grained layer of relatively low K in and adjacent to the Rio Grande stream channels exists in all areas test drilled and sampled, between the Rio Grande bifurcation near Del Norte, downstream to the Rio Grande – Alamosa county line. The 2011-2012 investigation thus has confirmed the hypothesis proposed in the 2009 hydrogeologic study.

Recommendations

- We recommend that an appropriate range of value for streambed conductance for the Rio Grande in the study area for RGDSS model calibration would be in the range of 0.01 to 10 feet/day, with calibration used to refine the value to attempt to match, as well as can be done, the estimated stream gain / loss in this reach.
- 2. We also recommend that it is appropriate for RGDSS modeling, and fits the available evidence, that the Rio Grande and an associated near-surface water table is perched above the regional unconfined aquifer water table.

Rio Grande Test Hole	e Lithologic Logs
----------------------	-------------------

GL		7860	Well Nam e	Miller			Date	5/2/12	page		
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Water	Resources	by	GES	1	
TD		15 feet	Location	SENW Sec.	29, T40N, R6	E: 2540' fnl,	2600' fwl	job no.	99001-59	of	
BH Dia.	2.25-	inches (Macro Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh		permit	N/A	1	
Depth	Interval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Lith	ologic Descr	iption		
From	То		Ŭ	Ŭ				Ŭ			
0	5	1.9 ft.	moderate	SR-SA	sand	volcanic	Top 0.4 ft.: very fine to f	ne grained, da	ark brow n, slig	htly clayey	
			very poor	SR-SA	sand & grav	volcanic	Bottom 1.5 ft.: fine to coarse grained and gravel, dark brow				
							slight layering				
5	10	3.2 ft.	poor	SR-SA	sand & grav	volcanic	Top 1.9 ft.: fine to coarse	e grained, grav	vel layers, dar	k brow n	
_			very poor	SR-SA	sand & grav	volcanic	Bottom 1.3 ft.: as above,	slightly clayey	y, layered		
10	15	5.0 ft.	very poor	SR-SA	sand & grav	volcanic	Top 2.5 ft.: fine to coarse	e grained, grav	vel, dark brow	n	
			very poor	SR-SA	sand & grav	volcanic	Middle 1.6 ft.: as above,	clayey			
			very poor	SR-SA	sand & grav	volcanic	Bottom 0.9 ft.: as above,	no clay			
							Note: Gravel generally r	ounded and sa	and generally s	subrounded	
							to subangular				
							Note: The largest gravel	recovered is	the diameter o	f the	
							sample tube, larger grav	el penetrated l	oy drilling		

GL		7845	Well Nam e	Off Kane-Ca	allen Ditch H	eadgate We	st Hole	Date	5/2/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Wate	Resources	by	GES	1
TD		15 feet	Location	SW NW Sec	. 28, T40N, R	6E: 1550' fnl	1110' fwl	job no.	99001-59	of
BH Dia.	2.25-	inches (Macro Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh		permit	N/A	1
Depth I	Interval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Litl	nologic Descr	iption	
From	То									
0	5	1.4 ft.	N∕A	N/A	soil	soil	Top 0.5 ft.: organic rich			
			poor	SR-SA	gravel	volcanic	Next 0.3 ft.: dark brow n			
			moderate	SR-SA	sand	volcanic	Next 0.3 ft.: fine grained			
			very poor	SR-SA	sand & grav	volcanic	Bottom 0.3 ft.: fine to co	arse grained, g	gravel, dark br	own, silty
5	10	3.2 ft.	moderate	SR-SA	sand	volcanic	Top 0.5 ft.: fine grained,	silty, gray, cla	yey	
			very poor	SR-SA	sand & grav	volcanic	Bottom 2.7 ft .: fine to co	arse grained, g	gravel, dark br	own, silty
10	15	4.9 ft.	very poor	SR-SA	sand & grav	volcanic	as above			
							Note: Gravel generally	rounded and sa	and generally s	subrounded
							to subangular	***************************************		
				Note: The largest gravel re					the diameter o	f the
							el penetrated l	by drilling		

GL		7845	WellName	Off Kane-Ca	allen Ditch H	eadgate Ce	nter Hole	Date	5/2/12	page
Datum TD	g	round level 15 feet	Owner Location		lorado Divis . 28, T40N, R		Resources	by iob no.	GES 99001-59	1 of
BH Dia.	2.25-	inches (Macro Tube)		Site Service				permit	WA	1
Depth I	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Liti	nologic Desc	ription	
From	То									
0	5	1.7 ft.	N/A	N/A	clay	clay	Top 0.6 ft.: brow n, very	sandy to clay	ey sand - fine	grained,
							organic			
			very poor	SR-SA	sand & grav	volcanic	Bottom: 1.1 ft .: fine to co	oarse grained,	gravel, dark bi	row n,
							clayey matrix in part			
5	10	2.8 ft.	very poor	SR-SA	sand & grav	volcanic	fine to coarse grained, g	gravel, dark br	own, slight lay	ering,
							clayey matrix in part			
10	15	4.4 ft.	very poor	SR-SA	sand & grav	volcanic	as above, clayey at bas	e		
							Note: Gravel generally	ounded and s	and generally	subrounded
							to subangular			
							Note: The largest grave	l recovered is	the diameter o	f the
							sample tube, larger grav	el penetrated	by drilling	

GL		7845	WellName	Off Kane-Ca	allen Ditch H	eadgate Eas	t Hole	Date	5/2/12	page
Datum	g	round level	Owner				Resources	by	GES	1
TD		15 feet	Location	SENW Sec.	28, T40N, R6	E: 1560' fnl,	1510' fwl	job no.	99001-59	of
BH Dia.	2.25-	inches (Macro Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh		permit	NA	1
Depth I	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Lith	ologic Desc	ription	
From	То									
0	5	0.9 ft.	N/A	N/A	clay	clay	Top 0.6 ft .: slightly reddi	sh brow n, silty	/ to sandy - fir	e grained,
							organic at top			
			poor	SR-SA	sand & grav	volcanic	Bottom 0.3 ft.: fine to coa	arse grained,	gravel, dark gr	ay,
							slight clay matrix in part			
5	10	0.8 ft.	very poor	SR-SA	sand & grav	volcanic	fine to coarse grained, g	ravel, dark br	own, slight cla	y matrix in
							part			
10	15	3.4 ft.	very poor	SR-SA	sand & grav	volcanic	fine to coarse grained, g	ravel, dark br	own, slight cla	y matrix in
							part, slight layering, more	e apparent cla	y matrix in fine	r lenses
							Note: Gravel generally r	ounded and s	and generally	subrounded
							to subangular			
							Note: The largest grave	recovered is	the diameter o	f the
							sample tube, larger grav	el penetrated	by drilling	

GL	r –	7800	WellName	Off Bridge	East Hole				Date	5/2/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Wate	r Resources		by	GES	1
TD		14 feet	Location	SW NE Sec.	35, T40N, R6	iE: 1430' fnl,	1910' fel		job no.	99001-59	of
	2.25-	inches (Macro									
BH Dia.		Tube)	Rig/Bit/Mud	Site Servic	es Direct Pu		1		permit	N/A	1
Depth	Interval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology		Litho	logic Descr	iption	
From	То										
0	5	1.0 ft.	poor	SR-SA	sand	volcanic	Top 0.2 ft.: fine	e to coarse	grained, fine	gravel, rusty,	clayey
			poor	SR-SA	sand	volcanic	Bottom 0.8 ft.:	fine to med	ium grained,	gravel at base	rusty at top
							to gray below,	slightly cla	yey		
5	10	3.0 ft.	moderate	SR-SA	sand	volcanic	Top 0.4 ft.: fine to medium grained, trace gravel, dark brow n,				
							clayey, fill?				
			very poor	SR-SA	sand & grav	volcanic	Bottom 2.6 ft.:	fine to coar	se grained, g	ravel, dark bro	own,
							layered, claye	y in part			
10	14	2.0 ft.	very poor	SR-SA	sand & grav	volcanic	same as 5 - 10) ft., hit refu	sal at 14 ft. o	lue to large co	bble
							Note: Gravel g	penerally ro	unded and sa	and generally s	ubrounded
							to subangular				
							Note: The larg	jest gravel r	ecovered is	the diameter of	the
							sample tube, la	arger grave	penetrated b	by drilling	

GL		7800	Well Nam e	Off Bridge	West Hole			Date	5/2/12	page
Datum TD	g	round level 15 feet	Ow ner Location				Resources	by job no.	GES 99001-59	1 of
	2.25-	inches (Macro	Location	SW NE Sec.	35, T40N, R6	E: 1550' fni,	2120 101	јов по.	99001-59	or
BH Dia.		Tube)	Rig/Bit/Mud	Site Service	es Direct Pu		-	permit	N/A	1
Depth I	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Lith	ologic Desci	ription	
From	То									
0	5	2.0 ft.	moderate	SR-SA	sand	volcanic	Top 1.5 ft.: very fine to fi	ne grained, gi	ay, organic, sl	lightly
							clayey, gravel at top with	roots		
			very poor	SR-SA	sand & grav	volcanic	Bottom 0.5 ft.: fine to coa	rse grained, g	gravel, gray to	dark brow n,
							organic lenses			
5	10	2.4 ft.	moderate	SR-SA	sand	volcanic	Top 0.2 ft.: fine to very fi	ne grained, da	ark brow n, fill?	
			very poor	SR-SA	sand & grav	volcanic	Bottom 2.2 ft .: fine to coa	rse grained, g	gravel, dark br	ow n,
							slight layering, slightly cla	yey in part		
10	15	3.4 ft.	very poor	SR-SA	sand & grav	volcanic	Top 1.7 ft.: fine to coarse	grained, gra	vel, dark brow	n,
							clayey in part			
			very poor	SR-SA	sand & grav	volcanic	Bottom 1.7 ft .: same as to	p, less clay r	matrix & fines	
							Note: Gravel generally ro	ounded and s	and generally s	subrounded
							to subangular			
							Note: The largest gravel	recovered is	the diameter o	f the
							sample tube, larger grave	el penetrated	by drilling	

