

GEOTECHNICAL AND WATER RESOURCES ENGINEERING

BREACH INUNDATION MAPPING REPORT

FISH CREEK DAM ROUTI COUNTY, COLORADO

Submitted to

City of Steamboat Springs P.O. Box 775088

Steamboat Springs, Colorado 80477

Submitted by

RJH Consultants, Inc.

9800 Mt. Pyramid Court, Suite 330 Englewood, Colorado 80112 303-225-4611

www.rjh-consultants.com

December 2013 Project 13117

> G. George Solvensky, P.E. Project Manager

TABLE OF CONTENTS

TABLE C	OF CONTENTS	1
SECTIO	n 1 - Introduction	1
1.1	Purpose	
1.2	Objectives	1
1.3	Project Location and Background	1
1.4	SCOPE OF SERVICES	2
1.5	AUTHORIZATION AND PROJECT PERSONNEL	3
SECTIO	N 2 - PROJECT DESCRIPTION	4
2.1	Dam and Reservoir Characteristics	4
2.2	Drainage Characteristics	4
SECTIO	n 3 - Breach Hydrograph Estimation	6
3.1	GENERAL	6
3.2	Breach Parameter Estimation Methods	6
3.3	Breach Hydrograph Development	7
SECTIO	n 4 - Dam Breach Flood Routing	8
4.1	GENERAL	8
4.2	ROUGHNESS VALUES	8
4.3	DAM BREACH FLOOD ROUTING	10
4.4	Dam Breach Flood Hydraulic Analysis and Routing	11
4.5	Results	13
SECTIO	n 5 - Conclusions	17
SECTIO	n 6 - Limitations	19
SECTIO	n 7 - References	20

LIST OF TABLES

Table 2.1	Dam and Reservoir Characteristics
Table 3.1	Summary of Breach Parameter Estimates – Sunny-Day Failure
Table 4.1	HEC-HMS Dam Breach Hydrograph Routing Results
Table 4.2	Simulated Sunny-Day Failure

LIST OF FIGURES

Figure 1.1	Site Location and Vicinity Maps
Figure 4.0	Simulated Dam Failure Inundation Limits, Sheet Index
Figure 4.1	Simulated Dam Failure Inundation Limits, Sheet 1 of 15
Figure 4.2	Simulated Dam Failure Inundation Limits, Sheet 2 of 15
Figure 4.3	Simulated Dam Failure Inundation Limits, Sheet 3 of 15
Figure 4.4	Simulated Dam Failure Inundation Limits, Sheet 4 of 15
Figure 4.5	Simulated Dam Failure Inundation Limits, Sheet 5 of 15
Figure 4.6	Simulated Dam Failure Inundation Limits, Sheet 6 of 15
Figure 4.7	Simulated Dam Failure Inundation Limits, Sheet 7 of 15
Figure 4.8	Simulated Dam Failure Inundation Limits, Sheet 8 of 15
Figure 4.9	Simulated Dam Failure Inundation Limits, Sheet 9 of 15
Figure 4.10	Simulated Dam Failure Inundation Limits, Sheet 10 of 15
Figure 4.11	Simulated Dam Failure Inundation Limits, Sheet 11 of 15
Figure 4.12	Simulated Dam Failure Inundation Limits, Sheet 12 of 15
Figure 4.13	Simulated Dam Failure Inundation Limits, Sheet 13 of 15
Figure 4.14	Simulated Dam Failure Inundation Limits, Sheet 14 of 15
Figure 4.15	Simulated Dam Failure Inundation Limits, Sheet 15 of 15

APPENDICES

Appendix A	Dam Breach Parameters
Appendix B	HEC-HMS Hydrologic Model Results
Appendix C	Manning's n Values

Appendix D HEC-RAS Model Results

SECTION 1 - INTRODUCTION

1.1 Purpose

The purpose of this Breach Inundation Mapping Report (Report) is to present the results of the dam breach analysis and inundation limits for a simulated failure of Fish Creek Dam (Project). This evaluation was prepared in accordance with the Colorado Office of the State Engineer (SEO) *Rules and Regulations for Dam Safety and Construction* (Rules) (SEO, 2007) and *Guidelines for Dam Breach Analysis* (Guidelines) (SEO, 2010).

The simulated breach analysis was performed to support inundation mapping for the Fish Creek Dam Emergency Action Plan (EAP) and these analytical methods are only appropriate for these purposes. The actual flood inundation limits from a dam breach of Fish Creek Dam depend on actual dam failure flood conditions and may differ from areas shown on the Report mapping. The models documented in this Report should not be used for other purposes.

1.2 Objectives

The objectives of this simulated dam breach analysis are as follows:

- Develop dam breach parameters and a dam breach hydrograph for a "sunny-day" failure event.
- Route the dam breach hydrograph through the downstream drainage.
- Develop dam breach inundation limits.
- Evaluate dam breach inundation parameters (i.e., depth, velocity, etc.) at critical locations throughout the downstream drainage.

1.3 Project Location and Background

Fish Creek Dam is located approximately 8 miles east of Steamboat Springs in Routt County, Colorado. The site is located in Section 10 and 15, Township 6 North, Range 83 West of the 6th Principal Meridian. The dam is located on Middle Fork Fish Creek and impounds a reservoir with a storage capacity of approximately 4,150 acre-feet (ac-ft), and is supplied by direct inflow from Middle Fork Fish Creek. The Project location is shown on Figure 1.1.

According to design documents provided by the SEO, the dam was originally constructed in 1954 and consisted of an earthen embankment dam with a sand filter drain at the downstream toe, and a 24-inch-diameter steel outlet works conduit extending through approximately the center of the dam embankment. A large rehabilitation project was completed in 1972 and consisted of raising the dam by about 11 feet, extending the filter drain, extending the outlet works conduit, and constructing a new saddle dam and 80-foot-wide rockcut spillway along the north side of the reservoir. The saddle dam consisted of an earthen embankment with clay core and was about 15 feet high. The spillway discharges to an unnamed tributary, which joins Middle Fork Fish Creek about 0.5 mile downstream of the main dam.

An additional rehabilitation project was completed in 1997 and consisted of raising the main dam by about 20.5 feet, extending the existing outlet works conduit with an 18-inch-diameter steel pipe, lining the existing outlet works conduit with an 18-inch-diameter steel pipe, installing a new 36-inch-diameter steel upper-level outlet works conduit, raising the saddle dam by about 22.0 feet, and installing a 10-foot-wide, ripraplined low-flow channel along the spillway. The new outlet works conduit extends through the left portion of the main dam and into the left abutment before discharging to Middle Fork Fish Creek, near the downstream toe of the dam.

Based on the location of the Project and review of available data, the flood routing model and inundation mapping were developed using 2-foot topography provided the City of Steamboat Springs (Steamboat Springs), 3-meter Digital Elevation Mapping (DEM) topographic data provided by the Steamboat Springs Fire District, and cross section data from the Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) effective hydraulic models (FEMA, 2005). Further discussion of topographic data is provided in Section 4.4.

Inundation mapping for this Report was developed using National Agriculture Imagery Program (NAIP) 1-meter resolution aerial photography as figure backgrounds.

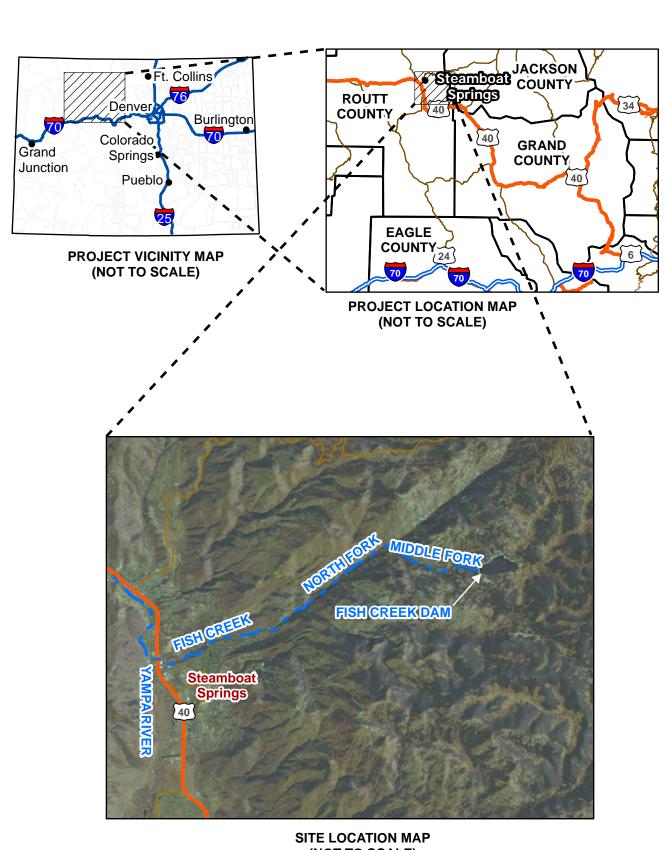
1.4 Scope of Services

RJH Consultants, Inc. (RJH) performed the following tasks for this evaluation:

- Obtained digital topographic data, aerial photographs, and other information that describes the downstream drainage.
- Developed dam breach parameters for a simulated failure of Fish Creek Dam.

- Developed a hydrologic model to evaluate the attenuation of the dam breach hydrograph through the downstream drainage.
- Developed a hydraulic model to evaluate dam breach water surface elevations, velocities, and inundation limits in the downstream drainage.
- Developed inundation maps.
- Prepared this Report.

1.5 Authorization and Project Personnel


RJH performed the work described in this Report in accordance with the terms and conditions of the contract between RJH and Steamboat Springs for Engineering Services for Dam Inundation Mapping dated September 4, 2013. The following RJH personnel are responsible for the work described in this Report:

Project Manager George Slovensky, P.E.

Project Engineer Eric Hahn, P.E.

Technical Review Korey Kadrmas, P.E.

(NOT TO SCALE)

FISH CREEK DAM **BREACH INUNDATION** MAPPING REPORT

SITE LOCATION AND VICINITY MAPS

PROJECT NO. 13117

DECEMBER 2013

Figure 1.1

SECTION 2 - PROJECT DESCRIPTION

2.1 Dam and Reservoir Characteristics

Fish Creek Dam is a large, high hazard, earth embankment dam with a crest at about elevation (El.) 9894.0. The upstream slope is about 3 horizontal to 1 vertical (H:V) and the downstream slope is about 2H:1V. The crest is approximately 868 feet long. The reservoir has a storage capacity of about 4,150 ac-ft at about maximum normal pool El. 9886.0. The maximum normal pool of the reservoir is controlled by a rockcut spillway channel that discharges to an unnamed tributary of Middle Fork Fish Creek, located to the north of the reservoir.

Key characteristics of the dam and reservoir are provided in Table 2.1.

TABLE 2.1
DAM AND RESERVOIR CHARACTERISTICS

Active Storage Volume	4,150 ac-ft
Surface Area at Normal Pool	139 acres
Dam Crest Elevation	9894.0 feet
Natural Ground Elevation Below Crest	9820.0 feet (approx.)
Spillway Crest Elevation	9886.0 feet
Maximum Normal Water Surface Elevation	9886.0 feet

2.2 Drainage Characteristics

Fish Creek Dam is located on Middle Fork Fish Creek about 2 miles upstream of its confluence with North Fork Fish Creek. North Fork Fish Creek then discharges to Fish Creek, which subsequently discharges to the Yampa River, near the south end of Steamboat Springs. The Yampa River then flows generally northwest through Steamboat Springs. The following stream reaches in downstream order would be impacted by a failure of Fish Creek Dam:

- Middle Fork Fish Creek (approximately 2 miles).
- North Fork Fish Creek (approximately 2.3 miles).
- Fish Creek (approximately 3.8 miles).
- Yampa River (approximately 14.6 miles).

Additional information regarding the drainage characteristics of the downstream channels is provided in Section 4.2.

SECTION 3 - BREACH HYDROGRAPH ESTIMATION

3.1 General

A simulated dam breach was evaluated for a "sunny-day" scenario with the reservoir at maximum normal pool elevation with no base flow. The "sunny-day" failure was assumed to result from a piping failure. No base flow was included because anticipated base flows would be negligible compared to peak breach flows. RJH developed the breach analysis using the "simple" level of breach analysis structure in accordance with the SEO Guidelines. The simple approach was selected because it a) generally produces conservative flood limits that are appropriate for an EAP, and b) the results of the breach analysis are not anticipated to change the hazard classification. The simple breach analysis approach consists of the following components:

- Breach Parameter Estimate: Empirical methods.
- Breach Hydrograph Estimation: Parametric hydrologic model (HEC-HMS).
- Breach Hydrograph Routing: Hydrologic model (HEC-HMS).
- Hydraulics at Critical Sections: Steady state hydraulics (HEC-RAS).

3.2 Breach Parameter Estimation Methods

RJH evaluated breach parameters using the Froelich (2008) method and time to failure using the Washington State method in accordance with recommendations in the SEO Guidelines for a large-size dam with a "high" storage intensity. RJH initially considered using the Froelich method to estimate time to failure; however, in our opinion, this resulted in an unrealistically short time to failure for a large, earthen embankment designed to modern standards. The Washington State method for cohesionless soils was selected because it accounts for the embankment geometry and volume of eroded material. The "cohesionless" soils classification was selected because available data was insufficient to classify the material as having significant cohesion. Input parameters were developed based on available data from the design drawings and previous SEO inspections. Documentation of this analysis is provided in Appendix A and the results are summarized in Table 3.1.

TABLE 3.1 SUMMARY OF BREACH PARAMETER ESTIMATES – SUNNY-DAY FAILURE

Average Breach Width, Bavg	140 feet
Bottom Breach Width, Bb	90 feet
Breach Formation Time, t _f	1.0 hours
Breach Side Slopes, z (ZH:1V)	0.7

3.3 Breach Hydrograph Development

The simulated dam breach hydrograph was developed using the U.S. Army Corps of Engineers' (USACE) HEC-HMS Version 3.5 computer software (USACE, 2009). The dam breach parameters shown in Table 3.1 were used in the HEC-HMS program to model the temporal development of the breach and resulting outflow. The HEC-HMS breach hydrograph model resulted in a peak breach outflow of 72,100 cubic feet per second (cfs) and a total breach volume of 4,120 ac-ft. HEC-HMS model input/output, including the breach hydrograph, is provided in Appendix B.

SECTION 4 - DAM BREACH FLOOD ROUTING

4.1 General

RJH performed dam breach analyses to support the development of maps that identify potential inundation limits for the simulated failure of Fish Creek Dam. The breach flow hydrograph was routed downstream a sufficient distance to the point on the Yampa River, where attenuated breach flows become less than the FEMA FIS 100-year discharge. During an actual dam failure, flooding will vary depending on actual conditions including the location, size, depth, and rate of breach development; downstream backwater; local flood conditions; and seasonal variations within the channel including erosion resistance. Because of these and other factors, actual inundation limits may vary from those shown on the referenced inundation figures.

4.2 Roughness Values

Manning's "n" values are a measure of channel roughness and resistance to flow and will impact the routing of the dam breach hydrograph. Manning's "n" values also vary depending on the roughness of the channel and overbanks, and with the depth of flow and type of flow event. Deeper flows will be less affected by a given obstruction than shallower flows. RJH assigned roughness values to representative sections of the floodplain downstream based on a) Manning's "n" values used in the FEMA FIS, b) field visit observations, c) aerial photography, d) published references that provide a description and pictures of stream channels with a recommended typical "n" value, and e) engineering experience and judgment.

RJH divided the downstream drainage into three segments with relatively homogenous hydraulic roughness characteristics (XS = river cross section):

• XS -0.0 TO XS -5.013 (MIDDLE FORK FISH CREEK, NORTH FORK FISH CREEK, AND FISH CREEK): The main channel of this stream reach generally consists of a steep mountain stream with large boulders and minimal vegetation. A Manning's "n" value of 0.08 was selected for the main channel, based on the FEMA FIS effective model and confirmed with field visit observations and published references for similar stream channels. The overbanks consist of some areas with thick pine trees and brush and areas of rock, gravel, and short native grasses. A Manning's "n" value of 0.08 was selected for the overbanks, based primarily on aerial photography, field visit observations, and published references for similar overbank areas.

- XS -5.013 TO XS -8.05 (FISH CREEK): The main channel of this stream reach generally consists of a steep mountain stream with gravel, cobbles, some boulders, and minimal vegetation. A Manning's "n" value of 0.06 was selected for the main channel, based on the FEMA FIS effective model and confirmed with field visit observations and published references for similar stream channels. The overbanks vary between a) areas with thick pine trees and brush, b) commercial/residential developed areas, and c) a golf course area. Manning's "n" values between 0.08 to 0.10 were selected for the thick pine tree and brush areas, based primarily on field visit observations and published references for similar overbank areas. A Manning's "n" value of 0.06 was selected for the developed areas, based on the FEMA FIS effective model and confirmed with field visit observations. A Manning's "n" value of 0.05 was selected for the golf course areas based on field visit observations and published references for similar overbank areas.
- XS -8.05 TO XS -22.72 (YAMPA RIVER): The main channel of this stream reach generally consists of an intermountain valley river that is relatively clean (i.e., no significant boulders or vegetation) with some gentle meandering. Manning's "n" values between 0.04 to 0.045 were selected for the main channel, based on the FEMA FIS effective model and confirmed with field visit observations and published references for similar stream channels. The overbanks vary between a) pasture areas, b) native areas with short grass and some trees, c) native areas with dense trees, and d) commercial/residential developed areas. A Manning's "n" value of 0.05 was selected for the pasture areas, based on the FEMA FIS effective model and confirmed with field visit observations and published references for similar overbank areas. A Manning's "n" value of 0.06 was selected for the native areas with short grass, based on the FEMA FIS effective model and confirmed with field visit observations and published references for similar overbank areas. A Manning's "n" value of 0.10 was selected for native areas with dense trees, based on the FEMA FIS effective model and confirmed with field visit observations and published references for similar overbank areas. Manning's "n" values between 0.05 to 0.06 were selected for the developed areas, based on the FEMA FIS effective model and confirmed with field visit observations.

Documentation of the Manning's "n" analysis is provided in Appendix C.

4.3 Dam Breach Flood Routing

The dam breach hydrograph will attenuate as it travels downstream because of the effects of storage and dispersion within the downstream channel. Attenuation of the dam breach hydrograph was modeled using the HEC-HMS computer software. The Muskingum-Cunge method was selected for channel routing along Middle Fork Fish Creek, North Fork Fish Creek, and Fish Creek because it is a physically based model with input parameters that are simple to define and it compares well against unsteady flow equations, when substantial backwater effects are not anticipated (HEC-HMS User's Manual (USACE, 2009). In RJH's opinion, backwater effects should not be significant in these stream reaches because of the relative uniformity of the channel geometry, overall steepness of the channel, and minimal amount of major flow obstructions.

The Muskingum-Cunge method requires the input of reach length, slope, and geometry. RJH developed channel routing reaches for three relatively homogenous (i.e., similar channel geometry, slope, and roughness characteristics) channel reaches. Values for reach length and slope were obtained from the 2-foot topography. A representative cross section was also developed for each routing reach using the 2-foot topography. Cross sections were selected to approximately represent the typical channel geometry of the reach.

The Modified Puls method was selected for channel routing along the Yampa River. The Modified Puls method is based on level-pool routing concepts and is typically used for channels with significant floodplain storage or backwater effects. RJH developed channel routing reaches for three relatively homogeneous reaches along the Yampa River.

The Modified Puls method requires the determination of storage-discharge relationships for channel reaches. Storage-discharge relationships were estimated for each channel reach by using the HEC-RAS hydraulic model (see Section 4.4). The HEC-RAS model was used to calculate water surface profiles for a range of discharges. For each discharge, the model calculated the flow area at each cross section. Using the average-end area method, the storage was then calculated for each channel reach.

The results of the HEC-HMS breach hydrograph routing are presented in Table 4.1 and model input/output is provided in Appendix B.

TABLE 4.1
HEC-HMS DAM BREACH HYDROGRAPH ROUTING RESULTS

Distance Downstream	Sunny-Day Failure		
from Dam (miles)	Flow (cfs)	Volume (ac-ft)	
Fish Creek Dam	72,100	4120.2	
2.151	71,651	4126.4	
5.013	71,472	4124.8	
8.056	70,597	4138.1	
11.390	37,573	4138.1	
14.317	22,163	4138.1	
17.200	15,127	4138.1	
22.722	8,203	4132.6	

4.4 Dam Breach Flood Hydraulic Analysis and Routing

Dam breach and inundation limits were delineated using the USACE HEC-RAS Version 4.1.0 computer software. A steady flow HEC-RAS model was developed to perform downstream hydraulic analysis of the dam breach flows. The peak dam breach flows shown in Table 4.1 were utilized in the HEC-RAS model and corresponding water surface elevations and velocities were computed at each cross section.