GL	r	7745	Well Nam e	County Rd.	5W East Hol	e		Date	5/1/12	page	
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Wate	Resources	by	GES	1	
TD	0.05	15 feet	Location	SE SE Sec.	6, T39N, R7E:	140' fsl, 80'	fel	job no.	99001-59	of	
BH Dia.	2.25-	inches (Macro Tube)	Rig/Bit/Mud	Site Servic	es Direct Pu	sh		permit	N/A	1	
	Interval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Lith	ologic Description			
From	То										
0	5	2.0 ft.	moderate	SR-SA	sand	volcanic	Top 0.7 ft.: fine grained,	gravel in part,	dark brow n, v	ery clayey	
			N∕A	N/A	clay	clay	Bottom 1.3 ft.: gray, sem	i firm, silty, fin	e grained sand	dy lenses,	
							gravelly at base				
5	10	3.5 ft.	moderate	SR-SA	sand	volcanic	Top 0.8 ft.: fine to mediu	m grained, sor	me gravel, brov	vn,	
							clayey in part				
			very poor	SR-SA	sand & grav	volcanic	Bottom 2.7 ft.: fine to coa	arse grained, g	gravel, dark br	ow n,	
							slightly to very clayey le	nses			
10	15	5.0 ft.	very poor	SR-SA	sand & grav	volcanic	Top 1.7 ft.: fine to coars	e grained, gra	vel, dark brow	n	
			N/A	N/A	clay	clay	Middle 1.6 ft.: brow n, sa	ndy - fine grai	ned, thin grave	el lens	
			very poor	SR-SA	sand & grav	volcanic	Bottom 0.4 ft .: same as t	op, clayey			
							Note: Gravel generally r	ounded and s	and generally s	subrounded	
							to subangular				
							Note: The largest grave	recovered is	the diameter o	f the	
							sample tube, larger grav	el penetrated	by drilling		
			1		1						

GL	r	7745	WellName	County Rd.	5/1/12	page				
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Water	r Resources	by	GES	1
TD		15 feet	Location	SE SE Sec. (6, T39N, R7E:	160' fsl, 220)' fel	job no.	99001-59	of
	2.25-	inches (Macro								
BH Dia.		Tube)	Rig/Bit/Mud	Site Service	es Direct Pu		1	permit	N/A	1
Denth I	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Litho	logic Descr	intion	
From	То	receivery	Conting	nounding	OILC	Littleiogy	Line	logio Deser	iption	
0	5	2.3 ft.	poor	SR-SA	sand	volcanic	Top 0.9 ft.: fine to coarse	grained, tan,	organic mater	ial
			very poor	SR-SA	sand & grav	volcanic	Middle 0.6 ft.: fine to coars	se grained, g	ravel, dark bro	wn,
							very clayey with thin brov	v n sandy cla	y lenses	
			very poor	SR-SA	sand & grav	volcanic	Bottom 0.8 ft.: same as mi	clayey		
5	10	3.5 ft.	very poor	SR-SA	sand & grav	volcanic	fine to coarse grained, gra	own, layered,		
							slightly to very clayey in p			
10	15	4.9 ft.	very poor	SR-SA	sand & grav	volcanic	Top 3.4 ft.: fine to coarse	grained, grav	/el, dark brow	n, layered,
							slightly clayey in part			
			very poor	SR-SA	sand & grav	volcanic	Middle 0.1 ft.: as above, v	ery clayey		
			very poor	SR-SA	sand & grav	volcanic	Bottom 1.4 ft .: fine to coar	se grained, g	gravel, dark ta	n, very
							clayey to very sandy grav	elly clay		
L							Note: Gravel generally ro	unded and sa	and generally s	subrounded
L							to subangular			
L							Note: The largest gravel r			f the
L							sample tube, larger grave	penetrated b	by drilling	
L										

GL		7705	Well Nam e	CR 3W Wes	tSideNorth	Hole		Date	5/1/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Water	Resources	by	GES	1
TD		15 feet	Location	NESESec.	16, T39N, R7E	≕ 1470' fsl, 2	20' fel	job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh		permit	N/A	1
		Direct Push			Avg Gr	Primary				
Depth I	nterval	recovery	Sorting	Rounding	Size	Lithology	Lith	ologic Desc	ription	
From	То									
0	5	2.3 ft.	N/A	N/A	N∕A	N/A	Top 0.6 ft.: road base			
			poor	SR-SA	sand	volcanic	Next 0.8 ft .: fine to mediu	m grained, b	rown, very clay	/ey
			poor	SR-SA	sand	volcanic	Next 0.4 ft .: fine to mediu	m grained, b	rown, slightly c	layey
			N/A	N/A	clay	clay	Next 0.1 ft.: gray, soft, s	ilty to fine sa	nd	
			very poor	SR-SA sand & garv volcanic Bottom 0.4 ft.; fine to coarse				rse grained,	dark gray, sligh	ntly clayey
5	10	2.5 ft.	very poor	SR-SA						;y
			very poor	SR-SA	sand & garv	volcanic	Bottom 1.7 ft.: as above,	slightly claye	ey in part	
10	15	2.2 ft.	very poor	SR-SA	sand & garv	volcanic	Top 0.5 ft.: fine to coarse	e grained, da	rk brow n	
			poor	SR-SA	sand	volcanic	Middle 1.2 ft.: fine to med	ium grained,	dark brow n, tra	ace gravel,
							clayey in part			
			very poor	SR-SA	sand & garv	volcanic	Bottom 0.5 ft .: same as to	op		
			1				Note: Gravel generally r	ounded and s	and generally	subrounded
							to subangular		X	
							Note: The largest gravel	recovered is	the diameter o	f the
							sample tube, larger grave			
							in the second		-,	

GL		7705	Well Nam e	CR 3W Wes	t Side South	Hole			Date	5/1/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Wate	r Resources		by	GES	1
TD		15 feet	Location	NESESec. '	16, T39N, R7E	≕ 1230' fsl, 2	20' fel		job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh			permit	N/A	1
		Direct Push			Avg Gr	Primary					
Depth I	nterval	recovery	Sorting	Rounding	Size	Lithology		Litho	logic Descr	iption	
From	То										
0	5	1.0 ft.	poor	SR-SA	sand & grav	volcanic	Top 0.7 ft.: ro	oad base and	soil		
			N∕A	N/A	clay	clay	Bottom 0.3 ft	.: gray to rus	ty, soft, very	sandy - fine g	rained
5	10	1.0 ft.	very poor	SR-SA	sand & grav	volcanic	fine to coars	e grained, da	rk brow n, sli	ghtly clayey	
10	15	3.0 ft.	moderate	SR-SA	sand	volcanic	Top 0.7 ft.: fi	ne to medium	grained, dar	k brow n, trace	e of clay
			very poor	SR-SA	sand & grav	volcanic	Bottom 2.3 ft	.: fine to coar	se grained, d	dark brow n, cla	ayey at
							top to slightly clayey at base				
							Note: Grave	l denerally ro	unded and se	and generally s	subrounded
							to subangula			and generally c	Jubi cullucu
									acovered is	the diameter of	f tha
							sample tube,				
							sample lube,	aryer yrave	penetrated i		

GL		7705	Well Name CR 3W East Side South Hole Owner State of Colorado Division of Water Resources						Date	5/1/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Wate	Resources		by	GES	1
TD		15 feet	Location	NW NW Sec	. 22, T39N, R	7E: 10' fnl, 2	D' fel		job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh			permit	N/A	1
Depth I	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology		Lithe	ologic Desci	iption	
From	То		Ŭ	Ŭ							
0	5	2.5 ft.	N/A	N/A	clay	clay	Top 1.1 ft.: b	row n, sandy	with some g	ravel	
			very poor	SR-SA	sand & garv	volcanic	Bottom 1.4 ft	.: fine to coa	rse grained, o	dark brow n, sl	ghtly
							clayey in par	rt, slight layer	ing		
5	10	2.1 ft.	very poor	SR-SA sand & grav_volcanic fine to coarse grained, d				ark brow n, cla	ayey		
10	15	2.4 ft.	very poor	SR-SA sand & grav volcanic as above, very clayey in				part			
									ounded and s	and generally s	subrounded
							to subangula				
										the diameter o	f the
							sample tube,	larger grave	penetrated	oy drilling	