A total of 109 cross sections were used to model Middle Fork Fish Creek, North Fork Fish Creek, Fish Creek, and the Yampa River. Cross sections are labeled as the distance (river miles) from Fish Creek Dam downstream to each cross section. For example, XS -0.857 is located 0.857 mile downstream from the toe of the dam.

The HEC-RAS hydraulic model and inundation mapping were developed using 2-foot topography provided by Steamboat Springs generally within the vicinity of the city limits and 3-meter DEM topographic data provided by the Steamboat Springs Fire District elsewhere. The topographic data was supplemented with surveyed topographic data from the FEMA FIS hydraulic models, where available, to better define the main river channel.

RJH identified the following crossing structures using 2011 aerial photography, FEMA FIS modeling, and limited field observations:

• STEAMBOAT BOULEVARD BRIDGE (XS -5.47): Bridge data obtained from field measurements by RJH.

- **PEDESTRIAN BRIDGE (XS -5.518):** Bridge data obtained from field measurements by RJH.
- **ROLLINGSTONE DRIVE BRIDGE (XS -7.60):** Bridge data obtained from field measurements by RJH.
- **HIGHWAY 40 BRIDGE (XS -7.81):** Bridge data obtained from FEMA effective model.
- RAILROAD BRIDGE (XS -7.93): Bridge data obtained from FEMA effective model.
- **RAILROAD BRIDGE (XS -8.91):** Bridge data obtained from FEMA effective model.
- **5**TH **STREET BRIDGE (XS -9.42):** Bridge data obtained from FEMA effective model.
- **13**TH **STREET BRIDGE (XS -10.06):** Bridge data obtained from FEMA effective model.
- YAMPA CORE TRAIL PEDESTRIAN BRIDGE (XS -10.52): Bridge data obtained from FEMA effective model.
- SHIELD DRIVE BRIDGE (XS -11.1): Bridge data obtained from FEMA effective model.
- STEAMBOAT CAMPGROUND BRIDGE (XS -12.4): Bridge data obtained from FEMA effective model.
- RAILROAD BRIDGE (XS -14.2): Bridge data obtained from FEMA effective model.
- COUNTY ROAD 33B BRIDGE (XS -16.72): Bridge data obtained from FEMA effective model.
- RAILROAD BRIDGE (XS -20.6): Bridge data obtained from FEMA effective model.
- COUNTY ROAD 179 BRIDGE (XS -21.21): Bridge data obtained from FEMA effective model.

RJH assumed that the two most upstream bridges (i.e., Steamboat Boulevard bridge and downstream pedestrian bridge) would be blocked with dam breach debris and overtop. RJH did not include the small pedestrian bridges located near XS -7.3, XS -9.1, and XS -9.7, because we concluded that these structures would likely be washed away by the

large breach flows. RJH did not include the railroad bridge near XS -9.0, because the bridge is generally oriented parallel to the overall flow lines of the floodplain and we concluded that it would have a minimal impact on flood elevations. All other identified crossings were included in the HEC-RAS model.

4.5 Results

RJH estimated flood inundation limits for the "sunny-day" failure event as shown on Figures 4.1 through 4.15. Hydraulic modeling output is provided in Appendix D. The floodwave was mapped to just upstream of County Road 205 where the peak breach flow becomes less than the estimated 100-year flow of 14,520 cfs in the Yampa River. At this location breach flows would be contained within the regulatory 100-year floodplain.

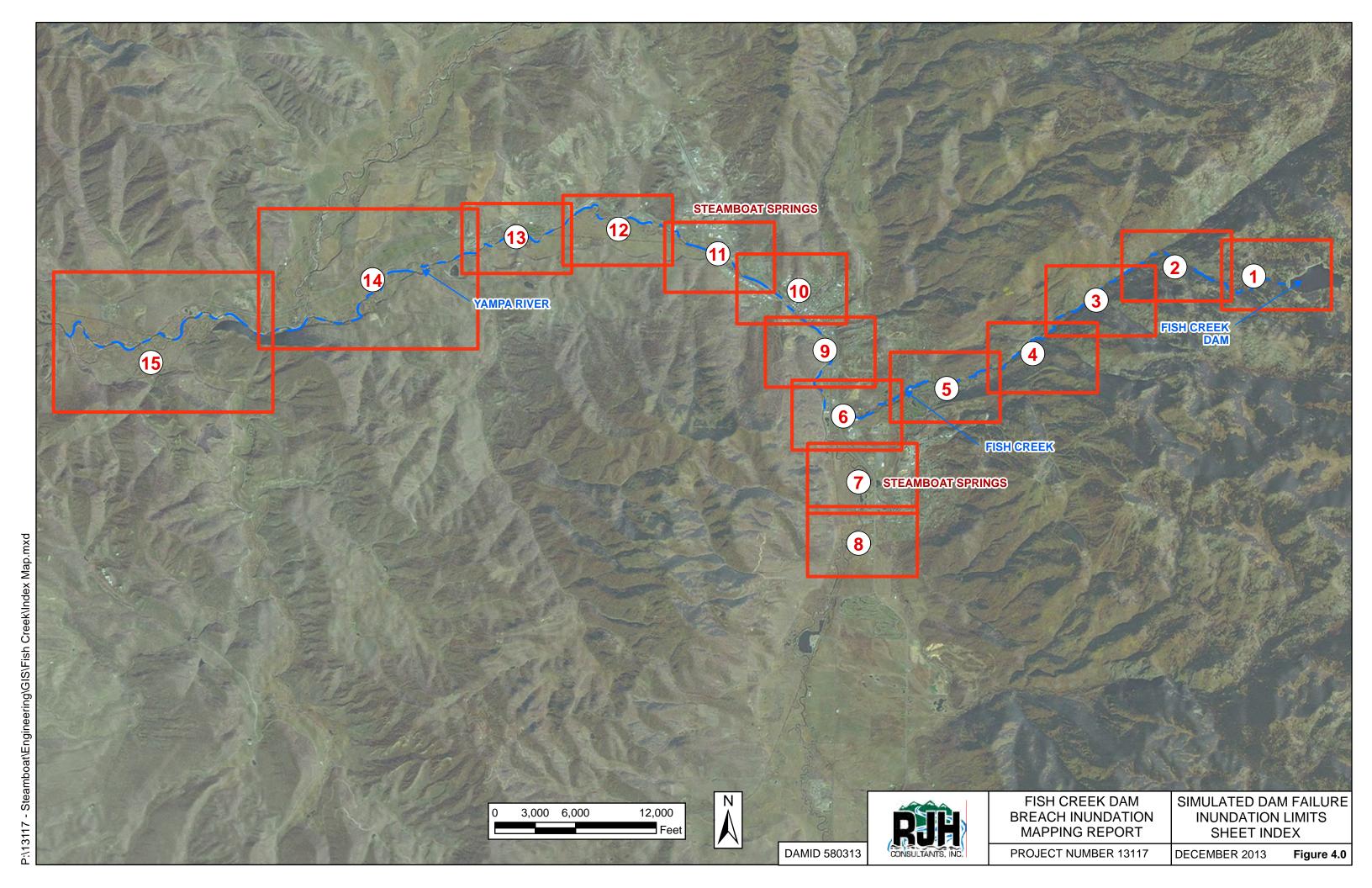
Table 4.2 presents the following floodwave information for the simulated "sunny-day" failure at specific cross section (stream miles) locations: peak floodwave discharge, peak floodwave velocity, maximum water surface elevation (stage), and peak floodwave arrival time (elapsed time for the peak breach flow to travel from the dam to the referenced cross section).

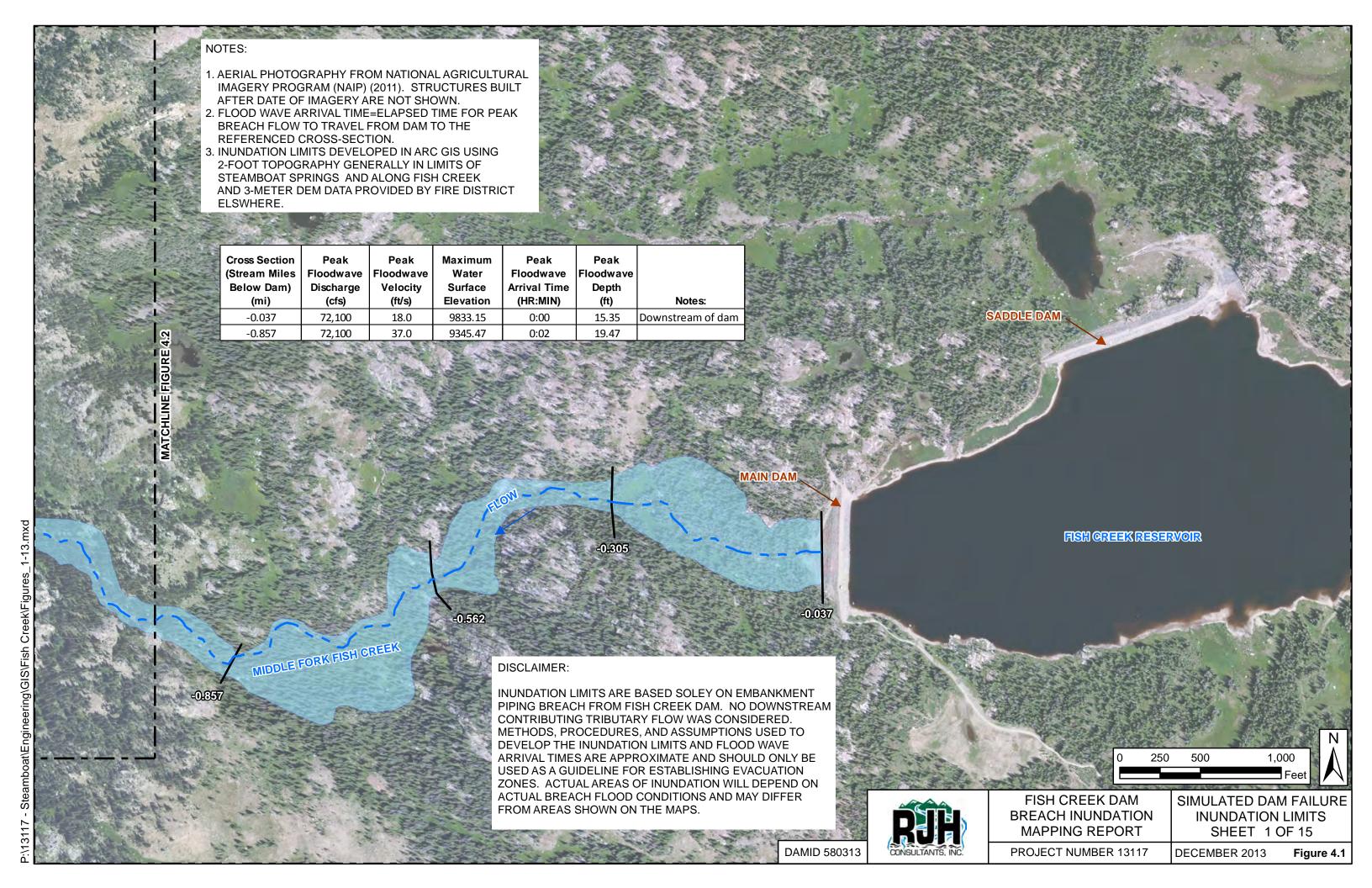
TABLE 4.2 SIMULATED SUNNY-DAY FAILURE

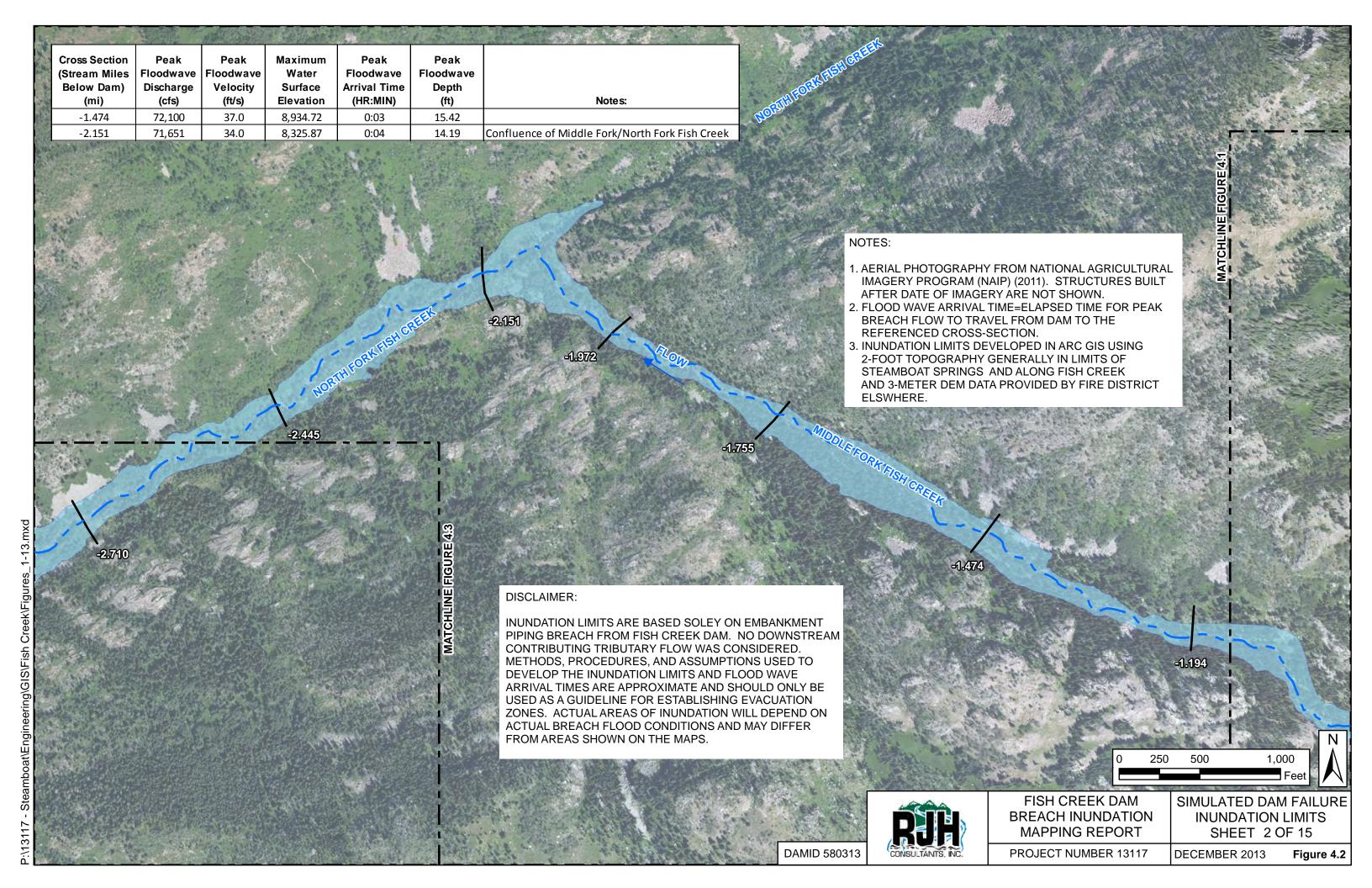
Cross Section (Stream Miles Below Dam)	Peak Flood Wave Discharge (cfs)	Peak Flood Wave Velocity ⁽¹⁾ (ft/s)	Maximum Water Surface Elevation ⁽²⁾ (ft)	Peak Flood Wave Arrival Time (HR:MIN)	Notes:
-0.037	72,100	18.00	9833.15	0:00	Downstream of dam
-0.305	72,100	39.05	9690.02	0:01	
-0.562	72,100	26.89	9519.99	0:01	
-0.857	72,100	36.99	9345.47	0:02	
-1.194	72,100	34.40	9141.62	0:02	
-1.474	72,100	36.99	8934.72	0:03	
-1.755	72,100	31.80	8714.38	0:03	
-1.972	72,100	48.26	8502.38	0:03	
-2.151	71,651	33.95	8325.87	0:04	
-2.445	71,651	25.33	8214.94	0:04	
-2.710	71,651	30.52	8117.93	0:05	
-3.095	71,651	24.97	8029.65	0:05	

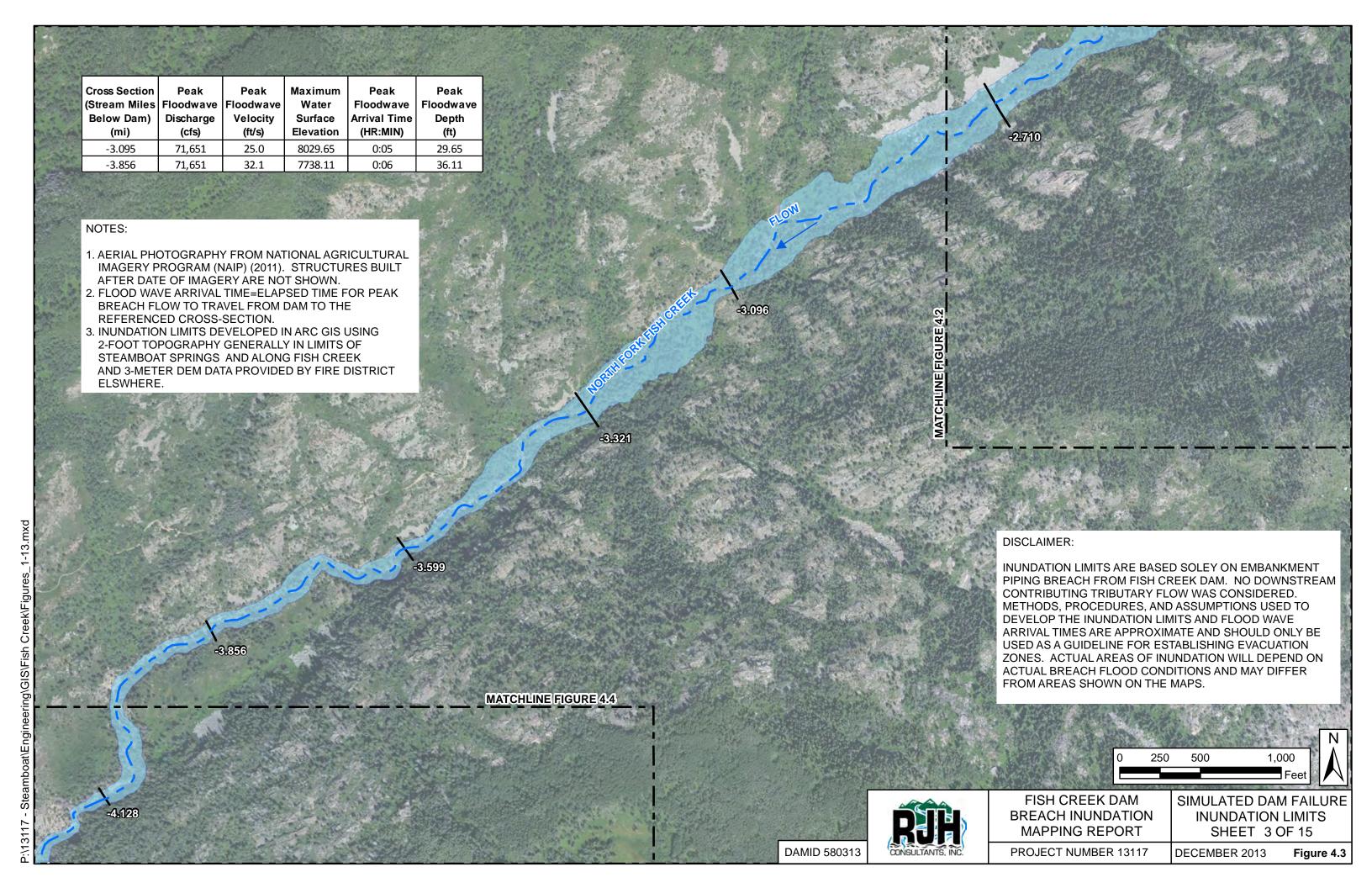
Cross Section (Stream Miles Below Dam)	Peak Flood Wave Discharge (cfs)	Peak Flood Wave Velocity ⁽¹⁾ (ft/s)	Maximum Water Surface Elevation ⁽²⁾ (ft)	Peak Flood Wave Arrival Time (HR:MIN)	Notes:
-3.321	71,651	25.99	7976.18	0:05	
-3.599	71,651	43.87	7832.87	0:06	
-3.856	71,651	32.05	7738.11	0:06	
-4.128	71,651	43.33	7609.5	0:07	
-4.325	71,651	45.38	7469.59	0:07	Confluence of Fish Creek/North Fork Fish Creek
-4.573	71,651	31.37	7368.35	0:07	
-4.819	71,651	26.96	7309.59	0:08	
-5.013	71,472	25.62	7273.1	0:08	
-5.215	71,472	33.06	7202.38	0:09	Upstream limits of Steamboat Springs
-5.413	71,472	8.57	7170.71	0:09	
-5.467	71,472	9.99	7167.21	0:09	Steamboat Blvd. bridge
-5.480	71,472	12.37	7158.19	0:09	
-5.516	71,472	9.11	7154.96	0:09	Pedestrian bridge
-5.520	71,472	9.79	7153.21	0:09	
-5.568	71,472	16.49	7144.26	0:09	
-5.721	71,472	17.57	7126.3	0:10	
-5.952	71,472	26.45	7084.78	0:10	
-6.339	71,472	19.35	7017.23	0:11	
-6.660	71,472	29.16	6943.99	0:12	
-6.834	71,472	21.72	6905.68	0:13	
-7.066	71,472	19.68	6866.26	0:13	
-7.250	71,472	17.42	6836.64	0:14	
-7.491	71,472	13.31	6807.05	0:15	
-7.596	71,472	7.20	6798.75	0:15	Rollingstone Dr. bridge
-7.610	71,472	13.01	6793.75	0:15	
-7.689	71,472	10.87	6785.44	0:15	
-7.756	71,472	8.99	6780.22	0:15	
-7.805	71,472	6.86	6776.98	0:15	Highway 40 bridge
-7.841	71,472	77.85	6768.59	0:15	
-7.926	71,472	6.37	6761.02	0:16	Railroad bridge
-7.939	71,472	3.98	6760.76	0:16	
-8.056	70,598	8.74	6756.52	0:16	Confluence of Yampa River/Fish Creek

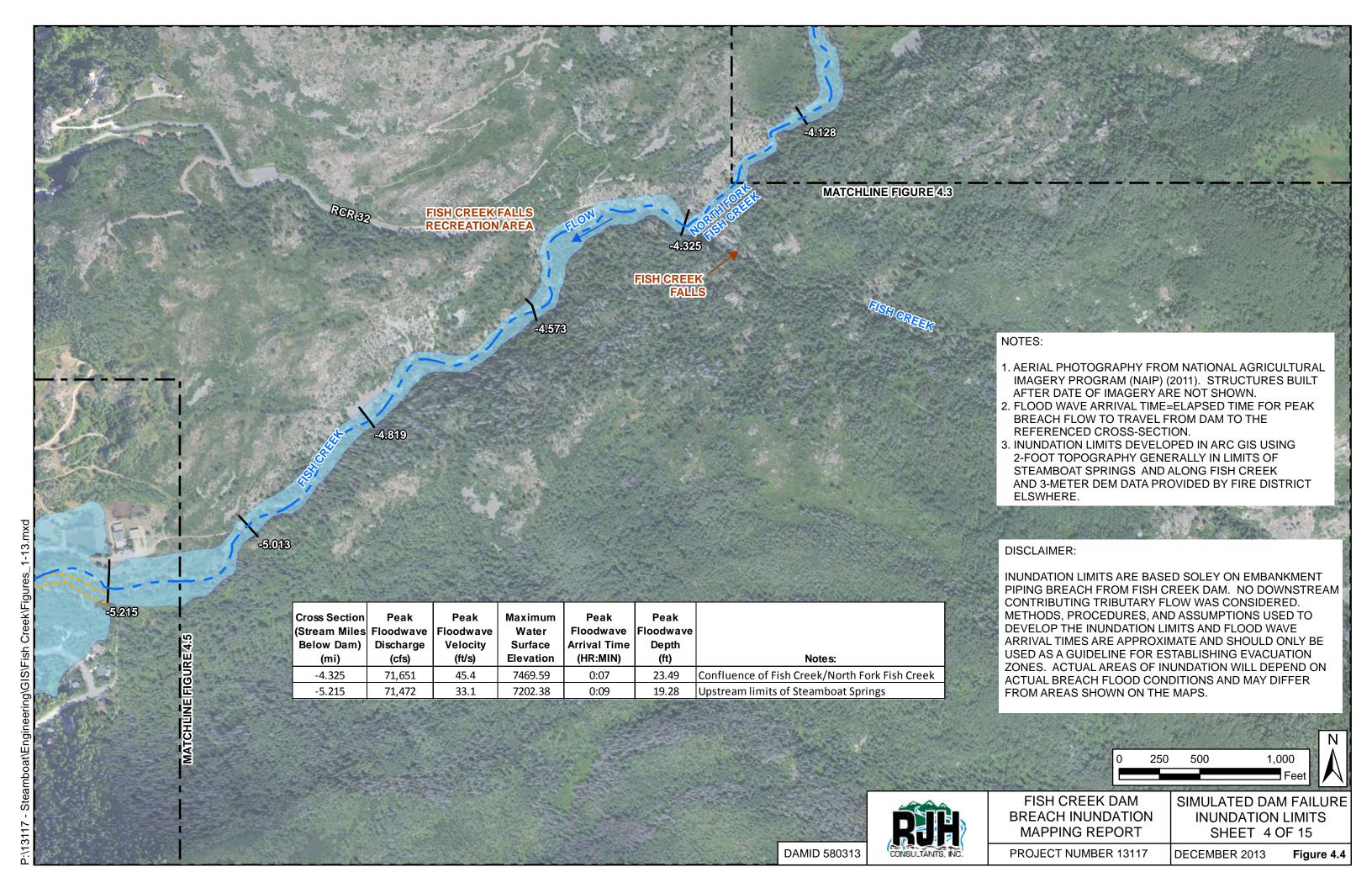
Cross Section (Stream Miles Below Dam)	Peak Flood Wave Discharge (cfs)	Peak Flood Wave Velocity ⁽¹⁾ (ft/s)	Maximum Water Surface Elevation ⁽²⁾ (ft)	Peak Flood Wave Arrival Time (HR:MIN)	Notes:
-8.188	70,598	15.63	6746.38	0:17	
-8.597	70,598	7.54	6738.12	0:19	
-8.819	70,598	10.72	6731.73	0:21	
-8.907	70,598	6.83	6731.70	0:21	Railroad bridge
-8.927	70,598	9.33	6728.58	0:21	
-9.011	70,598	6.51	6726.14	0:22	
-9.232	70,598	7.61	6722.51	0:23	
-9.410	70,598	9.21	6718.91	0:24	5th St. bridge
-9.428	70,598	9.68	6717.91	0:24	
-9.539	70,598	6.50	6716.52	0:25	
-9.719	70,598	7.26	6714.2	0:26	
-9.962	70,598	7.03	6712.22	0:27	
-10.051	70,598	10.26	6710.10	0:28	13th St. bridge
-10.064	70,598	12.73	6705.99	0:28	
-10.113	70,598	17.42	6700.48	0:28	
-10.255	70,598	16.31	6692.06	0:29	
-10.466	70,598	5.19	6691.49	0:30	
-10.517	70,598	9.14	6688.94	0:31	Yampa Core Trail pedestrian bridge
-10.525	70,598	11.57	6686.36	0:31	
-10.641	70,598	12.34	6679.79	0:32	
-10.841	70,598	5.32	6678.98	0:33	
-11.055	70,598	4.71	6678.00	0:34	
-11.093	70,598	6.91	6676.91	0:34	Shield Dr. bridge
-11.111	70,598	17.05	6669.16	0:34	
-11.142	70,598	9.55	6669.84	0:35	
-11.390	37,573	11.10	6656.25	0:36	
-11.657	37,573	4.95	6651.02	0:39	
-12.165	37,573	8.93	6636.33	0:44	
-12.398	37,573	4.51	6631.59	0:47	Steamboat Campground bridge
-12.406	37,573	3.86	6631.52	0:47	
-12.615	37,573	8.58	6625.88	0:49	
-12.938	37,573	5.02	6619.62	0:53	Downstream limits of Steamboat Springs
-13.457	37,573	4.75	6613.19	0:59	

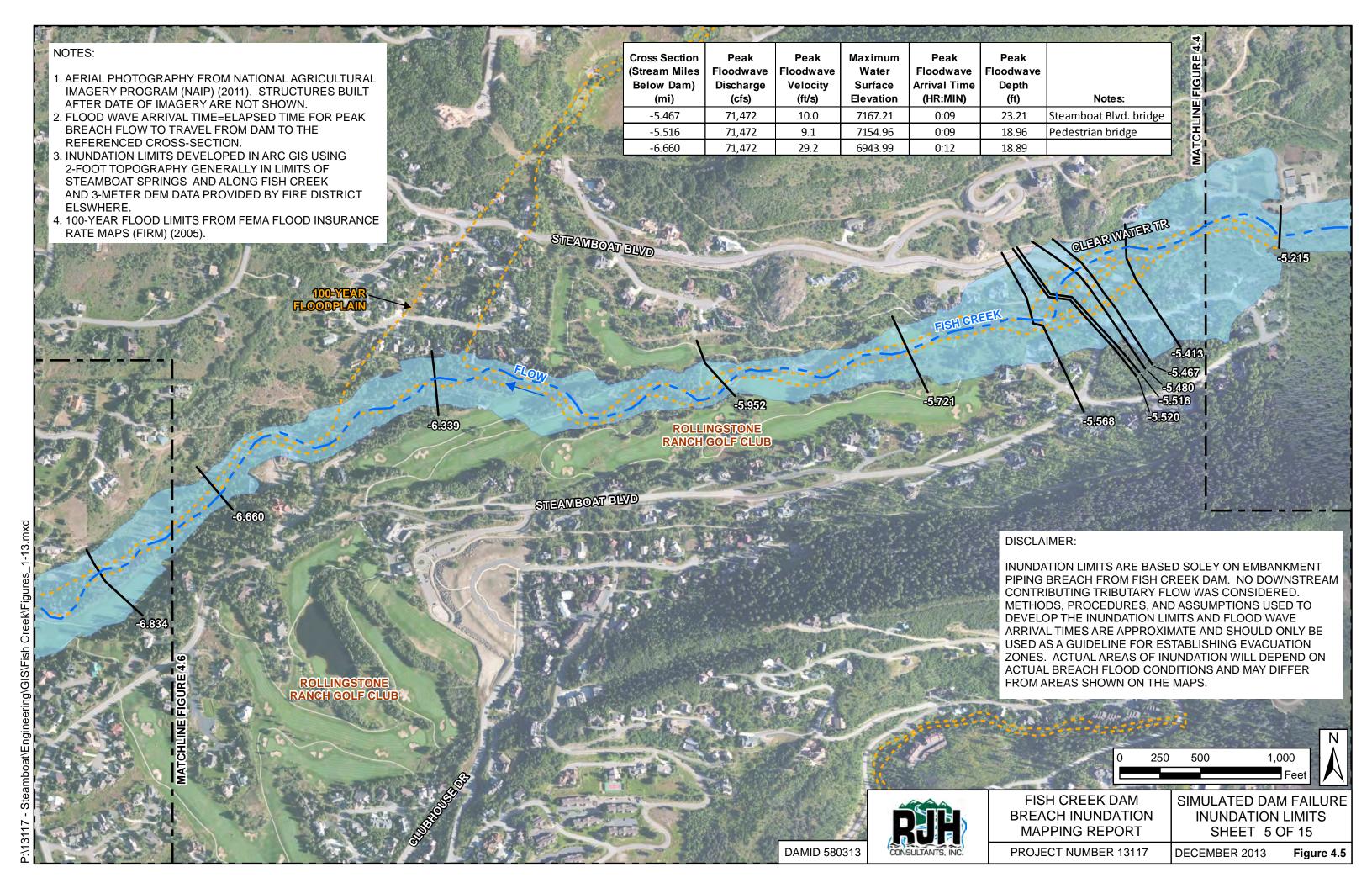


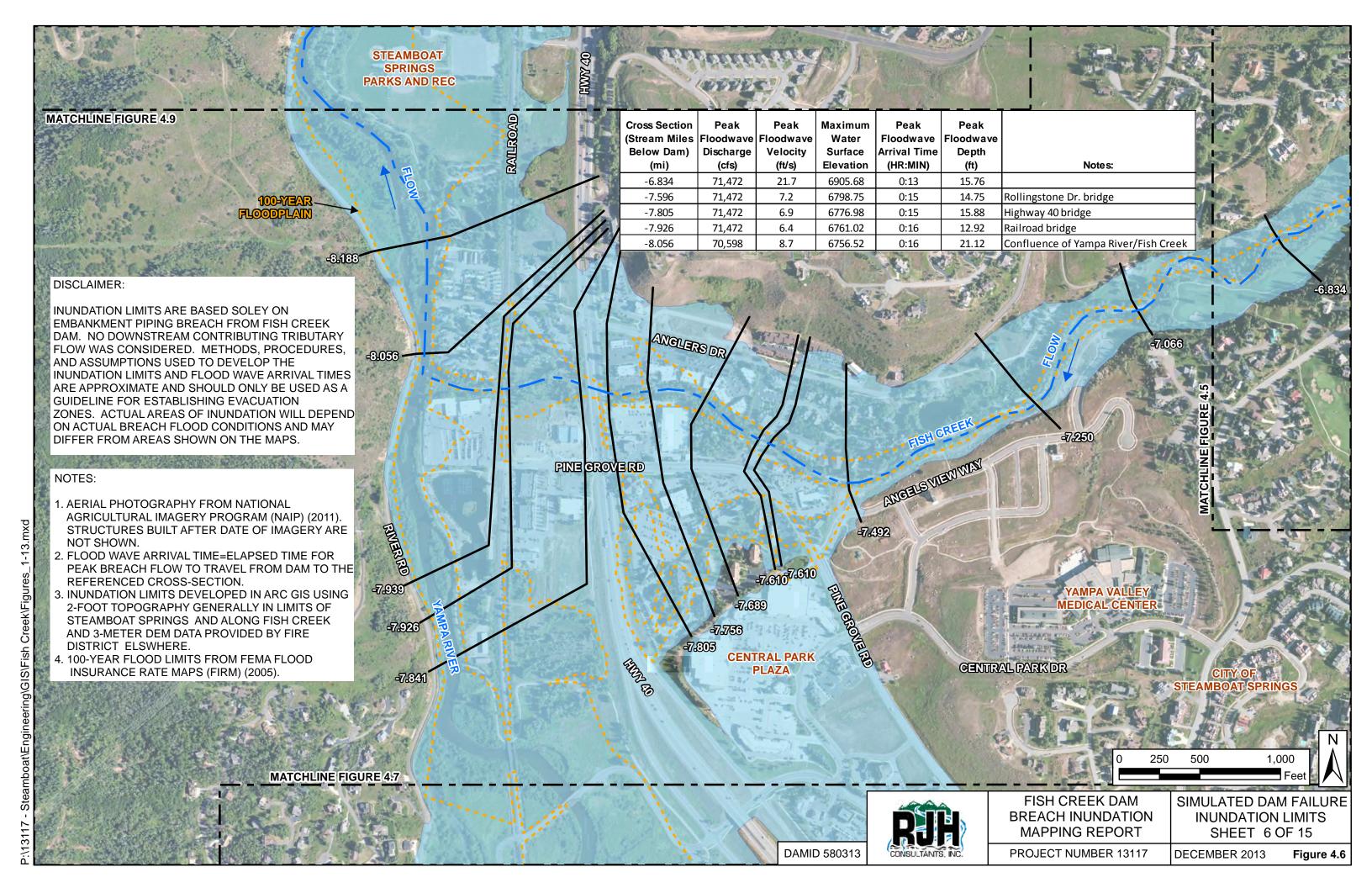

Cross Section (Stream Miles Below Dam)	Peak Flood Wave Discharge (cfs)	Peak Flood Wave Velocity ⁽¹⁾ (ft/s)	Maximum Water Surface Elevation ⁽²⁾ (ft)	Peak Flood Wave Arrival Time (HR:MIN)	Notes:
-13.772	37,573	4.64	6609.79	1:02	
-14.090	37,573	7.59	6603.15	1:06	
-14.196	37,573	7.02	6600.15	1:07	Railroad bridge
-14.208	37,573	8.39	6598.58	1:07	
-14.317	22,163	4.13	6597.18	1:08	
-14.665	22,163	8.42	6587.98	1:15	
-15.023	22,163	3.31	6582.84	1:22	
-15.426	22,163	5.91	6578.18	1:30	
-16.032	22,163	4.82	6564.21	1:41	
-16.610	22,163	2.75	6556.04	1:53	
-16.707	22,163	3.64	6554.54	1:54	County Road 33A bridge
-16.715	22,163	7.29	6552.31	1:55	
-16.786	22,163	3.67	6551.63	1:56	
-17.20	15,127	2.60	6547.09	2:04	
-17.665	15,127	4.78	6541.04	2:13	
-18.094	15,127	2.68	6535.86	2:21	
-18.509	15,127	5.80	6532.00	2:29	
-19.137	15,127	4.35	6525.07	2:40	Confluence of Elk River/Yampa River
-19.650	15,127	4.35	6518.76	2:50	
-20.143	15,127	7.51	6511.31	2:59	
-20.502	15,127	1.78	6510.30	3:06	
-20.594	15,127	10.69	6507.67	3:08	Railroad bridge
-20.601	15,127	17.47	6504.41	3:08	
-20.695	15,127	3.92	6503.82	3:10	
-21.099	15,127	1.54	6502.22	3:17	
-21.206	15,127	8.85	6500.23	3:19	County Road 179 bridge
-21.220	15,127	8.51	6498.73	3:20	
-21.278	15,127	3.86	6497.03	3:21	
-21.595	15127	1.75	6493.43	3:27	

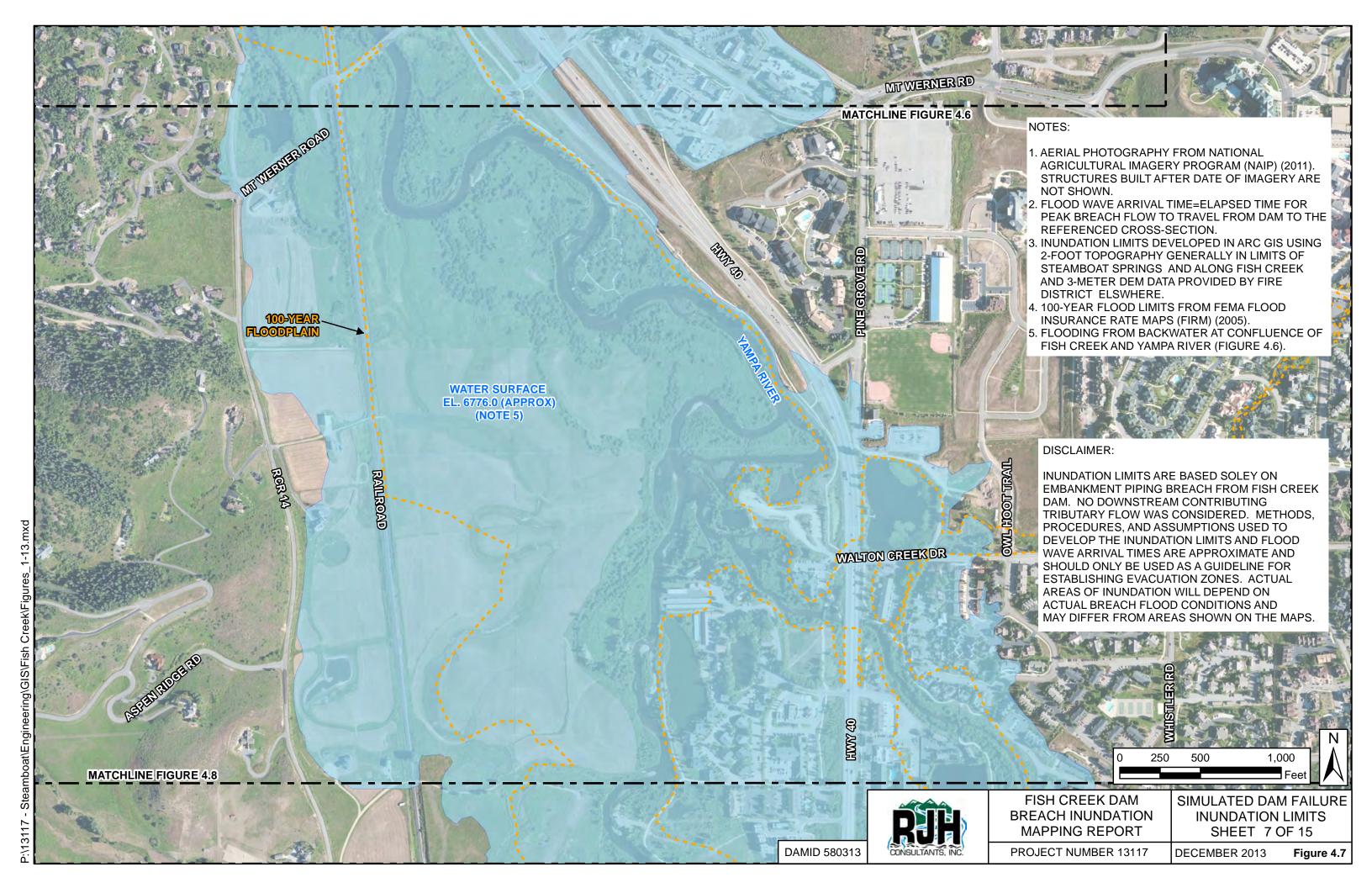

Notes:

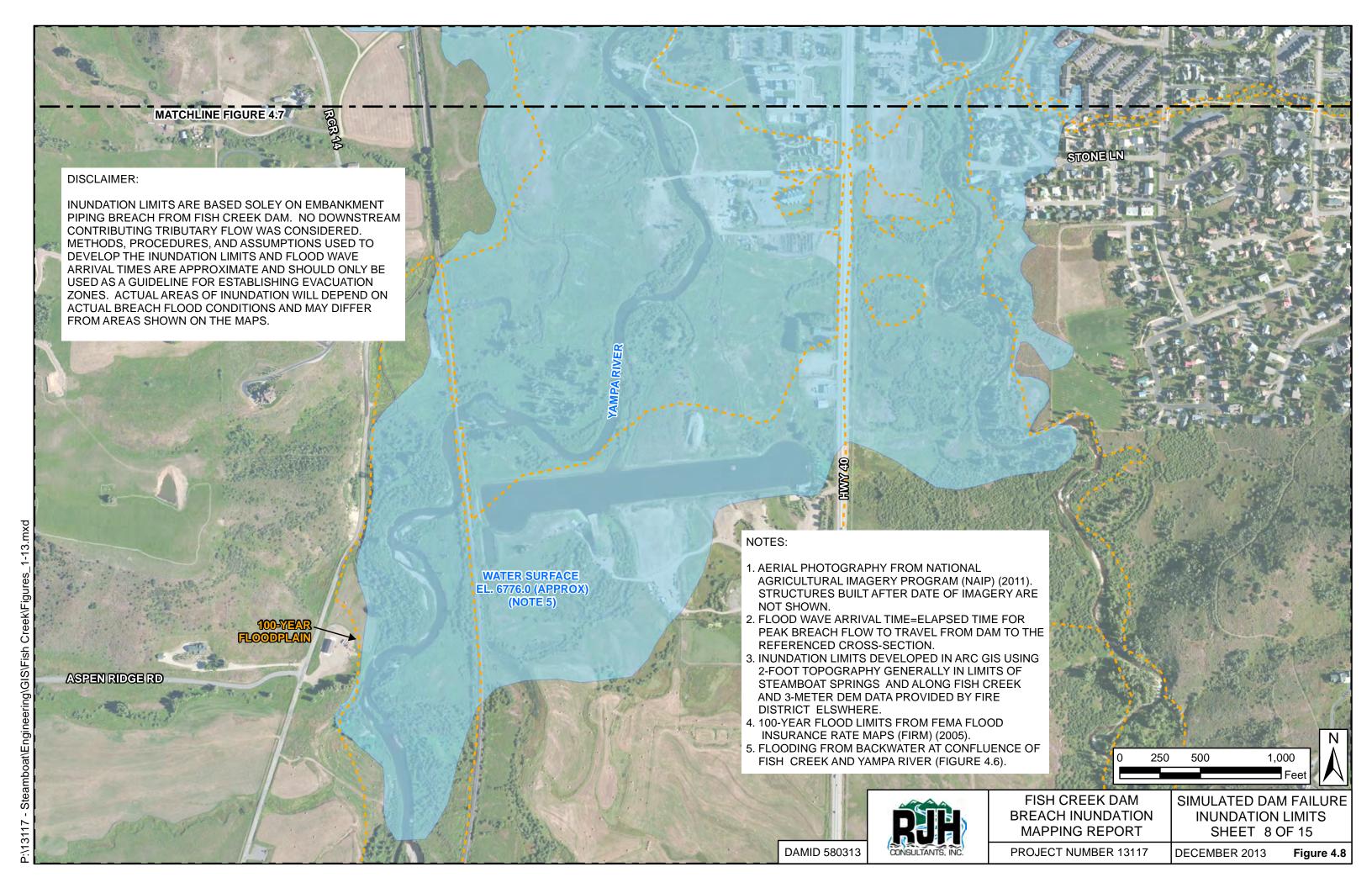

- Average velocity from total cross section.
 NAVD 1988.