GL		7705	WellName	CR 3W East	Side South	Hole		Date	5/1/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Water	Resources	by	GES	1
TD		15 feet	Location	NW NW Sec	. 22, T39N, R	7E: 210' fnl, 2	20' fel	job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh		permit	NA	1
		Direct Push			Avg Gr	Primary			•	
Depth I	nterval	recovery	Sorting	Rounding	Size	Lithology	Litho	ologic Descr	iption	
From	То									
0	5	2.4 ft.	N∕A	N/A	clay	clay	Top 1.0 ft.: brow n, very s	andy - fine to	medium grain	ied, gravelly
			poor	SR-SA sand & grav volcanic Bottom 1.4 ft.: fine to co			Bottom 1.4 ft.: fine to coa	rse grained, d	lark brow n, sl	ightly clayey,
5	10	1.9 ft.	very poor	SR-SA sand & grav volcanic fine to coarse grained, dark brown,				ırk brow n, sliq	htly clayey to	clayey in
				part, 0.2 ft. very clayey lens			ns 0.6 ft. abo	ve base		
10	15	3.0 ft.	very poor	SR-SA	sand & grav	volcanic	Top 2.1 ft.: fine to coarse	grained, dark	brow n	
			very poor	SR-SA	sand & grav	volcanic	Bottom 0.9 ft.: as above,	slightly clayey	/	
							Note: Gravel generally ro	unded and sa	and generally	subrounded
							to subangular			
							Note: The largest gravel	recovered is t	he diameter o	f the
							sample tube, larger grave	I penetrated b	y drilling	

GL	r	7650	Well Name	Cotten Eas	t Hole			Date	5/1/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Wate	r Resources	by	GES	1
TD		15 feet	Location	SE SE Sec.	19, T39N, R8E	≕ 300'fsl,88	30' fel	job no.	99001-59	of
	2.25-	inches (Macro								
BH Dia.		Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh	-	permit	N/A	1
		Direct Push			Avg Gr	Primary				
· ·	nterval	recovery	Sorting	Rounding	Size	Lithology	Lith	ologic Desc	ription	
From	То									
0	5	1.8 ft.	N/A	N/A	clay	soil	Top 0.1 ft.: dark brow n, o	layey to san	dy	
			poor	SR-SA	sand	volcanic	Middle 1.4 ft .: fine to med	ium grained, s	some coarse g	rained,
							some gravel, slightly clay	еу		
			poor	SR-SA	sand & grav	volcanic	Bottom 0.3 ft.: fine to coa	rse grained,	gravel, dark br	own, trace
							clay matrix			
5	10	2.8 ft.	poor	SR-SA	sand	volcanic	Top 0.3 ft.: fine to mediur	n grained, dar	k brow n, very	clayey,
							trace gravel			
			very poor	SR-SA	sand & garv	volcanic	Middle 1.4 ft .: gravel with	sand as abo	ve, slightly cla	yey
			poor	SR-SA	sand	volcanic	Bottom 1.1 ft .: medium to	fine grained,	dark brow n, ir	ncrease in
							gravel dow nw ard, slightl	y clayey		
10	15	5.0 ft.	very poor	SR-SA	sand & grav	volcanic	fine to coarse grained, g	avel, dark br	own, clayey ir	part
							Note: Gravel generally ro	ounded and s	and generally	subrounded
							to subangular			
							Note: The largest gravel	recovered is	the diameter of	of the
							sample tube, larger grave	el penetrated	by drilling	

GL	r	7650	WellName	Cotten Wes	st Hole	-			Date	5/1/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Water	Resources		by	GES	1
TD		15 feet	Location	SE SE Sec. '	19, T39N, R8E	: 380' fsl, 10	160' fel		job no.	99001-59	of
BH Dia.	2.25-	inches (Macro Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh			permit	N/A	1
Depth I	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology		Litho	logic Descri	iption	
From	То										
0	5	2.7 ft.	poor	SR-SA	sand	volcanic	Top 1.0 ft.: fine	to medium	grained, dark	brown, claye	ey, silty
							in part				
			very poor	SR-SA sand & grav. volcanic Bottom 1.7 ft.: fine to coar				se grained, g	ravel, dark bro	own,	
				slightly clayey							
5	10	2.4 ft.	very poor	SR-SA	sand & grav.	volcanic	fine to coarse g	rained, gra	avel, dark bro	wn, slightly cl	ayey
10	15	5.0 ft.	very poor	SR-SA	sand & grav.	volcanic	fine to coarse g	rained, gra	avel, dark bro	wn, slightly cl	ayey
							Note: Gravel ge	enerally rou	unded and sa	nd generally s	subrounded
							to subangular				
							Note: The large	st gravel r	ecovered is t	he diameter o	f the
							sample tube, lar				
								. .		·	

GL	ľ	7620	WellName	SWA CR 3E	NW			Date	4/30/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Water	Resources	by	GES	1
TD		15 feet	Location	SENESec. 3	33, T39N, R8E	E: 2370' fnl, 1	20' fel	job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh		permit	N/A	1
Depth	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Litho	ologic Desci	ription	
From	То		Ŭ	Ŭ				Ŭ		
0	5	2.8 ft.	N/A	N/A	clay	clay	Top 1.4 ft.: brow n, sandy	- fine to med	lium grained, s	emi firm,
							trace gravel			
			N/A	N/A	clay	clay	Middle 0.8 ft.: brow n, sof	t, silty to very	fine sand	
			very poor	SR-SA	sand & grav	volcanic	Bottom 0.6 ft .: fine to coa	rse grained, l	orown, slightly	clayey
5	10	2.4 ft.	very poor	SR-SA	sand & grav	volcanic	Top 1.2 ft.: as above, cla	/ey		
			poor	SR-SA	sand	volcanic	Middle 0.7 ft.: fine to coar	se grained, d	ark brow n	
_			very poor	SR-SA	sand & grav	volcanic	Bottom 0.5 ft .: same as to	ор		
10	15	2.3 ft.	very poor	SR-SA	sand & grav	volcanic	Top 0.8 ft.: as above			
			very poor	SR-SA	sand & grav	volcanic	Middle 0.7 ft.: as above, i	ncrease in cla	ay, slightly laye	ered
			very poor	SR-SA	sand & grav	volcanic	Bottom 0.8 ft .: fine to coa	rse grained, o	dark gray, no c	lay
							Note: Gravel generally ro	unded and s	and generally :	subrounded
							to subangular			
							Note: The largest gravel	recovered is	the diameter o	f the
							sample tube, larger grave	l penetrated	by drilling	

GL	r	7620	Well Nam e	SWA CR 3E	NE			Date	4/30/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Wate	r Resources	by	GES	1
TD		15 feet	Location	SENESec. 3	33, T39N, R8E	: 2370' fnl, 2	20' fel	job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh		permit	N/A	1
Depth	Interval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Litho	logic Descr	iption	
From	То									
0	5	2.8 ft.	N∕A	N/A	clay	clay	Top 2.0 ft.: brow n, very s	andy - fine to	medium grain	ed, soft
							this fine grained sand lens	s near base		
			poor	SR-SA	sand	volcanic	Bottom 0.8 ft .: fine to med	ium grained, t	prown with th	n rusty
							layers, slightly clayey			
5	10	2.3 ft.	very poor	SR-SA	sand & grav	volcanic	fine to coarse grained, da	rk brow n, sliç	htly clayey	
10	15	2.4 ft.	very poor	SR-SA	sand & grav	volcanic	same as 5 to 10 ft.			
							Note: Gravel generally ro	unded and sa	ind generally s	subrounded
							to subangular			
							Note: The largest gravel r	ecovered is t	he diameter o	f the
							sample tube, larger grave	penetrated b	y drilling	

GL		7595	WellName	CR6ENorth	Lot SW				Date	4/30/12	page
Datum	g	round level	Owner	State of Co	lorado Divisi	ion of Wate	Resources	6	by	GES	1
TD		15 feet	Location	NENESec. 1	1, T38N, R8E:	1300' fnl, 21	0' fel		job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh			permit	N/A	1
Depth I	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology		Litho	logic Descri	iption	
From	То										
0	5	2.7 ft.	N∕A	N/A	clay	clay	Top 2.0 ft.:	dark brow n, fi	rm, sandy -fir	ne grain, trans	itions
							dow nw ard	to clayey fine	grained sand	- SR-Sa, mod	lerate
							sorting				
			poor	SR-SA	sand & grav.	volcanic	Bottom 0.7	t.: fine to coar	coarse grained, dark brow n, slightly		
5	10	2.3 ft.	poor	SR-SA	sand	volcanic	fine to coar	se grained, rec	reddish at top to dark brow n dow r		
							some grave	l, slightly claye	ey in part		
10	15	2.8 ft.	poor	SR-SA	sand & grav.	volcanic	fine to coar	se grained, da	rk brow n, slig	htly clayey to	clayey
							Note: Grav	el generally ro	unded and sa	ind generally s	subrounded
							to subangular				
							Note: The largest gravel recovered is the diame			he diameter o	f the
							sample tube	e, larger gravel	penetrated b	y drilling	