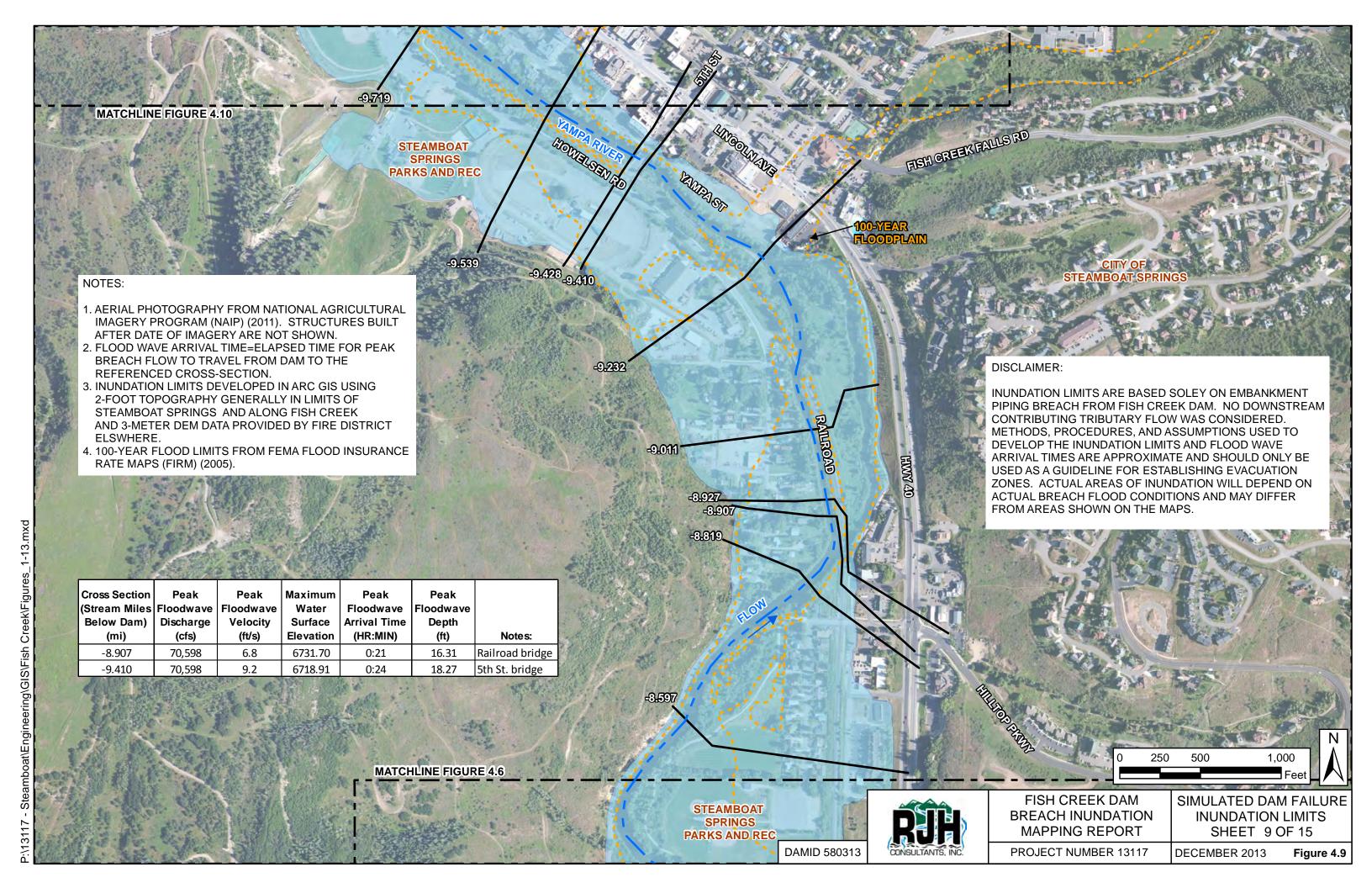


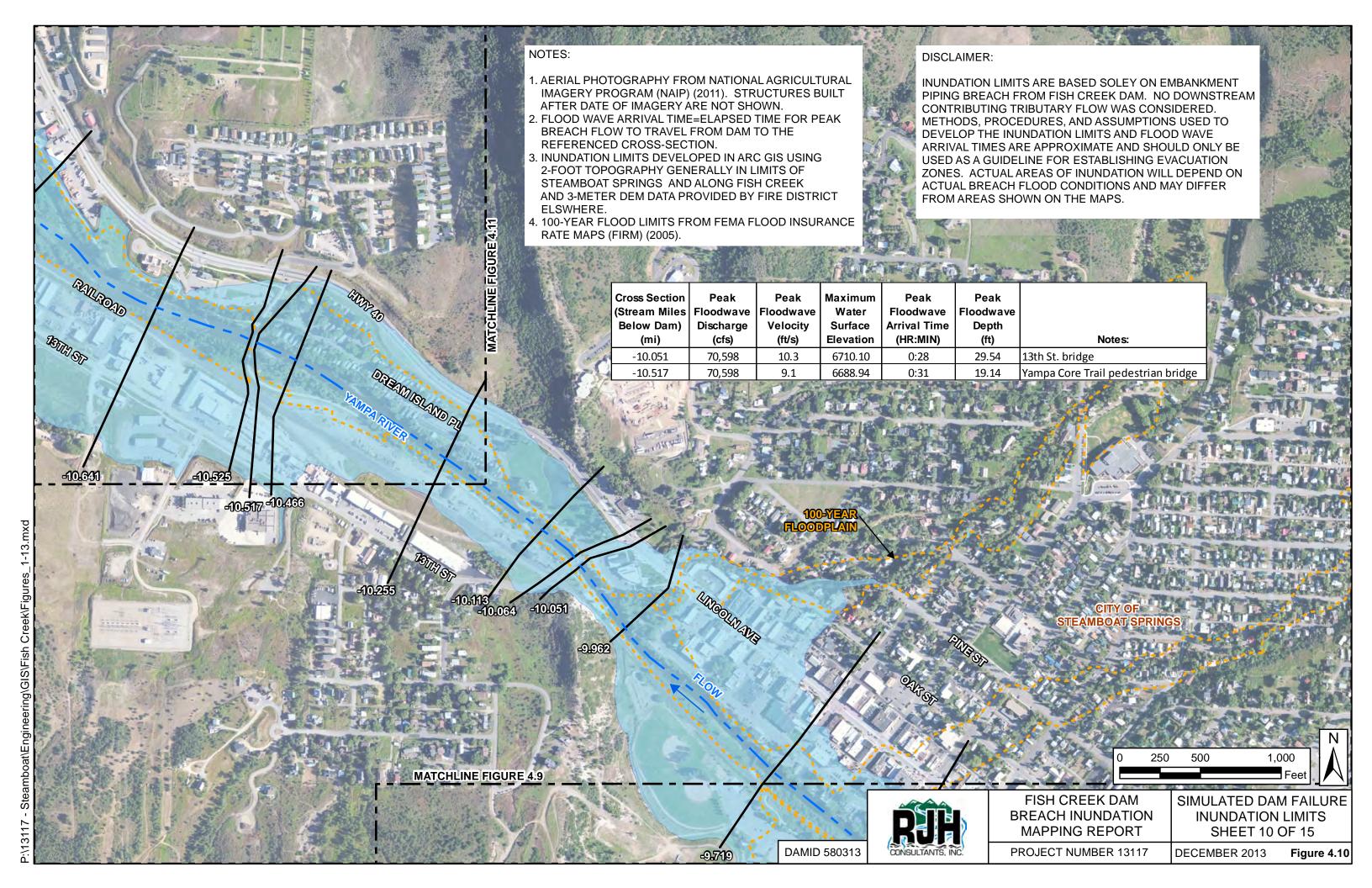


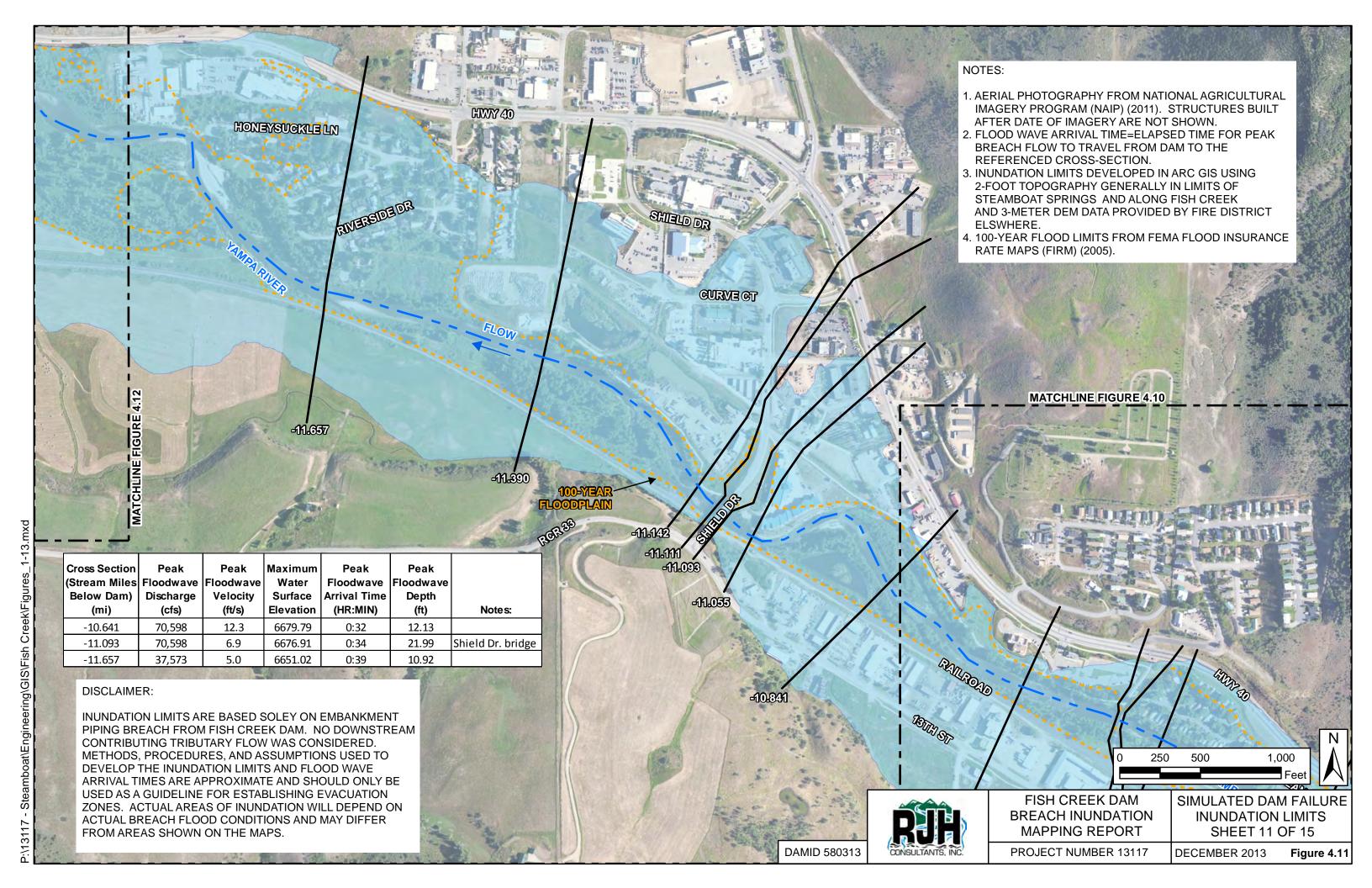


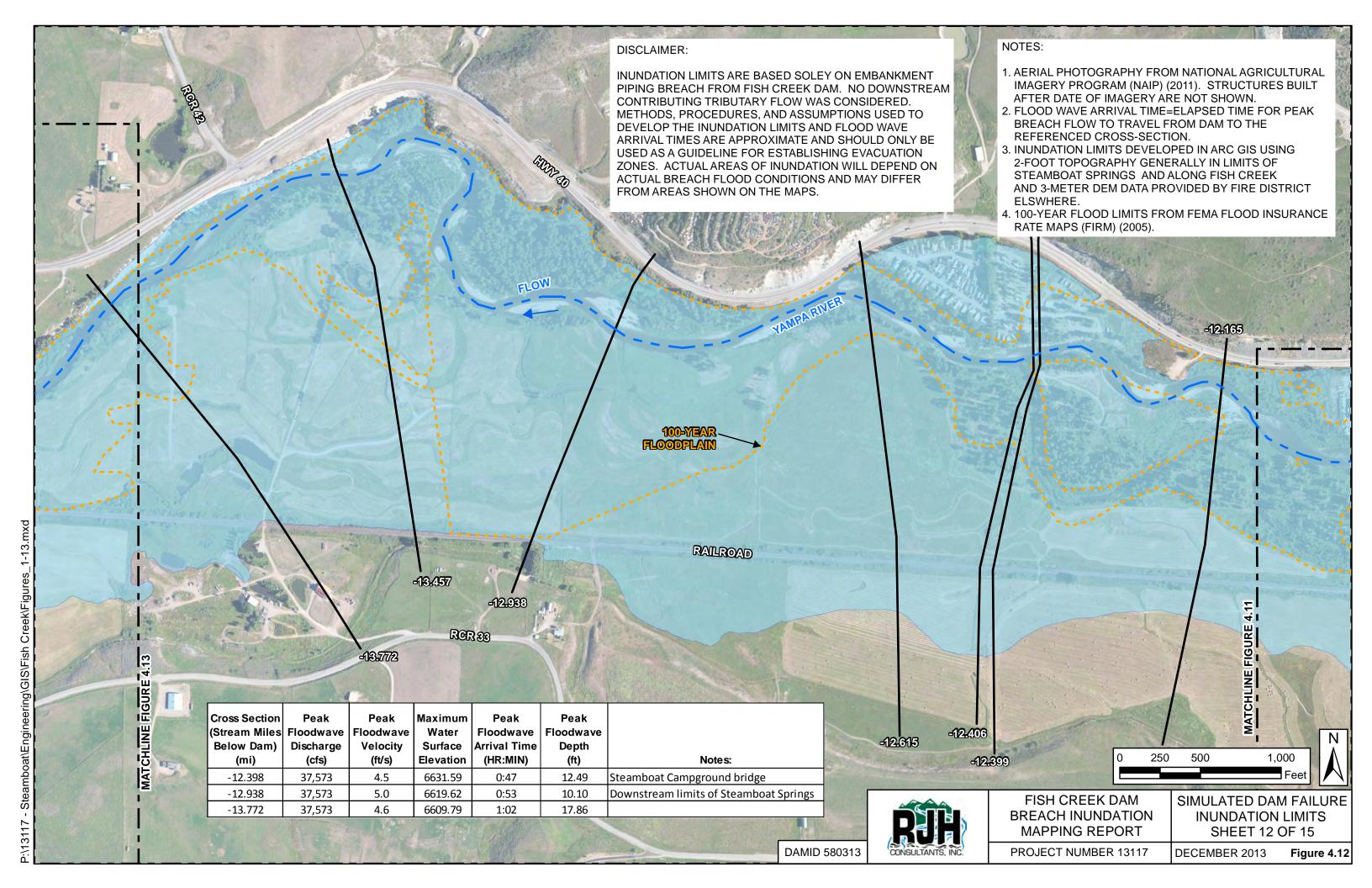


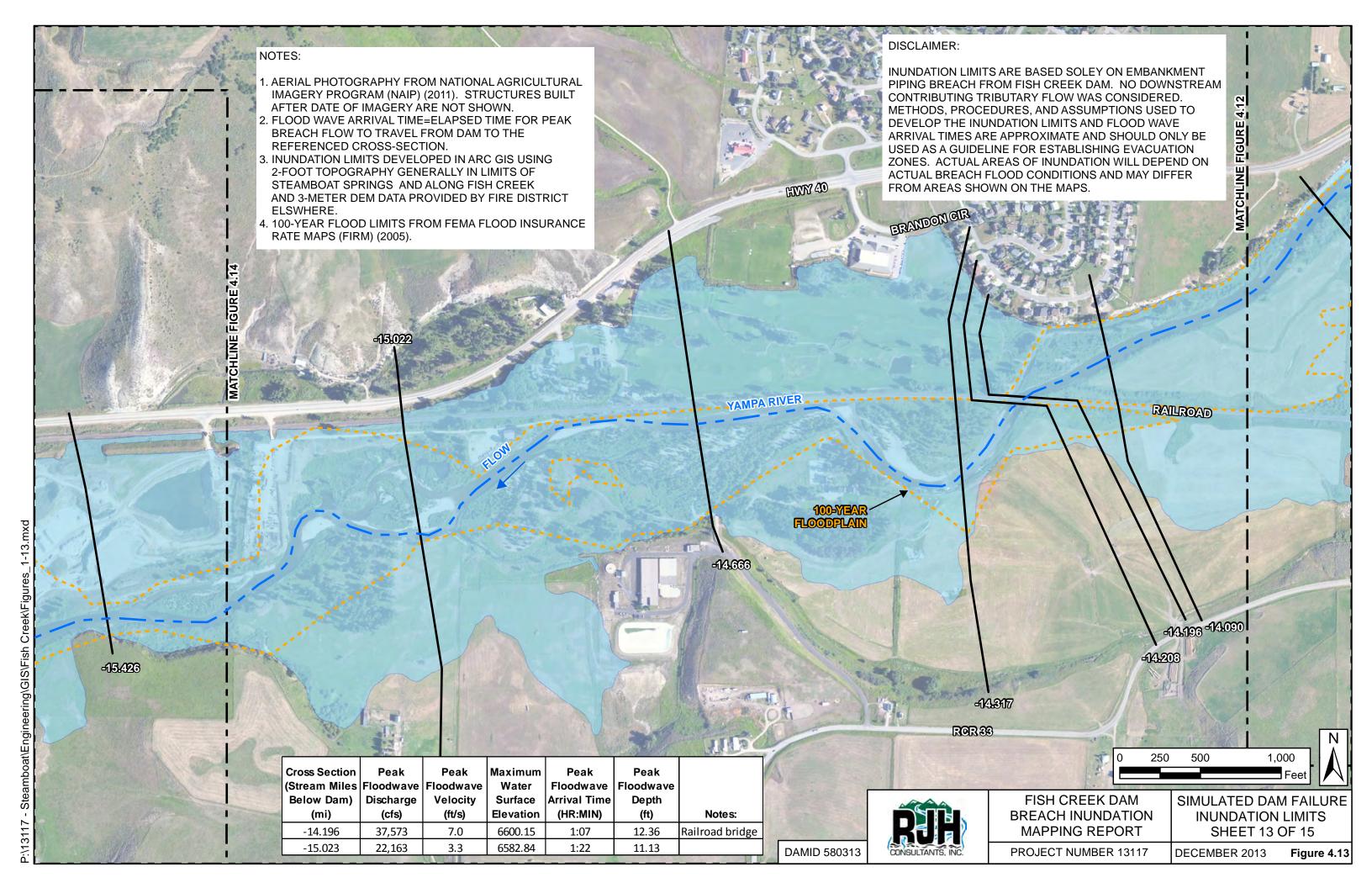


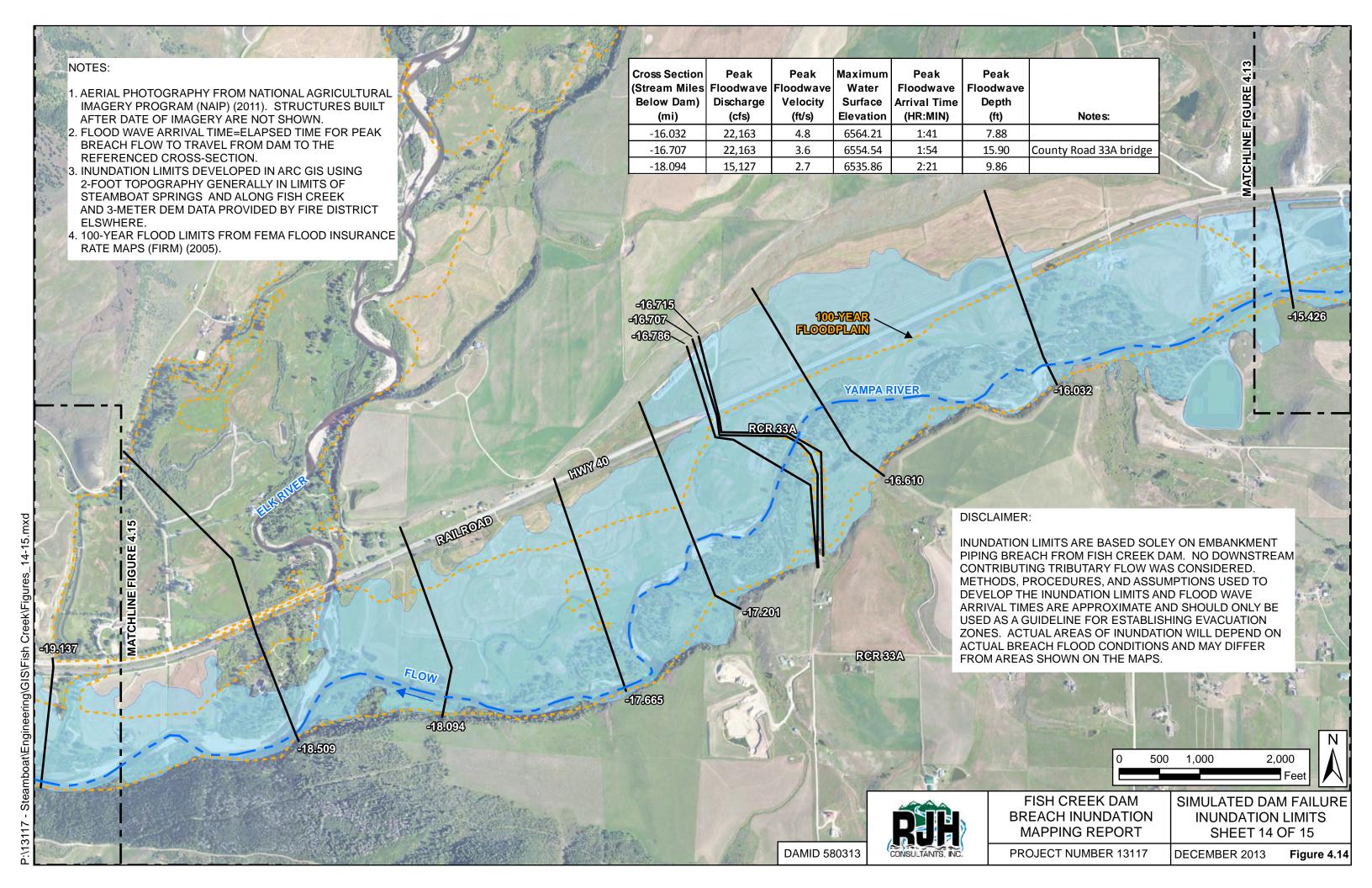


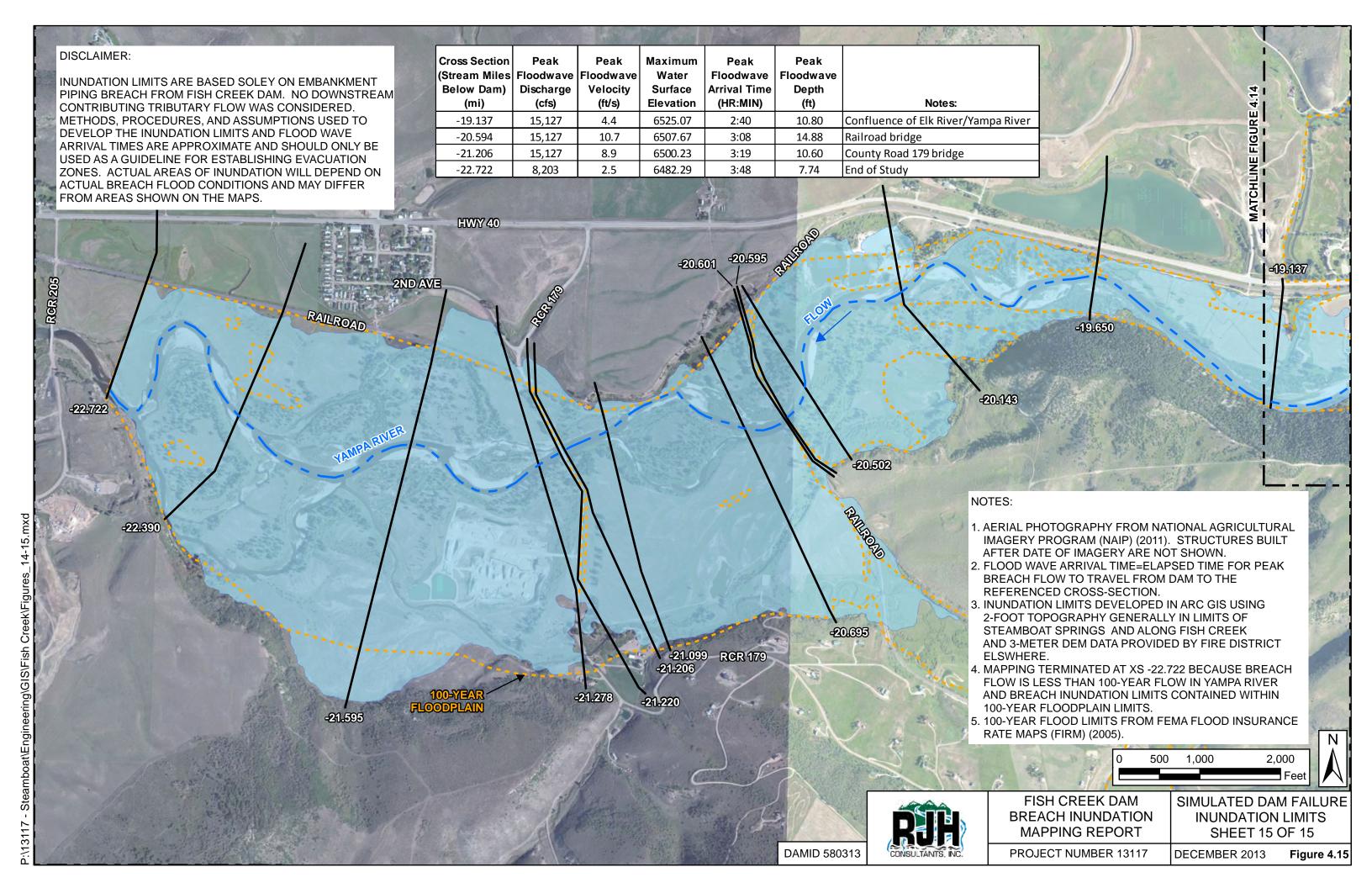












SECTION 5 - CONCLUSIONS

Based on the results of this evaluation, RJH offers the following conclusions:

1. Dam breach parameters for a simulated failure of Fish Creek Dam are as follows:

Average Breach Width, B _f	140 feet
Bottom Breach Width, Bb	90 feet
Breach Formation Time, t _f	1.0 hour
Breach Side Slopes, z (zH:1V)	0.7

2. The dam breach hydrograph peak flow is 72,100 cfs and the total breach volume is 4,120 ac-ft. Attenuation of the breach hydrograph is as follows:

Distance Downstream	Sunny-Day Failure					
from Dam (miles)	Flow (cfs)	Volume (ac-ft)				
Fish Creek Dam	72,100	4120.2				
2.151	71,651	4126.4				
5.013	71,472	4124.8				
8.056	70,597	4138.1				
11.390	37,573	4138.1				
14.317	22,163	4138.1				
17.200	15,127	4138.1				
22.722	8,203	4132.6				

- 3. Simulated floodwave velocities in the downstream channel ranged from about 2 to 78 feet per second (fps) and peak depths ranged from about 5 to 36 feet.
- 4. Peak floodwave arrival times at key locations are as follows:

Location	Time (Hr:Min)
Upstream limits of Steamboat Springs (XS -5.215)	0:09
Steamboat Boulevard bridge (XS -5.518)	0:09
Pedestrian bridge (XS -7.60)	0:09
Rollingstone Dr. bridge (XS -7.81)	0:15
Highway 40 bridge (XS -7.93)	0:16
Confluence of Yampa River/Fish Creek (XS -8.056)	0:16
Railroad bridge (XS -8.91)	0:21
5 th Street bridge (XS -9.42)	0:24

Location	Time (Hr:Min)
13 th Street bridge (XS -10.06)	0:28
Yampa Core Trail pedestrian bridge (XS -10.52)	0:31
Shield Drive bridge (XS -11.1)	0:34
Steamboat Campground bridge (XS -12.4)	0:47
Railroad bridge (XS -14.2)	1:07
County Road 33B bridge (XS -16.72)	1:55
Railroad bridge (XS -20.6)	3:08
County Road 179 bridge (XS -21.21)	3:19

5. The breach inundation mapping was terminated just upstream of County Road 205. The peak breach flow at this location is about 8,200 cfs, which is less than the estimated 100-year flow of 14,520 cfs in the Yampa River at this location.

SECTION 6 - LIMITATIONS

The information presented in this Report is suitable for use in evaluating simulated breach scenarios at Fish Creek Dam and corresponding floodwave inundation mapping in the drainage channel downstream of the dam. Future modifications to the Report analyses and inundation mapping will be required in accordance with periodic updates of EAP documents, and will need to consider development and current conditions within the downstream floodplain. The information presented in this Report is based on RJH's understanding of the dam project features, drainage basin characteristics, available information, and current computer model capabilities. The analyses and inundation mapping presented in the Report are based, in part, upon the level of detail of the available topographic information. Variations in the conditions of the drainage channel and impacted structures are possible and future modifications may be necessary if more detailed input data becomes available.

RJH has endeavored to conduct our professional services for this Project in a manner consistent with a level of care and skill ordinarily exercised by members of the engineering profession currently practicing in Colorado under similar conditions as this Project. RJH makes no other warranty, expressed or implied.

This work has been prepared for the exclusive use of the City of Steamboat Springs and the SEO for specific application to Fish Creek Dam in Routt County, Colorado.

SECTION 7 - REFERENCES

- Colorado Office of the State Engineer (SEO) (2007). Rules and Regulations for Dam Safety and Dam Construction.
- Colorado Office of the State Engineer (SEO) (2010). *Guidelines for Dam Breach Analysis*.
- Federal Emergency Management Agency (FEMA) (2005). Flood Insurance Study Routt County Colorado and Unincorporated Areas.
- U.S. Army Corps of Engineers (USACE) (2009). HEC-HMS User's Manual.

APPENDIX A

DAM BREACH PARAMETERS

Client Steamboat Springs Subject Fish Creek Dam Project 13117 Page 1/10

Date 9/18/13 By EMH

Checked 10/16/13 By TEO

____ Approved 11/1 13 By 665

REQUIRED - Da	evelop dam breach parameters for Fish Creek Dam
ASSUMPTIONS-	1) Use Colorado SEO "Guidelines for Dam Breach / Analysis" (Feb 2010) (SEO)
	2) Use elevation-capacity information from RJH/ dated 9/18/13
	3) Use record drawings from Fish Creek Reservoir/ Enlargement (Woodward Clyde Consultants 1994)
	4) Use the simple-level analysis methodology pery Scope of work from owner and SEO
Summary -	5) Sunny-day, piping failure
- Avg. Breach	Width, Barg = 140'V
- Breach Bott	om Width, B1 = 90' V
- Breach side	1 slopes, 7 = 0.7 V
- Breach Bot	tum Elev. = 9821.0 /
- Breach Pip	ing Elev. = 9857,5 /
- Piping Coe	fficient = 0.6 /
- Time to Fai	lure, Te=1.0 hours

Client Steamboat Springs Checked 10/16/13 By TEO
Subject Fish Creek / Long's Lake Dams Approved 11/11/13 By 665

Project 13117 Page 2110 Date 9/18/13 By EMH

ANALYSIS -- SED guidelines specify the use of emperical equations to estimate dam breach parameters for a simple-level analysis Use the Froetich equation supplemented with Mac Donald and Languide-Monopolis method or Washington State method: V (see P. 7) 1) Height of water above breach, Hw -assume sunny-day failure at maximum normal pooly (i.e. El. 9886.0) - assume average bottom elevation of breach is average of downstream toe (~El. 9816.0) and upstream toe (~ El. 9826.0) (see pg.10) = E1, 9821,0 VV Hw= 9886.0-9821.0 // Hw= 65'11 2) Volume of water at time of failure, Vw Vw= 4, 150 ac-ft (see RJH 9/18/13) 3) Reservoir surface area at Hu Au = 139 ac (see RJH 9/18/13) 4) Height of breach, Hb - dam crest = El. 9894,0 N Hb= 9894.0-9821.0 / Ho = 73' //

Project 13/17 Page 3/10

Date 9/18/13 By EMH

____ Checked 10/16/13 By *Teo*

Subject Fish Creek / Long's Lake Dams Approved 11/1/13 By 665

Client Steamboat Springs

ANALYSIS -5) Ko = 1.0 for piping (see p. 9) 6) z = 0.7 for p; ping (see p 9) - Use SED spreadsheet to compute dam breach parameters 1 (see p. 5) using Froelich method, Results are summar zed as follows - Barg = 140.7' say 140' VV - Bb = 89.6' say 90' VV - To = 0.57 hours / - Other required breach parameters include - Breach bottom elev = 9821.0 VV OK (CONSERVATIVE) - Piping Coefficient = 0.6 (typical orifice coefficient) I used in HEC-Mus. SEO spreadsheet use Cp=0.68 - Piping elev = set at mid-point of final breach V height (see p. = 9894.0+9821.0/ = 9857,5 // - In RJH's opinion, the time to failure calculated using the Froehlich method is unrealistically short given the volume of the embankment and geometry, Use the Washington State method (for cohesion less soils), to calculate to be cause it accounts for embank ment geometry and volume evoded > the embankment may contain some cohesive materials but 1 Material properties for the existing embankment are unknown so RJH conservatively assumed a cohesion less material.

Client Steamboat Springs Checked 10/10/13 By FMH

Subject Fish Creek Dam Approved 11/1/13 By GGS

Project 13117 Page 4/10

ANALYSIS -			
- The Wash requires	ington State me the following	thod input paramete	rs =
	Hw= 651 (see]		
	/	-f+ (see p. 2) V	
	Aw = 139 ac		
		= 20 / (see e	3.10)
	$H_b = 73'$	(see pg. 2) c, 7 = 3HIV	
		ope, Z1 = 2H:IV	
			1.0 V (SED recommends /
			vesuits in a negative
			independent of time to
- Use the ?		t to compute Tf	fat (une) (see pg.9)
2 1	> Tf = 1.0 hz	ours /	
	,		

RJH Consultants, Inc.
Fish Creek and Long's Lake Dam Breach Mapping
Project No. 13117
Prepared by: E. Hahn 9/18/2013
Checked by: 720 /0//6/13
Approved by: 665 1//113

ESTIMATION OF DAM BREACH PARAMETERS USING THE FROEHLICH 2008 METHOD PROJECT: Fish Creek and Long's Lake Dams BREACH INPUT PARAMETERS: Select Failure Mode From Drop-Down Menu: PIPING V Height of water over base elevation of breach (H w) = 65.0 V Feet 4,150.0 Volume of water in the reservoir at the time of failure (V w) = Acre-Feet Reservoir Surface Area at Hw (A s) = 139.0 Acres Height of breach (H b) = 73.0 💉 Feet Failure Mode Factor (K o) = 1/ 0.7 🗸 🗸 Breach Side-Slope Ratio (Z b) = Z(H):1(V) Large & Assumes Full Reservoir At Time of Breach. Dam Size Class: CALCULATED BREACH CHARACTERISTICS: Average Breach Width (B avg) = 140.7 Feet Bottom Width of Breach (B b) = 89.6 Feet Breach Formation Time (T $_{t}$) = 0.57 Hours Storage Intensity (SI) = 63.8 Acre Feet/Foot Predicted Peak Flow (Q p) = 132681 **Cubic Feet per Second** RESULTS CHECK: Average Breach Width Divided by Height of Breach (B avg/Hb) = If (B_{avg}/H_b) > 0.6, Full Breach Devlopment is Anticipated 1.93 Erosion Rate (ER), Calculated as (B avg/T) = 246.9 Erosion Rate Divided by Height of Water Over Base of Breach (ER/H w) = If 1.6 < (ER/H_w) < 21, Erosion Rate is Assumed Reasonable 3.8 Figure 1- Breach Variable Definition Sketch

RJH Consultants, Inc.
Fish Creek and Long's Lake Dam Breach Mapping, Project No. 13117
Prepared by: E. Hahn 9/18/2013
Checked by: 7. Owen rolleli3
Approved by: (665)

ESTIMATION OF DAM BREACH PARAMETERS USING THE MACDONALD & LANGRIDGE-MONOPOLIS OR WASHINGTON STATE METHODS WITH ALL FAILURE TIMES ESTIMATED BY WASHINGTON STATE METHOD PROJECT: Fish Creek Dam BREACH INPUT PARAMETERS: EARTHEN (NON-COHESIVE) Select Embankment Type From Drop-Down Menu: Height of water over base elevation of breach (H w) = 65.0 Feet Volume of water stored in reservoir at time of failure (V w) = 4150.0 // Acre-Feet Reservoir Surface Area at H w (As) = 139.0 4 Acres Crest width of dam (C) = 20.0 // Feet Height of breach from dam crest to base elevation of breach (H b) = 73.0 Feet Slope of upstream dam face (Z u) = 3.0 / Z(H):1(V) Slope of downstream dam face (Z d) = 2.0 10 Z(H):1(V) 1.0 / Breach side-slope ratio (Z b) = Z(H):1(V) Piping Orifice Coefficient (C p) = 0.68 Used To Calculate Peak Discharge Through Piping Hole Large Assumes Full Reservoir At Time of Breach Dam Size Class: CALCULATED BREACH CHARACTERISTICS: Breach Formation Factor (BFF) = 269750 Embankment Volume Eroded (V er) = 56999.6 **Cubic Yards** Average Dam Width (Wavg) = 202.5 Feet (In Direction of Flow) Average Breach Width (B avg) = 104.1 Feet Bottom Width of Breach (B b) = 31.1 Feet Breach Formation Time (T f) = 1.03 Hours Storage Intensity (SI) = 63.8 Acre Feet/Foot Peak Breach Discharge (Q p) 83355 Cubic Feet per Second RESULTS CHECK: Average Breach Width Divided by Height of Breach (Bavg/Hb) = 1.43 If (Bavg/Hb) > 0.6, Full Breach Development is Anticipated 🚩 Erosion Rate (ER), Calculated as (Bavg/Tf) = 101.0 Erosion Rate Divided by Height of Water Over Base of Breach (ER/Hw) = 1.6 If 1.6 < (ER/Hw) < 21, Erosion Rate is Assumed Reasonable . Bb Figure 1- Breach Variable Definition Sketch Figure 2 - Piping Hole Variable Definition Sketch

Erosion rate (ER) guidelines of $1 < ER/H_w < 21$, where $ER=B_{avg}/T_f$, can be used as check of the methods and the parameters adjusted accordingly. Table 3 summarizes the generally appropriate empirical methods for varying dam sizes and storage intensities. This is only a guide and engineering judgment is needed on a case-by-case basis considering the ER/H_w and B_{avg}/H_b guidelines mentioned above.

Table 3 - Guide of Appropriate Empirical Methods for Various Dam Sizes and Storage-Intensities

	Storage Intensity $(SI) = V_w/H_w$									
Dam Size	Low (SI < 5)	$\begin{array}{c} \textbf{Medium} \\ (5 < SI < 20) \end{array}$	High (SI>20)							
Minor	*MacDonald & Langridge- Monopolis with Washington State failure time. Froehlich for Overtopping.	*MacDonald & Langridge- Monopolis with Washington State failure time. Froehlich for Overtopping.	*MacDonald & Langridge- Monopolis with Washingtor State failure time. Froehlich for Overtopping.							
Small	*MacDonald & Langridge- Monopolis with Washington State failure time and possibly Froehlich (case-by-case). Froehlich for Overtopping.	Froehlich and possibly *MacDonald & Langridge- Monopolis with Washington State failure time (case-by-case).	Froehlich for geometry and failure time.							
Large	Froehlich. The side slopes may need to be adjusted to yield a reasonable bottom width.	Froehlich and possibly *MacDonald & Langridge- Monopolis with Washington State failure time (case-by-case).	Froehlich and possibly *MacDonald & Langridge-Monopolis with Washington State failure time (case-by-case).							
Comments	Parameters likely need to be adjusted with judgment on a case-by-case basis – may need to be modeled as piping hole for Small and Minor dams.	Both Froehlich and *MacDonald & Langridge- Monopolis seem to work for Small and Large dams in the middle range of SI. Engineering judgment is needed on a case-by-case basis.	It is important to look at valley and dam constraints as the computed parameters may exceed the valley width and/or dam length.							
teferences	Froehlich (2008) MacDonald & Langridge-Mc Washington State (2007)	onopolis (1984)								

^{*} Where the MacDonald & Langridge-Monopolis Method is referenced as a recommendation, this only applies for embankments constructed of cohesive materials. The Washington State Method is preferred for cohesionless earthen embankments.

7.1.1.1 Piping Failure Considerations with Empirical Methods

For Small and Minor dams with low storage intensities (SI less than 5) that are built with cohesive soils, it is possible that a piping failure could occur and drain the reservoir without fully breaching the dam (i.e. collapsing the crest). This situation is evident when the MacDonald & Langridge-Monopolis and Washington State empirical method for establishing the breach parameters shows that the volume eroded (V_{er}) results in a corresponding B_{avg}/H_b of less than about 0.5. This phenomenon is common for Small dams with a volume less than 100 AF and SI less than about 2.5, and Minor dams when SI is less than about 1.5. When this occurs, it is possible to calculate the maximum piping-hole size (assumed to be square) from the volume of embankment eroded. This piping-only failure mode does not apply to dams

1TEO 10/16/13

Table 1 - Tiered Dam Breach Analysis Structure

Level of Analysis	Breach Parameter Estimation (Size/Shape and Failure Time)	Breach Hydrograph Estimation	Breach Hydrograph Routing	Hydraulics at Critical Section(s)		
Screening Empirical Equations		Peak Breach Discharge from SMPDBK	Empirical Routing Equations or Nomographs	Normal Depth		
Simple Empirical Equations		Parametric Model (HEC-1 or HEC-HMS)	Hydrologic Model (HEC-1 or HEC-HMS)	Steady-State Hydraulics (HEC-RAS)		
Intermediate Empirical Equations		Parametric Model HEC-1 or HEC-HMS	Unsteady Hydraulic Model (HEC-RAS)	Peak Water Surface Profile (Unsteady HEC-RAS)		
Advanced Empirical Equation		Parametric Model (HEC-RAS or DAMBRK)	Unsteady Hydraulic Model (HEC-RAS)	Peak Water Surface Profile (Unsteady HEC-RAS)		

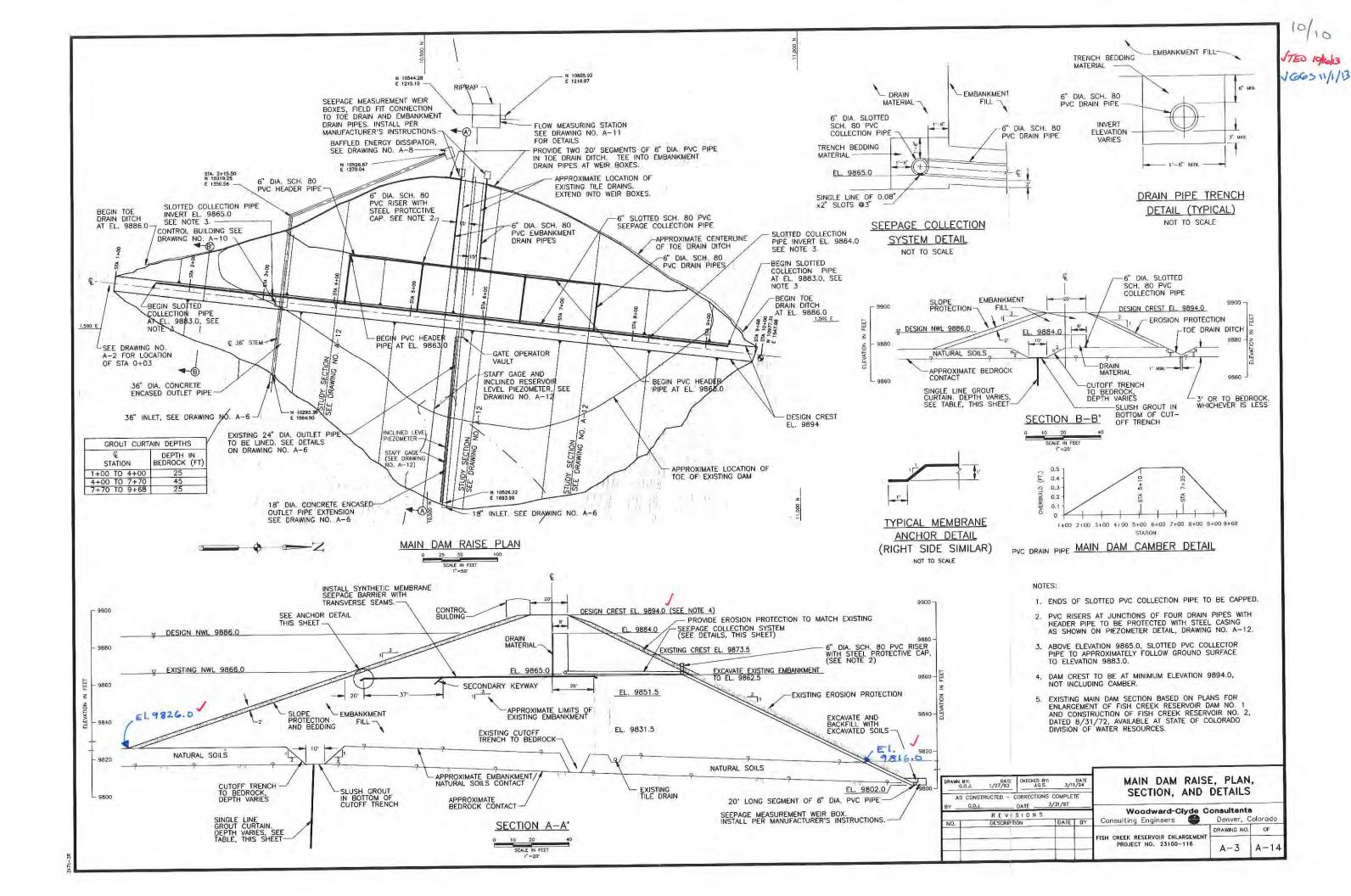
The hydraulic conditions at critical locations downstream of the dam can usually be determined with normal depth calculations as long as steady, uniform flow is a valid assumption (i.e. no significant backwater effects in the vicinity of the section).

Because the screening level of analysis is very conservative, it can be used to determine if further analysis is required. It is expected that, if the hydraulics calculated at critical locations indicate a specific hazard classification with a screening-level analysis, then more sophisticated analyses would not likely result in a higher hazard classification. So if a screening analysis indicates a Low Hazard, no further analysis is required. If the screening analysis indicates High or Significant Hazard, a more accurate, less conservative approach may show a lower hazard classification and additional analysis may be warranted to demonstrate this depending on the situation.

Note that the screening level of analysis does not lead to inundation maps which are required for Significant and High Hazard dams. The minimum level of analysis required to develop inundations maps is the next level: Simple.

6.2 Simple

The Simple level of analysis is slightly more sophisticated than the screening analysis. Results of the Simple level of analysis may provide the necessary conclusion, or may indicate that the intermediate or advanced approach is warranted. This analysis uses the recommended empirical methods to determine the breach parameters and then uses a hydrologic parametric model (HEC-HMS or HEC-1) to compute a breach hydrograph. The hydrologic tool can then be used to route the flood downstream to critical locations. At that point, a steady-state hydraulic model can be used to calculate the hydraulic conditions where required.


Table 2 - Summary	of Recommended	Empirical Equations	(English Units)

Breach Parameters	MacDonald & Langridge-Monopolis (1984)	Washington (2007)	Froehlich (2008) 🗸
Volume Eroded	$V_{er} = 3.264BFF^{0.77}$ (best fit all data)	$V_{e\tau} = 3.75 BFF^{0.77}$ (cohesionless dams)	
$rac{V_{er}}{({ m yd}^3)}$	$V_{er} = 0.714BFF^{0.852}$ (rockfill)	$V_{er} = 2.5BFF^{0.77}$ (cohesive dams)	
Average Breach Width B_{avg} (ft)	$B_{avg} = \frac{v_{er}}{(H_b \times W_{avg})}$		$B_{avg} = 8.239 K_o V_w^{0.32} H_b^{0.04}$ $K_o=1.0 \text{ for piping}$ $K_o=1.3 \text{ for overtopping}$
Breach Side slopes Z _b (H:V)	2.0:1 /	C	0.7:1 - piping 1.0:1 - overtopping
Breach Development Time T_f (hr)	$T_f = 0.016 V_{er}^{0.364}$	$T_f = 0.02V_{er}^{0.36}$ (cohesionless) $T_f = 0.036V_{er}^{0.36}$ (cohesive)	$T_f = 3.664 \sqrt{\frac{v_w}{gH_b^2}}$

Suggested Methods to Validate the Parameters Calculated using Empirical Methods:

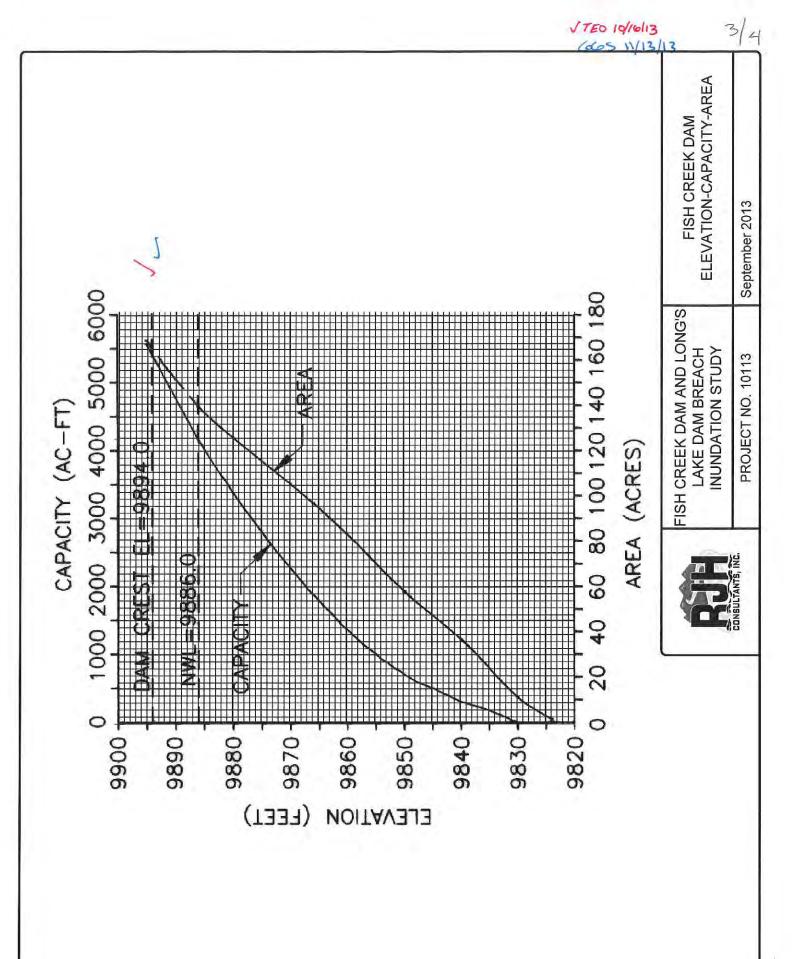
On a case by case basis, judgment is needed with the predicted parameters calculated using the recommended methods presented here. There are a few general tools used to validate the predicted parameters:

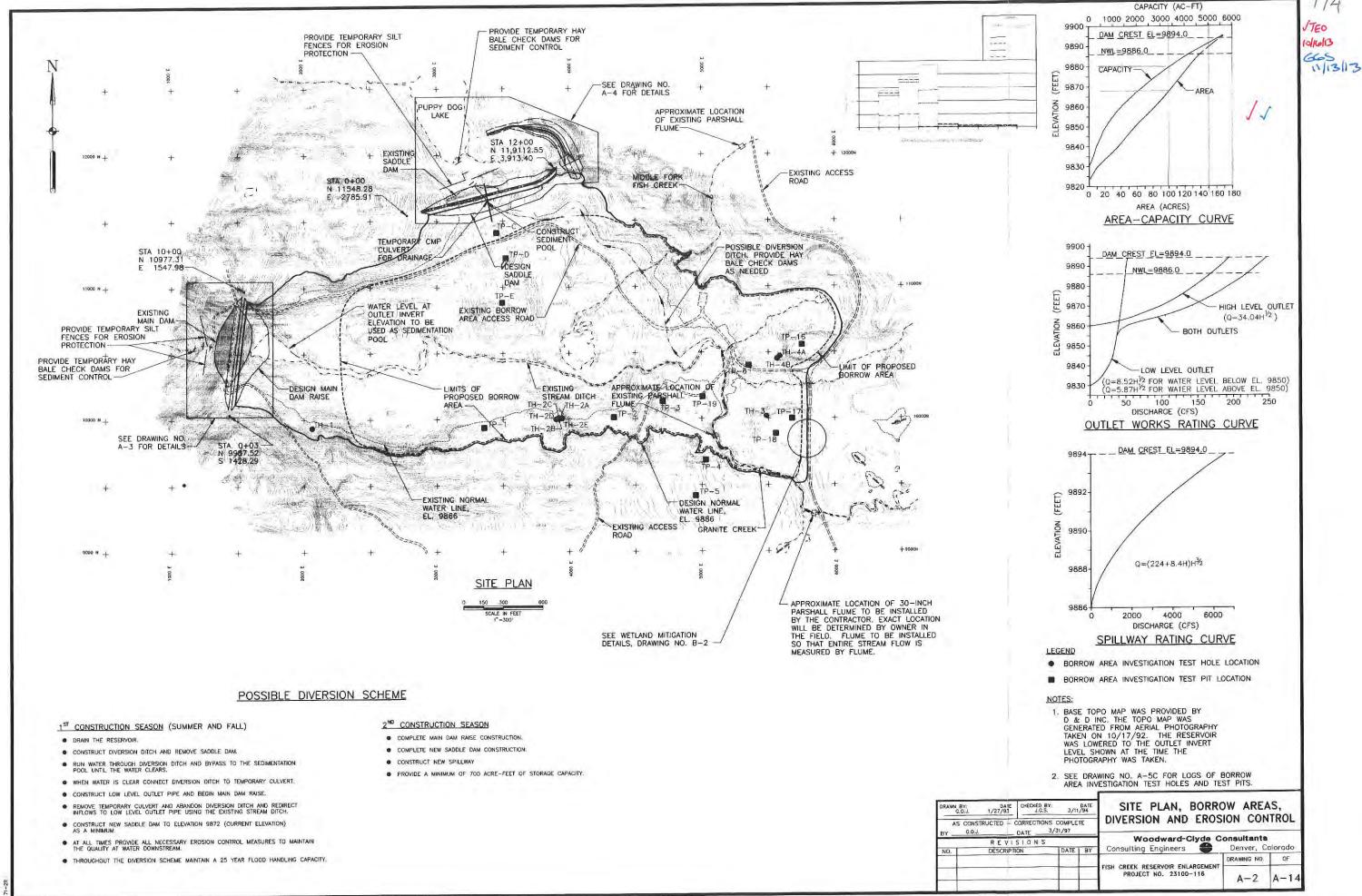
- 1. An estimate of linear erosion rate can be used to check the validity of the failure time. Linear erosion rate (ER) is defined as the B_{avg}/T_f. Von Thun and Gillette (1990) suggests the minimum allowable erosion rate related to the height of the water above the breach bottom, can be empirically defined as 4H_w and the maximum erosion rate related to the water depth is 200 + 4H_w. However, the data set used to develop the empirical parameters suggest a minimum ER of 1.6H_w. If the T_f, B_{avg}, and H_w computed by the empirical methods listed above produces an ER/H_w much less than 1.6, then either the T_f is too long or B_{avg} is too small and adjustments are needed or a different method selected. Likewise, the maximum ER/H_w in the data set was only 21, which is considerably less than upper limit defined by Von Thun and Gillette (1990) (greater than 200). The average ER/H_w computed from the database was 6.7. Therefore, if the ER/H_w ratio is greater than 21, then the parameters are considered suspect.
- 2. Von Thun and Gillette (1990) suggests that B_{avg}/H_w cannot be less than 2.5. However, the data set, especially for piping, shows B_{avg}/H_w less than 2.5 in many instances. In fact, it is near 1.0 in several cases and less than 1.0 in a few instances. The minimum B_{avg}/H_w for the data set was 0.6 and the minimum B_{avg}/H_b was 0.5. This ratio is highly dependent on storage-intensity (SI = V_w/H_w) and with a relatively small reservoir volume relative to the dam height (low storage intensity), the reservoir evacuates quickly and does not allow for the breach to widen. Piping failure of a dam with a very low storage-intensity may evacuate the reservoir through the piping hole without a full rectangular or trapezoidal breach forming. Paquir, et.al, (post 1995) suggested that the piping hole width has to reach 2/3 of the dam height above the bottom of the pipe before the roof of the piping hole collapses