GL		7595	WellName	CR 6E North	Lot SE			Date	4/30/12	page
Datum	q	round level	Owner	State of Co	lorado Divis	ion of Wate	Resources	by	GES	1
TD	Ŭ	15 feet	Location	NENESec. 1	1, T38N, R8E:	1300' fnl, 10	0' fel	job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Service	es Direct Pu	sh		permit	N/A	1
Depth I	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology	Litho	ologic Descri	ption	
From	То									
0	5	none					very soft material per drill	er		
5	10	1.0 ft.	N∕A	N/A	clay	clay	Top 0.1 ft.: dark brow n, v	ery organic, s	ome sand an	d gravel
			moderate	SR-SA	sand	volcanic	Bottom 0.9 ft.: fine to med	lark brow n, s	cattered	
							gravel, slightly clayey			
10	15	1.3 ft.	moderate	SR-SA	sand	volcanic	as above			
			very poor	SR-SA	sand & grav	volcanic	fine to coarse grained, da	rk brow n, slig	htly clayey	
							Note: Gravel generally ro	unded and sa	nd generally s	subrounded
							to subangular			
							Note: The largest gravel recovered is the diameter of t			f the
							sample tube, larger gravel penetrated by drilling			

	7595	WellName	CR 6E Sout	h Lot NW	-	-		Date	4/30/12	page
g	round level	Owner	State of Co	lorado Divis	ion of Wate	Resource	s	by	GES	1
	15 feet	Location	SE SE Sec.	1, T38N, R8E:	1300' fsi, 22	20' fel		job no.	99001-59	of
2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Servic	es Direct Pu	sh			permit	N/A	1
	Direct Push			Avg Gr	Primary					
nterval	recovery	Sorting	Rounding	Size	Lithology		Litho	ologic Desc	ription	
То										
5	2.0 ft.	N∕A	N/A	clay	clay	Top 0.6 ft.:	dark brow n, s	andy - fine g	rained, firm	
		poor	SR-SA	sand	volcanic	Bottom 1.4	ft.: fine to coai	rse grained,	gravelly, dark b	prow n,
						slightly clay	ey			
10	2.3 ft.	poor	SR-SA	sand	volcanic	Top 0.8 ft.:	as above			
		very poor	SR-SA				t.: fine to coar	se grained, r	eddish brown,	very clayey
		very poor	SR-SA	sand & grav	volcanic	Bottom 1.1	ft.: fine to coa	rse grained,	gray, slightly cl	ayey
15	4.3 ft.	very poor	SR-SA	sand & grav	volcanic	Top 1.4 ft.:	fine to coarse	grained, dar	k brow n, slight	ly clayey
						to clayey				
		very poor	SR-SA	sand & grav	volcanic	Middle 1.3 f	t.: fine to coar	se grained, g	ray, slightly cla	ayey to
				-		clayey at b	ase			
		poor	SR-SA	sand	volcanic	Bottom 1.6	ft.: fine to coai	rse grained,	trace fine grav	el, slightly
						clayey				
						Note: Grav	el generally ro	unded and s	and generally s	subrounded
						******	žź			
								ecovered is	the diameter o	f the
							s, a. ger grave	. ponoratou	2, <u>3,</u>	
				1						
	2.25-ind nterval To 5	ground level 15 feet 2.25-inches (Dual Tube) Direct Push recovery To 5 2.0 ft. 10 2.3 ft.	ground level Owner 15 feet Location 2.25-inches (Dual Tube) Rig/Bit/Mud nterval recovery Sorting To 5 2.0 ft. N/A 5 2.0 ft. N/A 0007 10 2.3 ft. poor 10 2.3 ft. very poor 15 4.3 ft. very poor 15 4.3 ft. very poor	ground level Owner State of Co 15 feet Location SE SE Sec. 2.25-inches (Dual Tube) Rig/Bit/Mud Site Service Direct Push recovery Sorting Rounding To 5 2.0 ft. N/A 10 2.3 ft. poor SR-SA 10 2.3 ft. very poor SR-SA 15 4.3 ft. very poor SR-SA 15 4.3 ft. very poor SR-SA 10 Na Na Na	ground level Owner State of Colorado Divis 15 feet Location SE SE Sec. 1, T38N, R8E 2.25-inches (Dual Tube) Rig/Bit/Mud Site Services Direct Pu nterval Direct Push recovery Sorting Rounding To	ground level Owner State of Colorado Division of Water 15 feet Location SE SE Sec. 1, T38N, R8E: 1300' fsl, 22 2.25-inches (Dual Tube) Rig/Bit/Mud Site Services Direct Push Direct Push recovery Sorting Avg Gr Rounding Primary Lithology To 2.0 ft. N/A N/A clay 10 2.3 ft. poor SR-SA sand volcanic 10 2.3 ft. very poor SR-SA sand & grav volcanic 15 4.3 ft. very poor SR-SA sand & grav volcanic 10 Pith Pith Pith Pith Pith	ground level Owner State of Colorado Division of Water Resource: 15 feet Location SE SE Sec. 1, T38N, R8E: 1300' fsl, 220' fel 2.25-inches (Dual Tube) Rig/Bit/Mud Site Services Direct Push Direct Push recovery Sorting Rounding Size Primary Lithology To	ground level Owner State of Colorado Division of Water Resources 15 feet Location SE SE Sec. 1, T38N, R8E: 1300' fsl, 220' fel 2.25-inches (Dual Tube) Rig/Bit/Mud Site Services Direct Push nterval Direct Push recovery Sorting Rounding Size Primary Lithology Lithology To	ground level Owner State of Colorado Division of Water Resources by 15 feet Location SE SE Sec. 1, T38N, R8E 1300' fsl, 220' fel job no. 2.25-inches (Dual Tube) Rig/Bit/Mud Site Services Direct Push permit Direct Push nterval Pricet Push recovery Sorting Rounding Avg Gr Size Primary Lithology Lithologic Desc 5 2.0 ft. NVA NVA clay clay Top 0.6 ft: dark brow n, sandy - fine g 9 poor SR-SA sand volcanic Bottom 1.4 ft.: fine to coarse grained, slightly clayey 10 2.3 ft. poor SR-SA sand & grav volcanic Middle 0.4 ft.: fine to coarse grained, r 15 4.3 ft. very poor SR-SA sand & grav volcanic Top 1.4 ft.: fine to coarse grained, dar 15 very poor SR-SA sand & grav volcanic Top 1.4 ft.: fine to coarse grained, g 15 very poor SR-SA sand & grav volcanic Top 1.4 ft.: fine to coarse grained, g 16 very poor SR-SA </td <td>ground level Owner State of Colorado Division of Water Resources by GES 15 feet Location SE SE Se. 1, T38N, R8E 1300' fsl, 220' fel job no. 99001-59 2.25-inches (Dual Tube) Rig/Bit/Mud Site Services Direct Push permit N/A Direct Push recovery Sorting Rounding Size Lithology Lithologic Description To </td>	ground level Owner State of Colorado Division of Water Resources by GES 15 feet Location SE SE Se. 1, T38N, R8E 1300' fsl, 220' fel job no. 99001-59 2.25-inches (Dual Tube) Rig/Bit/Mud Site Services Direct Push permit N/A Direct Push recovery Sorting Rounding Size Lithology Lithologic Description To

GL	r	7595	Well Nam e	CR 6E Sout	h Lot NE				Date	4/30/12	page
Datum	g	round level	Owner	State of Co	lorado Divis	ion of Wate	Resources		by	GES	1
TD		15 feet	Location	SESESec.	1, T38N, R8E:	1300' fsl, 15	50' fel		job no.	99001-59	of
BH Dia.	2.25-in	ches (Dual Tube)	Rig/Bit/Mud	Site Servic	es Direct Pu	sh			permit	N/A	1
Depthl	nterval	Direct Push recovery	Sorting	Rounding	Avg Gr Size	Primary Lithology		Lith	ologic Desc	ription	
From	То		-							Ī	
First Hole	e refusal	at 10 ft.									
_											
0	5	0.0 ft. (1st hole)					very soft				
5	10	2.0 ft. (1st hole)	very poor	SR-SA	sand & grav	volcanic	fine to coarse	e grained, d	ark brow n, s	lightly clayey to	clayey
Second	Hole 2 ft.	from first								*****	
0	10	3.7 ft.	N/A	N/A	clay	clay	Top 0.2 ft.: br	own.sand	/. soil		
-			moderate	SR-SA	sand	volcanic				ace gravel, dar	k brow n
			N/A	N/A	clay	clay	Next 1.2 ft.: d	ark brow n,	firm to soft,	sandy - fine gra	ained,
							trace gravel,	organic			
			very poor	SR-SA	sand & grav	volcanic	Bottom 2.0 ft.	: fine to coa	irse grained,	dark brow n, la	yered,
_							clayey in part	to very cla	yey at top		
10	15	0.0 ft					tube smashed	3			
							Note: Gravel	generally ro	ounded and s	and generally	subrounded
							to subangular				
									recovered is	the diameter o	f the
							sample tube,	larger grave	el penetrated	by drilling	

CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	13-14.5' Cotton East 99001-59 RGDSS Rio Grande River Direct Pus			SAMPLED DATE TEST WASH SIEV DRY SIEVE h		06/01/12 DPM Yes No
MOISTUR	E DATA				WASH SIEV	E ANALYS	IS
HYGROSC NATURAL		Yes No			Wt. Total Sa Wet (g Weight of + a	g) #10	871.34
					Before Wash Weight of +		172.53
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)			118.85 116.32		After Washir Weight of - #		164.14
Wt. Lost Moisture (g)			2.53		Wet (g	g)	698.81
Wt. of Dry Soil (g)			111.92		Weight of - # Dry (g)	691.57
Moisture C	ontent %		2.3		Wt. Total Sample Dry (g) 85		
	n. Sample W n. Sample Di		69.43 67.89		Calc. Wt. ''W'' (g) Calc. Mass + #10		84.01 16.11
vit. Hydron		3 (9)	01.00				
Sieve Number (Size)	Pan Weight (g)	Indiv. Wt. + Pan (g)	Indiv. Wt. Retain.	Cum. Wt. Retain.	Cum. % Retain.	% Finer By Wt.	
3" 1 1/2"	0.00		0.00 0.00	0.00		100.0 100.0	
3/4"	0.00		46.90	46.90		94.5	
3/4"	0.00		36.23	40.90		94.5	
#4	0.00		43.98	127.11		85.1	
#10	0.00		37.03	164.14		80.8	
1100	0.40	44.05	0.05	0.05	20.0	74.0	

#20	3.10	11.35	8.25	8.25	29.0	71.0
#40	3.06	34.63	31.57	39.81	66.6	33.4
#60	3.10	18.73	15.64	55.45	85.2	14.8
#100	3.00	8.73	5.74	61.19	92.0	8.0
#200	3.05	5.00	1.95	63.14	94.3	5.7

Data entere Data check	ed by:	DAW
Data check	ed by:	
FileName:	HRH013C	È Ĩ

Date: 6 6/06/2012

CLIENT HRS W	ater Consultants			JOB NO.	2852-01	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	13-14.5' Cotton East 99001-59 RGDSS Ric	o Grande River	Direct Pus	SAMPLED DATE TEST WASH SIEV DRY SIEVE h	Έ	06/01/12 DPM Yes No
Hydrometer # Sp. Gr. of Soil Value of "alpha" Deflocculant Defloc. Corr'n Meniscus Corr'n	ASTM 152 2.65 1.00 Sodium Hex 5.3 0.0	xametaphosph	ate	Temp., Deg. Temp. Coef. Wt. Dry San % of Total S	K ple "W"	25.1 0.01285 84.007 100.0
T Elapsed Hydromo Time Origin (min)	eter Reading al Corrected "R"	100Ra/W	% Total Sample	Effective Depth L	Grain Diameter (mm)	
0.0			-			
0.5			-			2
1.0			-			
	.50 4.25		5.1		0.0349	
	.00 3.75	4.5	4.5		0.0221	
	.00 2.75		3.3		0.0128	
	.50 2.25 .25 2.00	2.7 2.4	2.7 2.4		0.0091 0.0064	
	.25 2.00	2.4	2.4		0.0004	
	.50 1.25	1.5	1.5		0.0040	
	E0 1.25	1.5	1.5		0.0002	

15.22

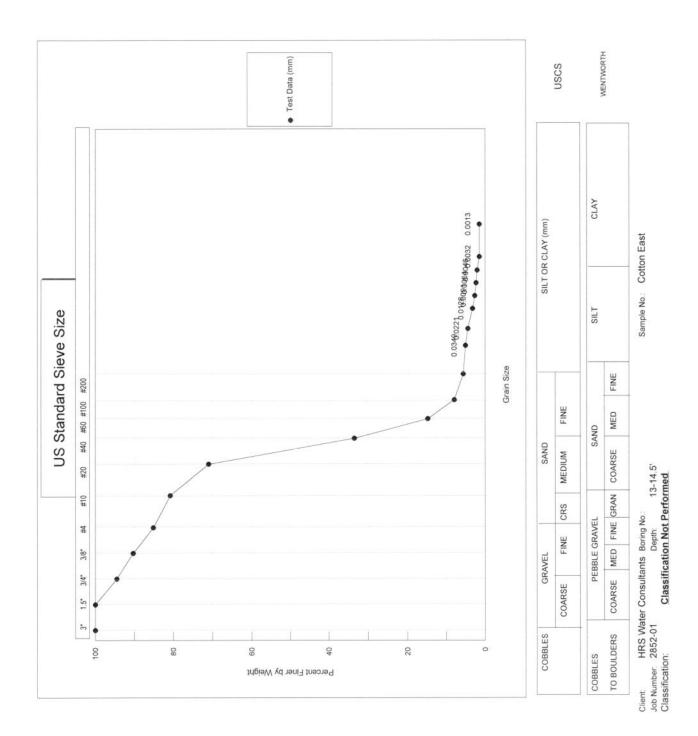
1.5

0.0013

Grain Diameter = K*(SQRT(L/T))

1440.0

6.50


1.25

Data entered by: DAW FileName: HRH013CE

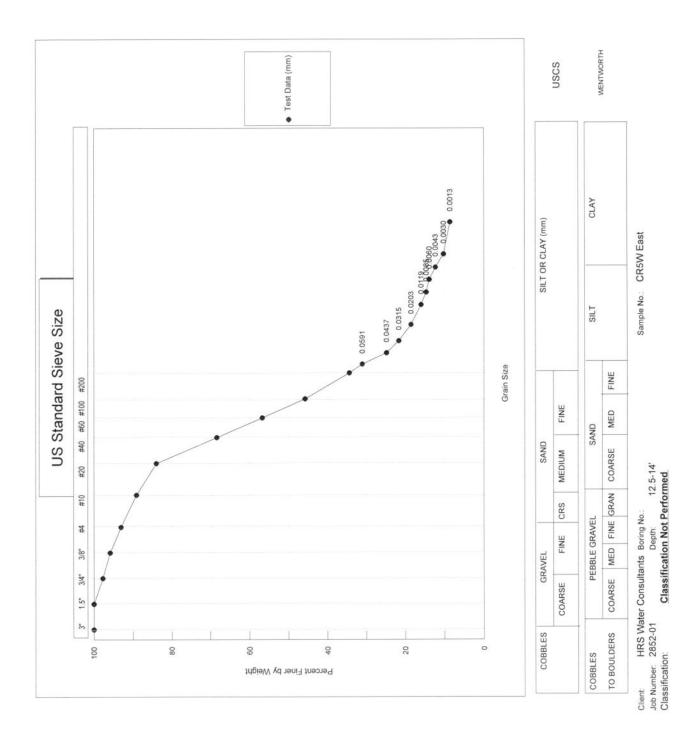
Date: 06/06/2012 Date: Lelle 12

1.5

CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	12.5-14' CR5W East 99001-59 RGDSS Rio	Grande Rive	r Direct Pusl	SAMPLED DATE TES WASH SIEV DRY SIEVE	VE	06/01/12 DPM Yes No
MOISTURE	E DATA				WASH SIE	VE ANALYS	ilS
HYGROSC	OPIC	Yes			Wt. Total S	0	081 12
NATURAL		No			Wet (Weight of +		981.13
NATORAL		NO			Before Was Weight of +	shing (g)	109.25
	il & Pan (g)		79.90 78.94		After Wash Weight of -	ing (g)	105.25
Wt. Lost Me	il & Pan (g)		0.94		Weight of -		871.88
Wt. of Pan			6.55		Weight of -		071.00
Wt. of Dry S			72.39		Dry (864.42
Moisture C	ontent %		1.3		Wt. Total S		
					Dry (g)	969.67
Wt Hydron	n. Sample W	et (a)	86.56		Calc. Wt. "V	V" (a)	95.83
	n. Sample Dr		85.43	Calc. Mass + #10		10.40	
-							
Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%	
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer	
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.	
3"	0.00	0.00	0.00	0.00	0.0	100.0)
1 1/2"	0.00		0.00	0.00			
3/4"	0.00	21.86	21.86	21.86	23	97 7	7

0.00 21.86 21.86 0.00 18.14 18.14 3/4" 21.86 2.3 97.7 40.00 4.1 95.9 3/8" 0.00 26.78 26.78 66.78 6.9 93.1 #4 105.25 #10 0.00 38.47 38.47 10.9 89.1 #20 16.0 84.0 3.19 8.10 4.91 4.91 14.95 17.95 31.6 68.4 #40 3.00 19.87 11.21 3.03 14.24 31.07 43.3 56.7 #60 10.47 #100 3.04 13.51 41.54 54.2 45.8 #200 3.13 14.09 10.95 52.49 65.6 34.4

Data entered by: DAW Data checked by: DAW FileName: HRH01251 Date: 06/06/2012 Date: 6/6/12


CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	12.5-14' CR5W East 99001-59 RGDSS Rio	Grande Rive	r Direct Pus	SAMPLED DATE TES WASH SIEV DRY SIEVE	VE	06/01/12 DPM Yes No
Hydromete Sp. Gr. of S Value of "a Defloccular Defloc. Cor Meniscus (Soil Ipha" nt rr'n	ASTM 152 H 2.65 1.00 Sodium Hex 5.3 0.0	ł ametaphospł	nate	Temp., Deg Temp. Coe Wt. Dry Sar % of Total S	f. K mple "W"	25.0 0.01286 95.830 100.0
T Elapsed	Hydrometer	Reading		%	Effective	Grain	
Time (min)	Original	Corrected "R"	100Ra/W	Total Sample	Depth L	Diameter (mm)	
	19		1001(0/11	oumpie	-	()	
0.0							-
0.5 1.0			31.0 24.8	31.0 24.8			
2.0			24.0	21.7			
5.0			18.5	18.5			
15.0	20.50	15.25	15.9	15.9			
30.0			14.6	14.6			
60.0	24		13.8	13.8			
120.0 250.0			12.3 10.2	12.3 10.2			
1440.0			8.6	8.6			

Grain Diameter = K*(SQRT(L/T))

Data entered by: DAW Data checked by: JUL FileName: HRH01251

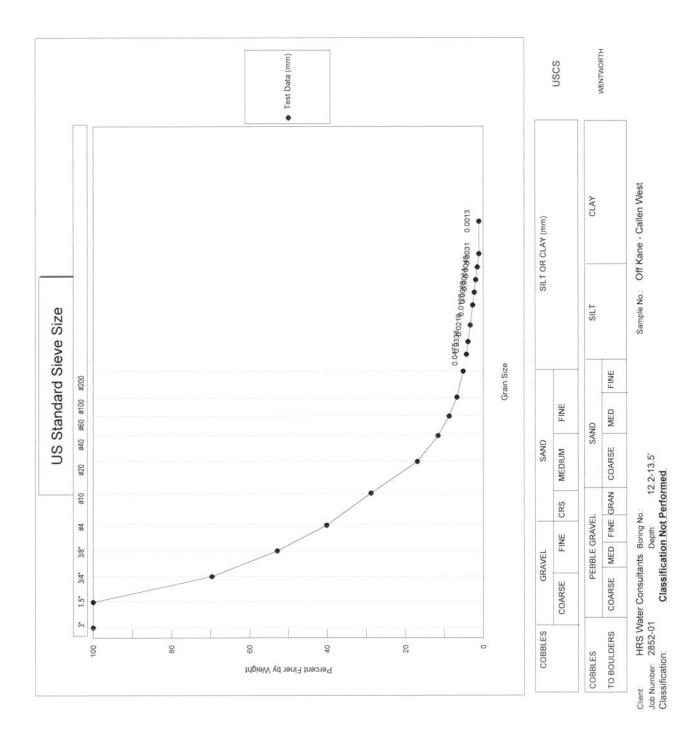
Date: 6/6/12 Date: 6/6/12

CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	12.2-13.5' Off Kane - Callen West 99001-59 RGDSS Rio Grande River Direct Pu			SAMPLED DATE TES WASH SIE DRY SIEVE	06/01/12 DPM Yes No	
MOISTUR	E DATA				WASH SIE	VE ANALYS	IS
HYGROSC	OPIC	Yes			Wt. Total S Wet		1075.95
NATURAL		No			Weight of +	- #10	
					Before Was Weight of +		780.40
	Wt. Wet Soil & Pan (g)				After Wash	ing (g)	763.91
Wt. Dry Soil & Pan (g) Wt. Lost Moisture (g)		69.01 0.70		Weight of - Wet		295.55	
Wt. of Pan	Vt. of Pan Only (g)		3.02		Weight of -	#10	
Wt. of Dry			65.99		Dry (308.76
Moisture C	ontent %		1.1		Wt. Total S Dry (1072.67
Wt. Hvdron	n. Sample W	et (a)	73.10		Calc. Wt. "	N" (a)	251.30
	n. Sample Dr		72.34		Calc. Mass + #10		178.97
Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%	
Number	Weight	Wt. + Pan	Wt.	VVt.	%	Finer	
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.	
3"	0.00	0.00	0.00	0.00	0.0	100.0	
1 1/2"	0.00		0.00	0.00			
3/4"	0.00		325.27	325.27			
3/8"	0.00		180.97	506.24			
#4	0.00		135.88	642.12			
#10	0.00	121.79	121.79	763.91	71.2	28.8	

32.72 16.84 #20 3.02 29.70 29.70 83.0 17.0 13.57 43.26 88.4 11.6 #40 3.28 7.17 10.21 #60 3.04 50.43 91.3 8.7 8.05 #100 3.02 5.02 55.45 93.3 6.7 7.16 4.03 59.48 94.9 5.1 #200 3.13

Data entered by: Data checked by: FileName: HRH012OK

Date: 6/6/06/2012 Date: 6/6/12



CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	12.2-13.5' Off Kane - C 99001-59 RGDSS Rio	allen West Grande River	r Direct Pus	SAMPLED DATE TES WASH SIEV DRY SIEVE h	/E	06/01/12 DPM Yes No
Hydromete Sp. Gr. of S Value of "a Defloccular Defloc. Cor Meniscus (Soil Ipha'' nt rr'n	ASTM 152 H 2.65 1.00 Sodium Hex 5.3 0.0	l ametaphosph	ate	Temp., Deg Temp. Coef Wt. Dry Sar % of Total S	f. K nple "W"	25.0 0.01286 251.304 100.0
T Elapsed	Hydrometer	Reading		%	Effective	Grain	
Time	Original	Corrected		Total	Depth	Diameter	
(min)		"R"	100Ra/W	Sample	L	(mm)	
0.0				-			-
0.5		10.75	4.3	4.3	13.67	0.0475	-
2.0			3.9	3.9	13.83	0.0338	
5.0			3.3	3.3			
15.0 30.0			2.7 2.3	2.7 2.3			
60.0			1.9	1.9	14.65		
120.0			1.5	1.5		0.0045	
250.0 1440.0			1.1 1.1	1.1 1.1		0.0031 0.0013	

Grain Diameter = K*(SQRT(L/T))

Date: 06/06/2012 Date: 00012

CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	13.3-14.5' CR3W Wests 99001-59 RGDSS Rio		r Direct Pusl	SAMPLED DATE TEST WASH SIEV DRY SIEVE	/E	06/01/12 DPM Yes No
MOISTUR	E DATA				WASH SIE\	/E ANALYS	IS
HYGROSC	OPIC	Yes			Wt. Total Sa Wet (g)	461.07
NATURAL		No			Weight of + Before Was	hing (g)	247.10
	oil & Pan (g) il & Pan (g)		147.06 145.52		Weight of + After Washi Weight of -	ng (g)	236.66
	oisture (g)		1.54		Wet (Weight of -	g)	213.97
Wt. of Dry Moisture C	Soil (g)		141.12 1.1		Dry (g) Wt. Total Sample		
					Dry (g		458.65
	n. Sample W n. Sample Dr		71.26 70.49		Calc. Wt. "V Calc. Mass		145.64 75.15
Sieve Number (Size)	Pan Weight (g)	Indiv. Wt. + Pan (g)	Indiv. Wt. Retain.	Cum. Wt. Retain.	Cum. % Retain.	% Finer By Wt.	
3" 1 1/2" 3/4" 3/8"	0.00 0.00 0.00 0.00	0.00 61.41	0.00 0.00 61.41 80.75	0.00 0.00 61.41 142.16	0.0 13.4	100.0 100.0 86.6 69.0)

Data entered by: Data checked by: FileName: HRH0133C

0.00

0.00

3.26

3.06

3.07

3.03

3.13

51.22

43.28

15.92

27.58

21.13

8.29

6.10

#4

#10

#20

#40 #60

#100

#200

Date: 06/06/2012 Date: 6/6/12

51.22

43.28

12.66

24.52

18.06

5.26

2.98

193.38

236.66

12.66

37.18

55.24

60.50

63.48

42.2

51.6

60.3

77.1

89.5

93.1

95.2

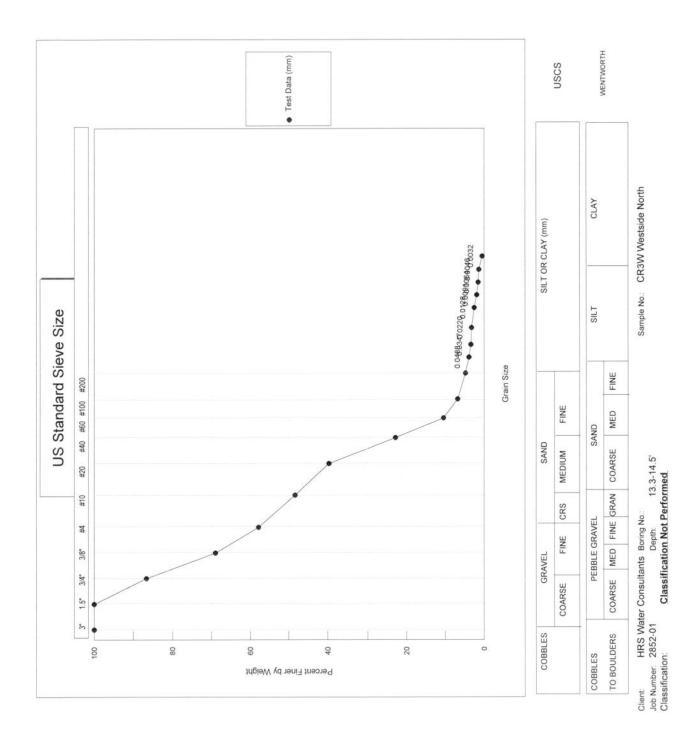
57.8

48.4

39.7

22.9

10.5 6.9


4.8

CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	13.3-14.5' CR3W West 99001-59 RGDSS Rio	side North Grande Rive	er Direct Pus	SAMPLED DATE TES WASH SIEV DRY SIEVE	νE	06/01/12 DPM Yes No
Hydromete Sp. Gr. of S Value of "a Defloccular Defloc. Cor Meniscus (Soil Ipha'' nt rr'n	ASTM 152 H 2.65 1.00 Sodium Hex 5.3 0.0	l ametaphospi	hate	Temp., Deg Temp. Coef Wt. Dry Sar % of Total S	f. K nple ''W''	25.2 0.01283 145.637 100.0
т							
Elapsed	Hydrometer			%	Effective	Grain	
Time	Original	Corrected "R"	100Ra/W	Total	Depth	Diameter	
(min)		ĸ	100Ra/W	Sample	L	(mm)	
0.0) -						-
0.5							
1.0			3.9	3.9			
2.0			3.4	3.4		0.0347	
5.0 15.0			3.3 2.6	3.3 2.6		0.0220	
30.0			1.9	1.9			
60.0			1.5	1.5			
120.0			1.4	1.4			
250.0	6.00	0.75	0.5	0.5	5 15.31	0.0032	