Client Steamboat Springs Checked 10/16/13 By TEO Subject Frsh Creek Dam

Project 13117 Page 1/4 Date 9/18/13 By EMH

Approved 11-13-13 By 665


REGULTED -	Identify ele	wation - cap	acity data	for tish	Creek Dam
Assumptions.	- 1) Use rec Enlargen 1994)	ord drawin ment Proje	gs from the ct (Woodward	Fish Cree Clyde Con	k Reservoir usultants
ANALYSIS -					
- Elevation - c record dra	pacity-area wings (see p	informations.	on obtained	from Jy	aph on /v
3 Graph (see	brought int	o AutoCAD	and a grid	hwas digi	i tized /
- See result	s on P. 2 / Max NWL=				
	- Area = 13				
	- Carpacity=	= 4,150 ac	-f+ / \		


Fish Creek and Long's Lake Dams Breach Inundation Study Project No. 13117

FISH CREEK DAM ELEVATION-CAPACITY

Capacity (ac-ft)	0	200	310	510	720	1,020	1,375	1,800	2,300	2,800	3,400	4,000	4,150	4,750	5,400
Area (ac)	11	24	37	47	57	70	83	92	105	115	125	137	139	152	165
Elev (ft)	9830	9835	9840	9845	9850	9855	0986	9865	9870	9875	0886	9885	9886	0686	9894

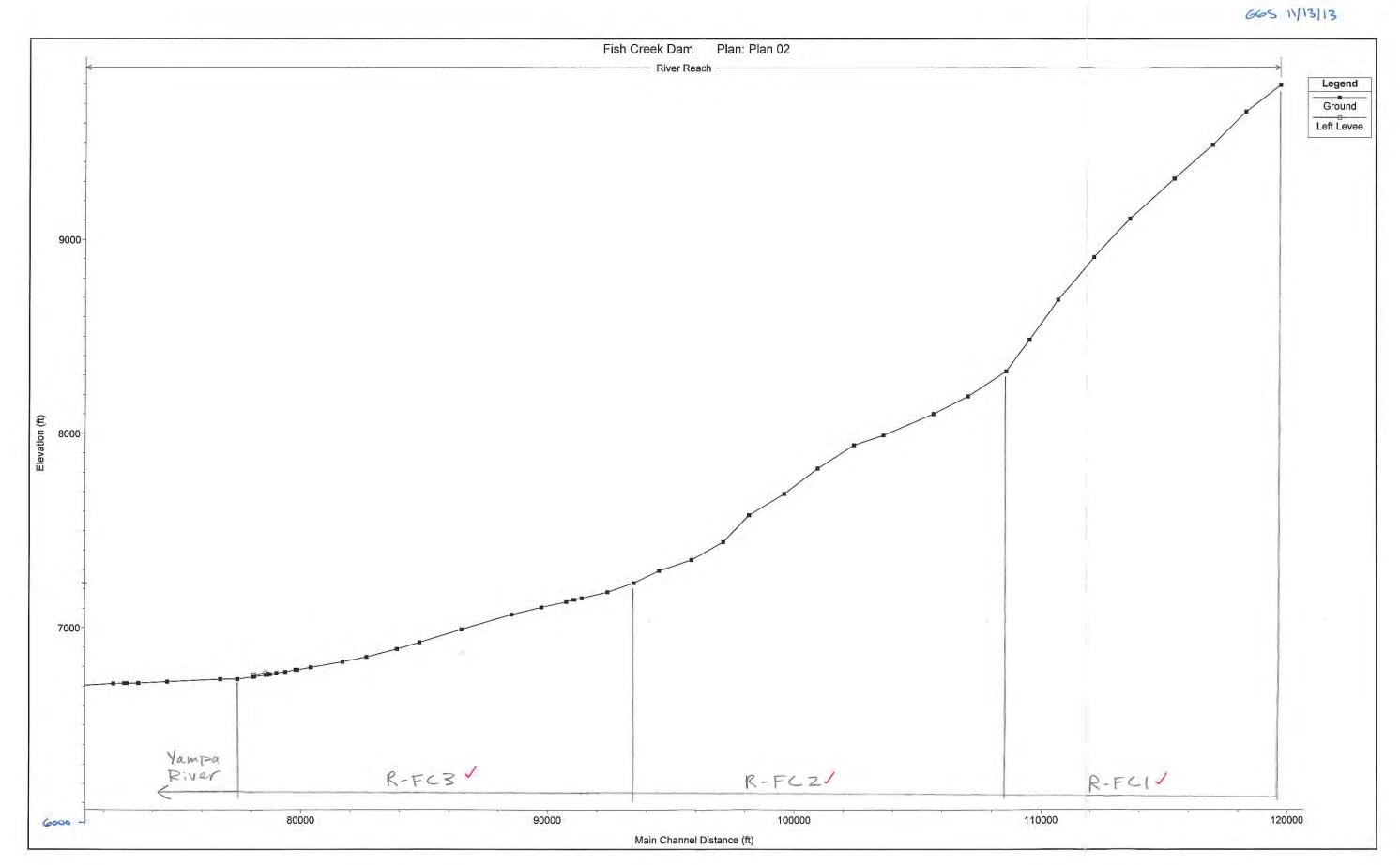
	0	9 0000
rea	25 Capacity	2,000
acity-A	05 -	4,000
ion-Cap	الا - الا الا الا الا الا الا الا الا ال	3,000,8
Elevat Area (e	100	
ek Dam	- 175	2,000
Fish Creek Dam Elevation-Capacity-Area	150	1,000
	9900 (ft) noiteve	9850 9830 9820

HEC-HMS HYDROLOGIC MODEL RESULTS

Client Steamboat Springs Checked 10/18/13 By EMH

Subject Fish Creek Dan Approved 11-13-13 By 665

REDUIRE D-	Datermine Muskingum - Cunge channel routing parameters for the dam breach nundation modeling for Fish Creek Dam
Assumptions	
	2) Use RIH Manning's a analysis dated 10 30113. 3) Use 8-point method to define cross-sections //
	4) Channel routing in the Yampa River will be performed using Modified Puls method of
ANALYSIS - - Divide the hydrologic	downstream channel into generally homogeneous V
- Three year	ches were defined as follows Reach HEC-RAS XS Range
	R-FC1 -0.037 to -2.151 V R-FC2 -2.151 to -5.013 V
	R-FC3 -5.013 to -8.056 /



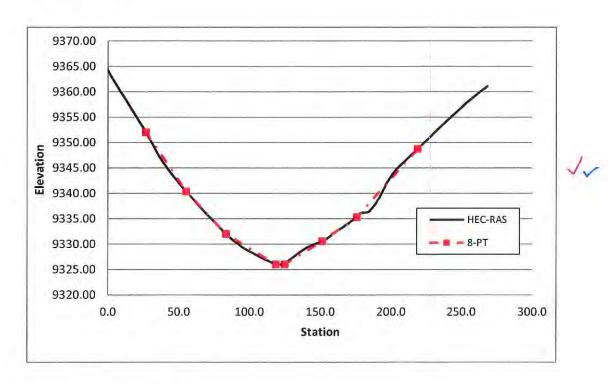
Client Steamboat Springs Checked 10/18/13 By TEO

Project 13117 Page 2/
Date 9/23/13 By EMIH

Subject Fish Creek Dam Approved 11/1/13 By GGS

		n-Cunga	- metho	d regu	ines the -	following	input
Parame							
_	Length	and Slop	e - De	terminel team b	usma 2 -	ings prov	ided by 1
	Mannin	gš n Valu	es - D	etermin	ed from	RJH 10	130113
			a	nd assum	ning man	channel	n will hav
			, o	verban	x n value	ind using	floodplai
	- Chann	el Geome					
						rom HEC	used with -RAS.
				See p.	4-6.		
Reach	Rep	HEC-RI	ts Xs				
R-FC1		-0.86	<i>y</i>				
R-FC2		-3,32					
R-FC	3	-6.83					
Reach	Mani	ning's n	Lengt	n (ft)	DIS Elev.	ulsEle	ev. Slope (
R-FCI	0	.08	11,15	7	8311.681	9817,8	01 0.1
R-FC2		.08			7240,01	83111.	
				,411			
R-FC3	0	106	16,06	,4 🗸	6735,0°	7240.0	0.0

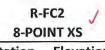
91.3

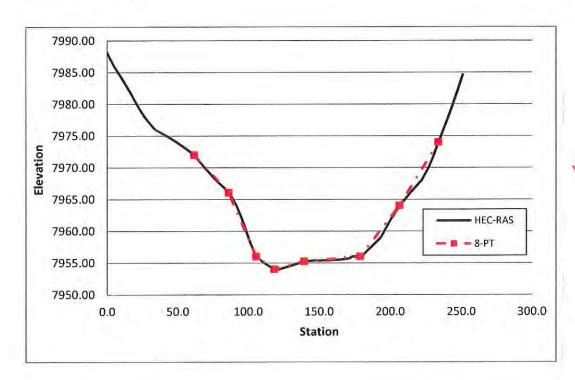

9330.16 155.4

HEC-RAS XS -0.86 ✓								
Station	Elevation	Station	Elevation	Station	Elevation	Station	Elevation	
0.0	9364.27	92.1	9330.00	158.0	9331.76	229.9	9351.72	
0.5	9364.00	95.2	9329.32	158.4	9331.85	230.8	9352.00	
1.6	9363.45	96.7	9329.12	159.0	9332.00	236.9	9353.58	
4.5	9362.00	98.1	9328.84	161.4	9332.49	238.5	9354.00	
6.1	9361.29	100.8	9328.48	161.7	9332.56	244.3	9355.45	
9.0	9360.00	101.7	9328.34	162.6	9332.71	246.6	9356.00	
9.6	9359.73	104.0	9328.00	166.4	9333.38	247.1	9356.12	
13.5	9358.00	105.1	9327.83	167.6	9333.68	254.4	9358.00	
16.0	9356.90	105.3	9327.81	167.9	9333.72	255.3	9358.19	
18.0	9356.00	108.5	9327.31	168.1	9333.73	263.0	9360.00	
21.2	9354.60	109.9	9327.09	169.6	9334.00	268.0	9361.04	
22.5	9354.00	111.6	9326.90	171.4	9334.40			
23.9	9353.37	113.4	9326.67	172.4	9334.63			
26.9	9352.00	114.7	9326.49	173.4	9334.80			
30.2	9350.30	116.0	9326.36	176.0	9335.27			
30.8	9350.00	117.8	9326.15	178.5	9336.00			
31.6	9349.56	118.8	9326.00	179.8	9336.20			
34.6	9348.00	119.4	9326.00	182.5	9336.19			
36.5	9347.08	119.7	9326.00	182.9	9336.22			
38.9	9346.00	121.2	9326.00	184.0	9336.31			
42.8	9344.53	121.8	9326.00	186.7	9337.12			
44.2	9344.00	124.2	9326.00	189.1	9338.00			
49.1	9342.33	124.9	9326.00	189.2	9338.00			
50.1	9342.00	125.3	9326.12	190.5	9338.71			
55.4	9340.33	128.1	9326.84	191.6	9339.06			
55.9	9340.18	130.1	9327.28	193.2	9340.00			
56.5	9340.00	133.4	9328.00	196.0	9341.56			
57.6	9339.65	133.5	9328.00	196.7	9342.00			
62.8	9338.00	134.8	9328.30	196.7	9342.00			
65.5	9337.19	136.4	9328.60	197.1	9342.19			
69.4	9336.00	140.7	9329.38	201.3	9344.00			
74.4	9334.59	144.2	9329.84	204.0	9344.86			
76.4	9334.00	144.4	9329.89	205.2	9345.22			
80.7	9332.77	145.8	9330.00	208.3	9346.00			
82.0	9332.41	147.9	9330.19	210.0	9346.45			
83.5	9332.00	148.3	9330.27	211.1	9346.79			
85.1	9331.55	151.5	9330.55	216.0	9348.00			
85.3	9331.49	151.9	9330.52	218.8	9348.70			
87.0	9331.10	152.1	9330.55	220.1	9349.12			
88.9	9330.62	152.7	9330.71	223.3	9350.00			
90.7	9330.28	153.4	9330.83	227.3	9350.96			

9331.15 229.2 9351.55

R-FC1	
8-POINT XS	

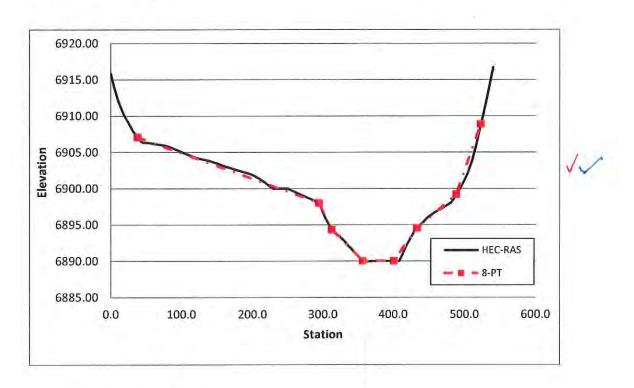

8-POINT AS						
Station	Elevation					
26.9	9352.0					
55.4	9340.3					
83.5	9332.0					
118.8	9326.0					
124.9	9326.0					
151.5	9330.6					
176.0	9335.3					
218.8	9348.7					


Length: 11,157 ft ✓
U/S Invert: 9817.80 ft ✓
D/S Invert: 8311.68 ft ✓
Slope: 0.135 ft/ft ✓

Fish Creek Breach Inundation Study Project No. 13117

		HEC-RAS	S XS -3.32	V	
Station	Elevation	Station	Elevation	Station	Elevation
0.0	7988.15	114.6	7954.53	193.3	7959.01
0.3	7988.00	115.8	7954.34	195.8	7960.00
2.0	7987.25	116.6	7954.24	200.3	7961.82
3.6	7986.56	118.5	7954.00	200.7	7962.00
4.9	7986.00	118.7	7954.00	201.3	7962.18
8.0	7984.90	121.0	7954.00	206.6	7964.00
10.5	7984.00	121.0	7954.00	213.2	7965.79
13.3	7982.96	121.1	7954.00	214.0	7966.00
15.8	7982.00	121.5	7954.00	214.5	7966.12
17.7	7981.25	121.5	7954.00	214.7	7966.17
20.7	7980.00	121.7	7954.00	216.2	7966.56
22.3	7979.38	132.2	7954.72	220.2	7967.55
26.2	7978.00	139.5	7955.22	222.0	7968.00
30.4	7976.83	140.1	7955.23	223.1	7968.47
31.9	7976.46	141.2	7955.27	226.8	7970.00
34.0	7976.00	142.6	7955.30	230.3	7971.86
40.9	7975.15	143.6	7955.33	230.5	7972.00
44.1	7974.74	143.9	7955.33	230.9	7972.23
49.4	7974.00	144.7	7955.35	231.9	7972.89
51.4	7973.68	145.3	7955.36	233.9	7974.00
52.5	7973.51	145.8	7955.38	235.6	7975.06
61.8	7972.00	158.0	7955.41	237.3	7976.00
63.1	7971.62	159.0	7955.46	239.7	7977.39
69.0	7970.00	164.4	7955.50	240.7	7978.00
74.0	7968.73	168.0	7955.60	243.5	7979.70
77.1	7968.00	168.3	7955.59	243.9	7980.00
83.5	7966.68	171.2	7955.70	244.9	7980.62
86.1	7966.06	171.4	7955.70	247.0	7982.00
86.4	7966.00	173.2	7956.00	247.7	7982.47
87.8	7965.50	174.8	7956.00	249.9	7984.00
91.7	7964.00	176.1	7956.00	250.6	7984.48
93.0	7963.28	176.8	7956.00	250.9	7984.63
95.3	7962.00	179.1	7956.00		
98.4	7960.05	181.2	7956.30		
98.4	7960.00	182.5	7956.52		
98.6	7959.88	185.1	7956.93		
98.9	7959.71	185.4	7956.98		
101.5	7958.00	188.0	7957.50		
102.5	7957.53	189.7	7957.97		
105.6	7956.00	189.8	7957.98		
109.1	7955.37	189.8	7958.00		
111.0	7955.03	189.8	7958.00		

Station	Elevation
61.8	7972.0
86.1	7966.1
105.6	7956.0
118.5	7954.0
139.5	7955.2
179.1	7956.0
206.6	7964.0
233.9	7974.0


Length: 15,116 ft ✓
U/S Invert: 8311.68 ft ✓
D/S Invert: 7240 ft ✓
Slope: 0.071 ft/ft ✓