Grain Diameter = K*(SQRT(L/T))

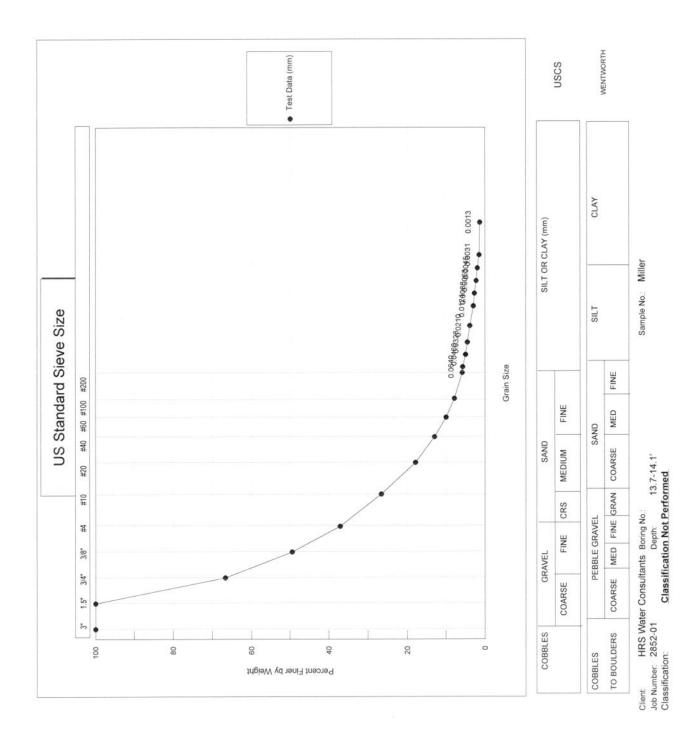
Data entered by: DAW Data checked by: Shi FileName: HRH0133C Date: 06/06/2012 Date: <u>6/6/12</u>

CLIENT	HRS Water	Consultants			JOB NO.	2852-01			
BORING NO DEPTH SAMPLE NO SOIL DESC LOCATION	0. CR.	13.7-14.1' Miller 99001-59 RGDSS Rio Grande River Direct Pus			SAMPLED DATE TES WASH SIE DRY SIEVE h	06/01/12 DPM Yes No			
MOISTURE	DATA			WASH SIEVE ANALYSIS					
HYGROSC	OPIC	Yes			Wt. Total S Wet		918.87		
NATURAL		No			Weight of + Before Was	- #10	686.23		
					Weight of +				
Wt. Wet So	il & Pan (g)		57.42		After Wash		673.21		
Wt. Dry Soi	I & Pan (g)		56.94		Weight of -	#10			
Wt. Lost Mc	(3)		0.48		Wet		232.64		
Wt. of Pan	-		3.01		Weight of -				
Wt. of Dry S			53.93		Dry (243.49		
Moisture Co	ontent %		0.9		Wt. Total S				
					Dry (g)	916.70		
W/t Hydrom	n. Sample W	let (a)	87.86		Calc. Wt. "	∧/" (a)	327.85		
	n. Sample D		87.08		Calc. Mass		240.77		
		1 (9/	01.00		culo. mado		2.0.17		
Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%			

Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%	
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer	
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.	
3"	0.00	0.00	0.00	0.00	0.0	100.0	
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0	
3/4"	0.00	305.39	305.39	305.39	33.3	66.7	
3/8"	0.00	158.15	158.15	463.54	50.6	49.4	
#4	0.00	113.04	113.04	576.58	62.9	37.1	
#10	0.00	96.63	96.63	673.21	73.4	26.6	
#20	2.98	31.39	28.41	28.41	82.1	17.9	
#40	3.01	19.11	16.10	44.51	87.0	13.0	
#60	3.04	12.88	9.84	54.35	90.0	10.0	
#100	3.00	10.04	7.04	61.39	92.2	7.8	
#200	3.06	9.68	6.61	68.00	94.2	5.8	

Data entered by: DAW Data checked by: DAW FileName: HRH0137M

Date: 06/05/2012 Date: 06/05/2012


CLIENT H	RS Water 0	Consultants			JOB NO.	2852-01	
BORING NO. DEPTH SAMPLE NO. SOIL DESCR LOCATION		13.7-14.1' Miller 99001-59 RGDSS Rio	Grande Rive	r Direct Pus	SAMPLED DATE TEST WASH SIEV DRY SIEVE h	Έ	06/01/12 DPM Yes No
Hydrometer # Sp. Gr. of Soi Value of "alph Deflocculant Defloc. Corr'n Meniscus Cor	ן חמ" נ	ASTM 152 H 2.65 1.00 Sodium Hex 5.3 0.0	l ametaphosph	nate	Temp., Deg Temp. Coef Wt. Dry San % of Total S	. K ıple ''W''	24.9 0.01288 327.850 100.0
T Elanaad H	udromotor E	Pooding		%	Effective	Grain	
Elapsed H Time	lydrometer F Original	Corrected		Total	Depth	Diameter	
(min)	original	"R"	100Ra/W	Sample	L	(mm)	
0.0 0.5 1.0 2.0 5.0 15.0 30.0 60.0 120.0 250.0	24.00 21.50 20.00 18.00 15.00 14.00 12.50 11.50 10.00	18.75 16.25 14.75 12.75 9.75 8.75 7.25 6.25 4.75	5.7 5.0 4.5 3.9 3.0 2.7 2.2 1.9 1.4	- 5.7 5.0 4.5 3.9 3.0 2.7 2.2 1.9 1.4	12.35 12.76 13.01 13.34 13.83 13.99 14.24 14.40	0.0640 0.0460 0.0328 0.0210 0.0124 0.0088 0.0063 0.0045 0.0031	
1440.0	9.50	4.25	1.3	1.3	14.73	0.0013	

Grain Diameter = K*(SQRT(L/T))

Data entered by: DAW Data checked by: DAW FileName: HRH0137M

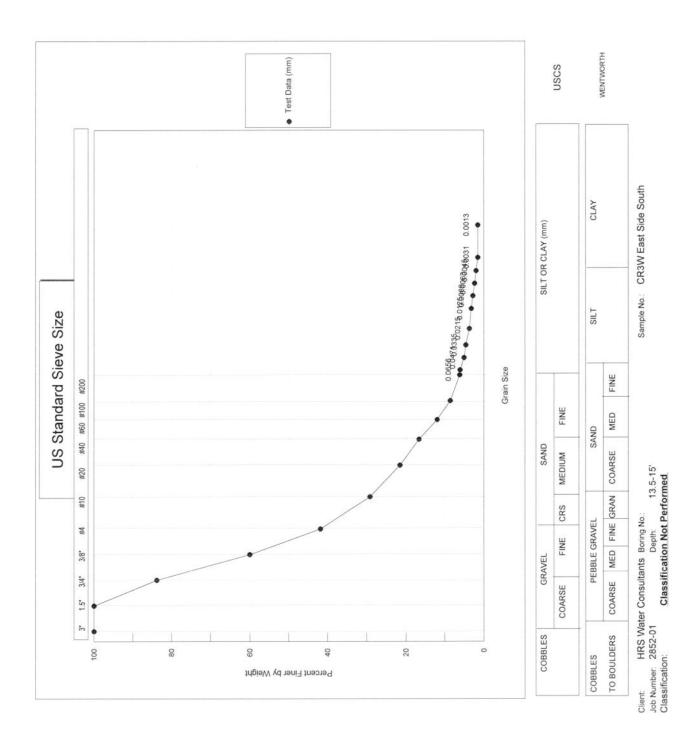
Date: 06/05/2012 Date: 6512

CLIENT HRS Water	r Consultants			JOB NO. 2852-01			
BORING NO. DEPTH SAMPLE NO. SOIL DESCR. LOCATION	13.5-15' CR3W East Side South 99001-59 RGDSS Rio Grande River Direct Pus			SAMPLED DATE TES WASH SIE DRY SIEVI sh	06/01/12 DPM Yes No		
MOISTURE DATA				WASH SIE	VE ANALYS	SIS	
HYGROSCOPIC	Yes			Wt. Total S Wet		604.98	
NATURAL	No			Weight of + Before Was Weight of +	shing (g)	444.59	
Wt. Wet Soil & Pan (g) Wt. Dry Soil & Pan (g)		92.22 90.59		After Wash Weight of -	ing (g)	426.24	
Wt. Lost Moisture (g) Wt. of Pan Only (g)	1.63 3.97	Wet (g) Weight of - #10			160.39		
Wt. of Dry Soil (g) Moisture Content %		86.62 1.9			Dry (g) Wt. Total Sample		
				Dry (601.68	
Wt. Hydrom. Sample W Wt. Hydrom. Sample D		71.76 70.43		Calc. Wt. " Calc. Mass		241.55 171.12	
Sieve Pan	Indiv.	Indiv.	Cum.	Cum.	% Finor		

Number (Size)	Weight (g)	Wt. + Pan (g)	Wt. Retain.	Wt. Retain.	% Retain.	Finer By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	97.53	97.53	97.53	16.2	83.8
3/8"	0.00	143.33	143.33	240.86	40.0	60.0
#4	0.00	109.34	109.34	350.20	58.2	41.8
#10	0.00	76.04	76.04	426.24	70.8	29.2
		04.47	10.50	10.50	70.5	04.5
#20	2.97	21.47	18.50	18.50	78.5	21.5
#40	3.03	14.90	11.87	30.37	83.4	16.6
#60	3.06	14.22	11.16	41.53	88.0	12.0
#100	3.13	11.21	8.08	49.60	91.4	8.6
#200	3.26	9.18	5.92	55.52	93.8	6.2

Data entered by: Data checked by: FileName: HRH01351

Date: 06/05/2012 Date: 05/2


CLIENT H	HRS Water	Consultants			JOB NO.	2852-01	
BORING NO DEPTH SAMPLE NO SOIL DESCF LOCATION		13.5-15' CR3W East 99001-59 RGDSS Rio	Side South Grande Rive	r Direct Pus	SAMPLED DATE TEST WASH SIEV DRY SIEVE h	/E	06/01/12 DPM Yes No
Hydrometer # Sp. Gr. of So Value of "alpl Deflocculant Defloc. Corr'r Meniscus Co	il ha'' n	ASTM 152 H 2.65 1.00 Sodium Hex 5.3 0.0	l ametaphosph	nate	Temp., Deg Temp. Coef Wt. Dry San % of Total S	. K nple "W"	25.0 0.01286 241.547 100.0
т							
	lydrometer			%	Effective	Grain	
Time	Original	Corrected		Total	Depth	Diameter	
(min)		"R"	100Ra/W	Sample	L	(mm)	
0.0							_
0.5	20.00	14.75	6.1	6.1		0.0656	
1.0	17.50	12.25	5.1	5.1		0.0471	
2.0	16.50	11.25	4.7	4.7		0.0335	
5.0	14.25	9.00	3.7	3.7	13.95	0.0215	
15.0	13.00	7.75	3.2	3.2	14.16	0.0125	
30.0	12.00	6.75	2.8	2.8	14.32	0.0089	
60.0	11.00	5.75	2.4	2.4		0.0063	
120.0	10.00	4.75	2.0	2.0		0.0045	
250.0	9.00	3.75	1.6	1.6		0.0031	
1440.0	9.00	3.75	1.6	1.6	5 14.81	0.0013	

Grain Diameter = K*(SQRT(L/T))

Data entered by: Data checked by: FileName: HRH01351

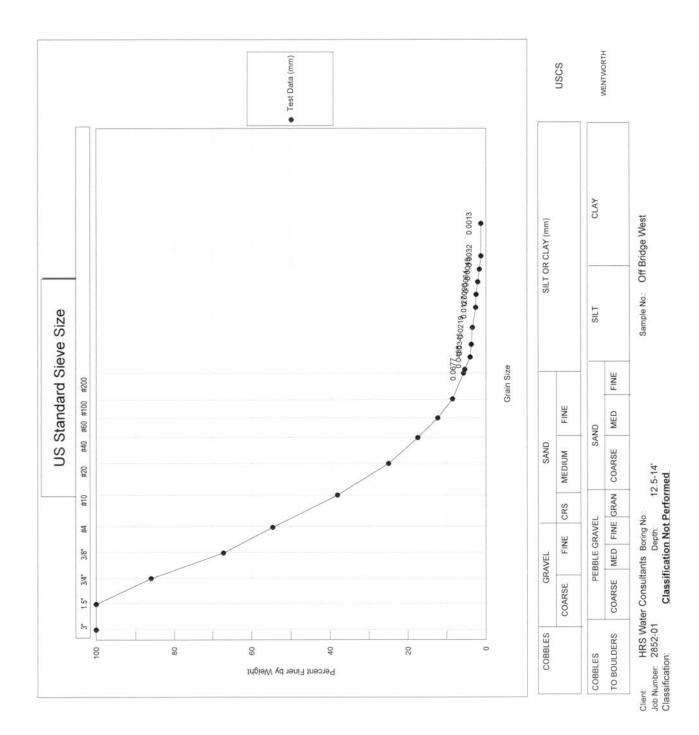
Date: 0512

CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	IO. CR.	12.5-14' Off Bridge W 99001-59 RGDSS Rio		r Direct Pusl	SAMPLED DATE TES WASH SIE DRY SIEVE	VE	06/01/12 DPM Yes No
MOISTUR	E DATA				WASH SIE	VE ANALYS	IS
HYGROSC	OPIC	Yes			Wt. Total S		054.05
NATURAL		No			Wet (Weight of +		854.35
					Before Was Weight of +	shing (g)	545.83
	oil & Pan (g)		105.08		After Wash	ing (g)	526.25
Wt. Dry So Wt. Lost M	il & Pan (g) pisture (g)		103.80 1.28		Weight of - Wet (308.52
Wt. of Pan	Only (g)		4.45		Weight of -	#10	
Wt. of Dry 3 Moisture C			99.35 1.3		Dry (Wt. Total S		323.93
					Dry (850.18
	n. Sample W		69.98		Calc. Wt. "\		181.34
Wt. Hydron	n. Sample Dr	ry (g)	69.09		Calc. Mass	+ #10	112.25
Sieve	Pan	Indiv.	Indiv.	Cum.	Cum.	%	
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer	
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.	
3"	0.00	0.00	0.00	0.00			
1 1/2"	0.00		0.00	0.00			
3/4"	0.00		118.65	118.65			
3/8" #4	0.00		159.54 107.52	278.19	32.7		

0.010						
Number	Weight	Wt. + Pan	Wt.	Wt.	%	Finer
(Size)	(g)	(g)	Retain.	Retain.	Retain.	By Wt.
3"	0.00	0.00	0.00	0.00	0.0	100.0
1 1/2"	0.00	0.00	0.00	0.00	0.0	100.0
3/4"	0.00	118.65	118.65	118.65	14.0	86.0
3/8"	0.00	159.54	159.54	278.19	32.7	67.3
#4	0.00	107.52	107.52	385.71	45.4	54.6
#10	0.00	140.54	140.54	526.25	61.9	38.1
#20	3.01	26.78	23.77	23.77	75.0	25.0
#40	3.03	16.74	13.70	37.48	82.6	17.4
#60	3.04	12.39	9.35	46.83	87.7	12.3
#100	3.05	9.88	6.83	53.66	91.5	8.5
#200	3.04	8.13	5.09	58.75	94.3	5.7

Data entered by: DAW Data checked by: Chill FileName: HRH012OB

Date: 06/05/2012 Date: 65.0



CLIENT	HRS Water	Consultants			JOB NO.	2852-01	
BORING N DEPTH SAMPLE N SOIL DESC LOCATION	0. CR.	12.5-14' Off Bridge W 99001-59 RGDSS Rio	/est Grande River	r Direct Pus	SAMPLED DATE TEST WASH SIEV DRY SIEVE h	/E	06/01/12 DPM Yes No
Hydromete Sp. Gr. of S Value of "a Defloccular Defloc. Cor Meniscus C	Soil Ipha'' nt rr'n	ASTM 152 H 2.65 1.00 Sodium Hex 5.3 0.0	ł ametaphosph	nate	Temp., Deg Temp. Coef Wt. Dry Sar % of Total S	. K nple "W"	24.9 0.01288 181.343 100.0
T Elapsed	Hydrometer			%	Effective	Grain	
Time (min)	Original	Corrected "R"	100Ra/W	Total Sample	Depth L	Diameter (mm)	
0.0 0.5 1.0 2.0 5.0 15.0 30.0 60.0 120.0 250.0 1440.0	15.00 12.50 12.00 11.50 10.00 9.75 9.00 8.25 7.50	7.25 6.75 6.25 4.75 4.50 3.75 3.00 2.25	5.4 4.0 3.7 3.4 2.6 2.5 2.1 1.7 1.2 1.2	5.4 4.0 3.7 3.4 2.6 2.5 2.1 1.7 1.2 1.2	14.24 14.32 14.40 14.65 14.69 14.81 14.94 15.06	0.0486 0.0345 0.0219 0.0127 0.0090 0.0064	

Grain Diameter = K*(SQRT(L/T))

Data entered by: DAW Data checked by: DAW FileName: HRH012OB Date: 656/05/2012