Fish Creek Breach Inundation Study Project No. 13117

Station	Elevation								
0.0	6915.88	94.4	6905.29	161.6	6903.04	300.9	6896.41	475.6	6897.71
4.9	6914.00	94.8	6905.27	163.7	6902.97	302.5	6896.00	480.2	6898.00
11.0	6912.00	97.3	6905.15	164.5	6902.94	307.0	6895.24	480.4	6898.00
14.3	6911.23	99.1	6905.08	165.6	6902.92	312.7	6894.33	482.3	6898.23
17.5	6910.45	101.5	6904.97	167.4	6902.86	315.0	6894.00	482.9	6898.33
19.5	6910.00	103.3	6904.90	169.7	6902.80	316.0	6894.00	485.2	6898.63
27.5	6908.60	104.0	6904.88	170.6	6902.76	322.7	6893.45	486.6	6898.86
30.9	6908.00	105.2	6904.83	172.6	6902.70	325.5	6893.15	488.7	6899.18
32.9	6907.71	106.9	6904.76	173.0	6902.68	328.5	6892.91	491.1	6899.58
34.3	6907.56	108.1	6904.72	176.3	6902.58	330.4	6892.69	493.0	6899.91
37.9	6907.08	110.3	6904.63	176.8	6902.57	331.2	6892.62	498.3	6900.84
39.3	6906.90	111.4	6904.59	178.5	6902.51	333.6	6892.34	502.9	6901.80
39.3	6906.89	113.7	6904.48	179.4	6902.49	336.0	6892.03	503.2	6901.86
40.6	6906.73	114.6	6904.45	181.6	6902.43	336.4	6892.00	503.9	6902.00
40.8	6906.72	116.7	6904.36	182.6	6902.40	340.5	6891.58	505.6	6902.48
42.4	6906.53	118.4	6904.30	183.0	6902.38	343.8	6891.24	511.1	6904.00
45.2	6906.34	118.9	6904.27	185.5	6902.32	345.4	6891.10	512.8	6904.61
45.6	6906.33	120.7	6904.22	185.6	6902.31	345.4	6891.09	516.6	6906.00
46.9	6906.34	122.6	6904.16	187.5	6902.27	348.1	6890.83	518.6	6906.90
47.2	6906.33	123.8	6904.13	189.5	6902.22	356.3	6890.03	523.4	6908.89
49.3	6906.33	125.5	6904.10	193.2	6902.11	356.8	6890.00	523.9	6909.08
50.1	6906.32	126.9	6904.07	193.3	6902.10	358.4	6889.92	525.2	6909.61
55.3	6906.28	129.1	6904.03	194.9	6902.06	371.0	6890.00	526.2	6910.00
56.9	6906.25	131.4	6904.00	197.5	6901.97	401.4	6890.00	528.7	6911.12
58.0	6906.22	134.3	6903.93	197.6	6901.96	408.7	6890.00	530.7	6912.00
58.9	6906.21	134.4	6903.93	201.8	6901.78	411.6	6890.62	531.2	6912.23
60.2	6906.18	138.0	6903.83	203.6	6901.69	412.5	6890.80	531.6	6912.40
61.3	6906.16	139.0	6903.81	204.4	6901.64	417.9	6892.00	534.9	6914.00
64.6	6906.11	139.1	6903.80	209.2	6901.40	418.0	6892.00	538.0	6915.43
68.6	6906.06	140.8	6903.75	213.4	6901.10	427.1	6893.65	539.2	6916.00
69.2	6906.05	143.0	6903.68	214.5	6901.03	429.1	6894.00	539.5	6916.12
72.8	6906.00	143.3	6903.68	217.0	6900.88	431.5	6894.29	540.8	6916.72
75.6	6905.94	144.6	6903.63	219.4	6900.70	433.7	6894.52		
76.1	6905.94	145.1	6903.62	227.2	6900.09	440.1	6895.22		
77.2	6905.90	147.3	6903.54	227.6	6900.07	442.3	6895.44		
80.2	6905.83	148.3	6903.53	228.5	6900.00	447.5	6896.00		
81.7	6905.78	150.6	6903.45	249.5	6900.00	448.0	6896.04		
84.5	6905.68	151.0	6903.43	250.1	6899.98	458.9	6896.79		
87.6	6905.55	153.6	6903.34	252.4	6899.86	459.5	6896.81		
88.3	6905.53	156.4	6903.22	253.3	6899.84	463.4	6896.99		
90.8	6905.41	158.4	6903.16	294.5	6898.00	464.9	6897.06		
92.5	6905.36	160.7	6903.06	295.1	6898.00	474.8	6897.67		

R-	FC3
8-PO	INT XS
tation	Elevation
37.92	6907.08
	6222

Station	Elevation
37.92	6907.08
294.47	6898
312.65	6894.33
356.3	6890.03
401.42	6890
433.71	6894.52
488.65	6899.18
523.38	6908.89

Length: 16,064 ft ✓ ft 🗸 U/S Invert: 7240 D/S Invert: 6735 ft 🌭 Slope: 0.031 ft/ft ✓

Client Steamboat Springs Subject Fish Creek Dam Project 13117 Page 1/17

Date 10/30/13 By EMH

_ Checked 11/6/13 By TEO

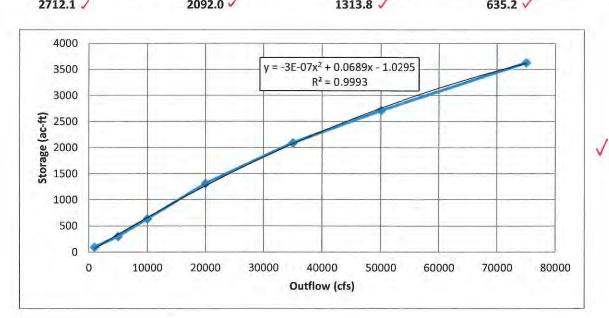
Approved 11/14/13 By S

Determine Modified Puls storage-discharge REQUIRED relationships for channel reaches on the Yampa River 1) Determine storage - discharge relationships AssumPTIONS using water surface profiles developed in V HEC-RAS for a range of discharges 2) Use RJH HEC-RAS model for Fish Creek Dam V Breach dated 10/31/13. 3) Use the average end method to determine floodplain storage between cross-sections 4) Use USACE HEC-HMS Technical Reference Manual (2000) ANALYSIS -- The USACE HEC-HMS Technical Reference Manual provides 3/ methods for determining storage - discharge data for the Modified Puls method: 1) Water surface profiles from hydraulic model 1 2) Historical observations of stage and flow 1 3) Observed in flow fort flow hydrogy aphs V RIH used the water surface profile method because a lock of 1 historical lobserved data - The model was run for the following flow rates: -1,000 cts -5,000 cfs -10,000 cfs 20,000 cts - 35,000 els - 50,000 cfe - 15,000 efs

Client Steamboat Springs Checked 11/6/13 By TEO

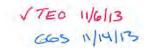
Subject Fish Creek Dam Approved 11/14/13 By GGS

Project 13117 Page 2/17


ANALYSIS -	
- For each flow rate, the average end method was storage between cross-sections. Distances was assumed to be the reach length of the rather the HEC-IRAS model.	between cross-section
- See p 3-6 for a summary of storage calculation Storage - discharge relationships for each	ns and final v
-HEC-RAS ontput is shown on p. 7-14	
- The Modified Puls routing was developed for the Reach XS Range	re to llowing neaches.
YR-1 -8.056 to -11.39 V	
7R-2 - 11.39 to -14.317 √ 7R-3 -14.317 to -17.20 √	
YR-4 -17.20 to -22.72 V	

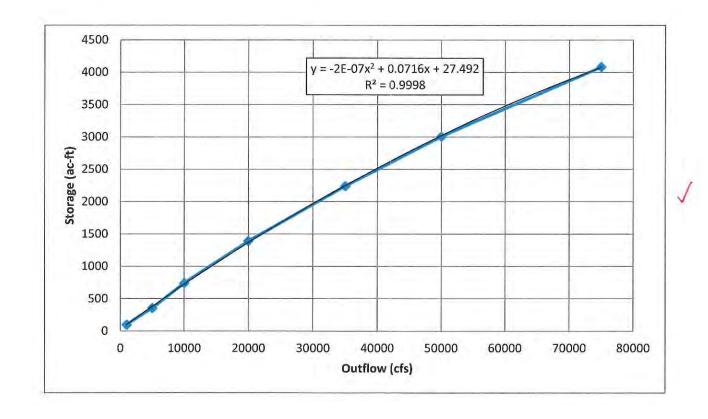
Fish Creek Dam Breach Study Project No. 13117

	CH	


		75,00	0 cfs	50,000	O cfs	35,00	0 cfs	20,00	00 cfs	10,00	00 cfs	5,00	0 cfs	1,000) cfs
xs	Distance (ft)	Flow Area	Volume (ac-ft)	Flow Area	Volume (ac-ft) ✓	Flow Area (ft ²) ✓	Volume (ac-ft) ✓	Flow Area (ft²) ✓	Volume (ac-ft) ✓	Flow Area (ft²) ✓	Volume (ac-ft)	Flow Area (ft²) ✓	Volume (ac-ft) ✓	Flow Area (ft²)	Volume (ac-ft)
-8.056	698.4	8380.5		4908.6		4017.87		2117.2		789.2		311.9		173.3	
-8.188	2159.1	4776.8	105.5	3885.7	70.5	2672.02	53.6	2439.6	36.5	1506.6	18.4	827.7	9.1	314.6	3.9
-8.597	1169.7	9825.6	361.9	7394.3	279.6	5596.87	204.9	3472.4	146.5	1642.9	78.1	829.9	41.1	193.6	12.6
-8.819	468.6	6965.5	225.4	4621.8	161.3	3326.59	119.8	2353.8	78.2	1444.6	41.5	576.9	18.9	278.9	6.3
-8.907	105.4	10888.1	96.0	7376.9	64.5	5438.41	47.1	3708.4	32.6	2236.5	19.8	1324.1	10.2	317.2	3.2
-8.927	444.3	7904.2	22.7	5945.8	16.1	4764.89	12.3	3339.6	8.5	2231.7	5.4	1425.1	3.3	361.9	0.8
-9.011	1164.5	11296.1	97.9	8565.8	74.0	6764.07	58.8	4599.3	40.5	2230.3	22.8	808.9	11.4	227.2	3.0
-9.232	941.8	9702.3	280.7	7081.9	209.2	5282.98	161.0	3068.3	102.5	1519.5	50.1	816.5	21.7	206.3	5.8
-9.41	95.5	7959.6	190.9	6236.5	144.0	5145.07	112.7	3771.3	73.9	2175.0	39.9	651.8	15.9	271.4	5.2
-9.428	584.6	7653.8	17.1	5420.4	12.8	4075.46	10.1	2745.0	7.1	1376.0	3.9	566.7	1.3	223.4	0.5
-9.539	949.2	11483.2	128.4	7715.0	88.1	5526.86	64.4	3841.0	44.2	1810.8	21.4	762.5	8.9	215.3	2.9
-9.719	1283.9	10167.8	235.9	7329.2	163.9	5382.31	118.9	2014.5	63.8	951.4	30.1	673.9	15.6	234.6	4.9
-9.962	471.6	10349.6	302.4	8137.8	227.9	6589.32	176.4	4119.4	90.4	1489.2	36.0	553.8	18.1	154.8	5.7
-10.051	68.7	7113.3	94.5	5666.6	74.7	4674.46	61.0	2492.3	35.8	841.8	12.6	544.0	5.9	220.7	2.0
-10.064	258.4	4752.3	9.4	3433.3	7.2	2090.48	5.3	1233.4	2,9	852.7	1.3	571.4	0.9	243.1	0.4
-10.113	746.5	4088.5	26.2	2823.5	18.6	1711.7	11.3	1344.0	7.6	933.8	5.3	606.4	3.5	194.1	1.3
-10.255	1114.8	4627.9	74.7	2773.1	48.0	2759.7	38.3	1943.8	28.2	1148.9	17.8	589.8	10.2	216.9	3.5
-10.466	269.4	13995.5	238.3	11542.3	183.2	9782.73	160.5	7991.6	127.1	2460.8	46.2	685.8	16.3	216.4	5.5
-10.517	42.8	8035.8	68.1	6107.8	54.6	5407.99	47.0	4508.1	38.6	1142.2	11.1	725.8	4.4	263.0	1.5
-10.525	612.2	6356.1	7.1	4587.9	5.2	3085.67	4.2	2471.1	3.4	980.4	1.0	634.3	0.7	225.2	0.2
-10.641	1055.3	6092.0	87.5	4379.8	63.0	3381.29	45.4	1514.4	28.0	1020.5	14.1	693.6	9.3	309.0	3.8
-10.841	1133.3	13556.5	238.0	10901.9	185.1	8551.84	144.5	5745.1	87.9	3173.9	50.8	1124.8	22.0	130.2	5.3
-11.055	199.5	15195.3	374.0	12246.3	301.1	9201.23	230.9	2983.9	113.6	1029.3	54.7	612.3	22.6	258.3	5.1
-11.093	93.8	10187.9	58.1	7993.1	46.3	5590.9	33.9	2436.4	12.4	1475.2	5.7	726.2	3.1	241.6	1.1
-11.111	163.2	4291.0	15.6	3027.8	11.9	3589.12	9.9	3015.2	5.9	1763.2	3.5	831.0	1.7	340.7	0.6
-11.142	1312.2	7742.8	22.5	6020.3	16.9	4773.29	15.7	2451.8	10.2	1008.2	5.2	609.1	2.7	224.5	1.1
-11.39		8638.7	246.7	6218.1	184.3	4779.97	143.9	3337.9	87.2	1549.3	38.5	755.8	20.6	209.6	6.5
		Total	3625.6 🗸		2712.1 🗸		2092.0 🗸		1313.8 🗸		635.2 ✓		299.5 🗸		92.9 🗸

Storage (ac-ft)	Outflow (cfs)
93 🗸	1000
300	5000
635	10000
1314 🗹	20000
2092	35000
2712	50000
3626	75000 🕶

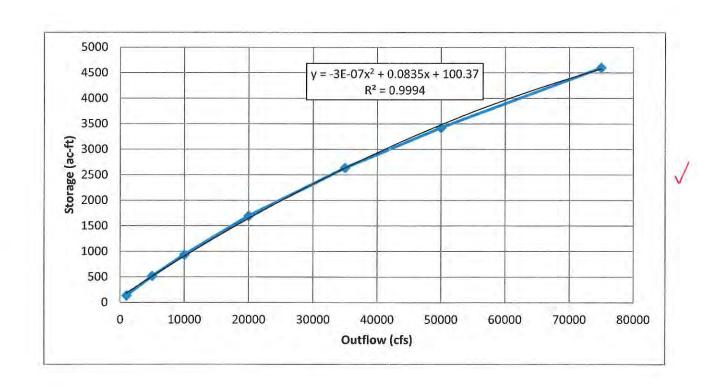
P:\13117 - Steamboat\Engineering\Hydraulics\13117 - Fish Creek Modified Puls.xlsx


Fish Creek Dam Breach Study Project No. 13117

D	EA	CH	VD	2
n	EH	LI	111	

		75,00	0 cfs	50,00	0 cfs	35,00	0 cfs	20,00	0 cfs	10,00	0 cfs	5,000	O cfs	1,000) cfs
XS	Distance	Flow Area	Volume	Flow Area	Volume	Flow Area	Volume	Flow Area	Volume	Flow Area	Volume	Flow Area	Volume	Flow Area	Volume
	(ft) 🗸	(ft ²)	(ac-ft) ✓	(ft²) 🗸	(ac-ft) 🗸	(ft ²) \checkmark	(ac-ft) 🗸	(ft ²)	(ac-ft) 🗸	(ft²) ✓	(ac-ft)	(ft²) √	(ac-ft) 🗸	(ft²) 🗸	(ac-ft) V
-11.39	1408.4	8638.7		6218.1		4779.97		3337.9		1549.3		755.8		209.6	
-11.657	2681.6	12015.9	333.9	9389.3	252.3	7183.08	193.4	4364.6	124.5	2730.4	69.2	1408.0	35.0	285.5	8.0
-12.165	1231.3	7708.4	607.1	5189.1	448.7	4019.36	344.8	2944.7	225.0	1499.1	130.2	861.7	69.9	173.5	14.1
-12.398	40.5	14210.3	309.8	10649.4	223.9	7782.9	166.8	3745.8	94.6	2045.1	50.1	894.3	24.8	319.0	7.0
-12.406	1104.8	15284.3	13.7	11899.3	10.5	9179.04	7.9	4680.0	3.9	1569.8	1.7	531.0	0.7	185.8	0.2
-12.615	1707.1	10127.5	322.2	6691.9	235.8	4034.25	167.6	2466.3	90.6	1451.9	38.3	1011.2	19.6	352.5	6.8
-12.938	2738.4	10690.3	407.9	8526.1	298.2	7242.94	221.0	5057.1	147.4	2878.2	84.8	1126.7	41.9	402.1	14.8
-13.457	1662.2	15120.4	811.3	10683.6	603.8	7349.08	458.7	3910.7	281.9	1791.2	146.8	916.1	64.2	156.5	17.6
-13.772	1679.9	14463.1	564.4	10584.7	405.8	7684.1	286.8	4942.5	168.9	2600.6	83.8	1052.6	37.6	395.3	10.5
-14.09	560.7	8886.7	450.2	6269.9	325.0	4663.66	238.1	2917.1	151.6	1396.9	77.1	557.7	31.1	155.0	10.6
-14.196	63.3	7966.5	108.5	6363.7	81.3	5120.03	63.0	3515.6	41.4	2186.1	23.1	1279.5	11.8	351.2	3.3
-14.208	573.3	8923.0	12.3	6807.1	9.6	5383.65	7.6	3686.7	5.2	2300.8	3.3	1369.2	1.9	322.9	0.5
-14.317	1841.3	12379.8	140.2	9697.4	108.6	7320.98	83.6	4825.8	56.0	2507.7	31.6	1001.2	15.6	255.5	3.8
		Total	4081.6 🗸		3003.4 🗸		2239.2 /	*	1391.0 🗸		739.9 🗸		353.9 /		97.2 🗸

Storage (ac-ft)	Outflow (cfs)
97	1000
354	5000
740	10000
1391	20000
2239	35000
3003	50000
4082	75000

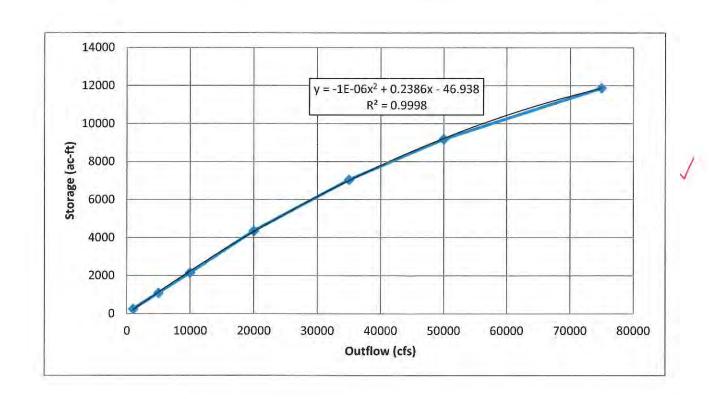

5 TEO 11/6/13 665 11/14/13

Fish Creek Dam Breach Study Project No. 13117

REACH YR-3

		75,00	0 cfs	50,00	0 cfs	35,00	0 cfs	20,00	0 cfs	10,00	0 cfs	5,000	O cfs	1,000	cfs cfs
xs	Distance /	Flow Area	Volume (ac-ft) ✓	Flow Area	Volume (ac-ft)	Flow Area (ft²)	Volume (ac-ft)	Flow Area (ft²)	Volume (ac-ft)	Flow Area (ft²) ✓	Volume (ac-ft)	Flow Area (ft²) ✓	Volume (ac-ft)	Flow Area (ft²) ✓	Volume (ac-ft)
-14.317	1841.3	12379.8		9697.4		7320.98		4825.8		2507.7		1001.2		255.5	
-14.665	1885.3	9774.5	468.2	6415.6	340.6 🗸	4821.23	256.6	2567.9	156.3	1590.2	86.6	696.2	35.9	249.2	10.7
-15.023	2128.3	17988.1	600.8	12670.0	413.0	9549.95	311.0	6109.6	187.8	2995.7	99.2	1584.9	49.4	325.4	12.4
-15.426	3201.4	9135.5	662.6	7121.2	483.5	5445.66	366.3	3526.8	235.4	1382.1	106.9	894.8	60.6	278.6	14.8
-16.032	3050.4	11805.5	769.5	8557.4	576.1	6416.13	435.9	3932.2	274.1	2503.1	142.8	1791.9	98.7	737.7	37.3
-16.61	515.5	16374.7	986.7	13077.2	757.5	10616.53	596.4	7464.2	399.0	4351.3	240.0	2091.2	136.0	155.5	31.3
-16.707	40.1	12929.4	173.4	9998.5	136.5	8404.48	112.5	5515.6	76.8	2182.0	38.7	1212.4	19.5	365.5	3.1
-16.715	374.7	11726.9	11.4	8225.0	8.4	4531.12	6.0	2925.1	3.9	2134.8	2.0	1109.1	1.1	393.1	0.3
-16.786	2189.0	16633.3	122.0	12322.7	88.4	9175.56	59.0	5859.2	37.8	3489.5	24.2	1794.1	12.5	334.8	3.1
-17.2	2450.8	15359.1	803.8	12162.1	615.2	10341.88	490.4	7044.2	324.2	4147.5	191.9	2271.5	102.2	476.0	20.4
		Total	4598.4 🗸		3419.2 🗸	·	2634.1 /		1695.3	/	932.3	7	515.8		133.4

Storage (ac-ft)	Outflow (cfs)
133	1000
516	5000
932	10000
1695	20000
2634	35000
3419	50000
4598	75000



Fish Creek Dam Breach Study Project No. 13117

REACH YR-4

		75,00	00 cfs	50,00	0 cfs	35,00	0 cfs	20,00	0 cfs	10,00	0 cfs	5,000	O cfs	1,000) cfs
XS	Distance (ft)	Flow Area (ft²) ✓	Volume (ac-ft) ✓	Flow Area (ft²) ✓	Volume (ac-ft) ✓	Flow Area (ft ²)	Volume (ac-ft) ✓	Flow Area (ft²)	Volume (ac-ft) ✓	Flow Area (ft ²)	Volume (ac-ft)	Flow Area (ft²) ✓	Volume (ac-ft) ✓	Flow Area (ft²) ✓	Volume (ac-ft)
-17.2	2450.8	15359.1		12162.1		10341.88		7044.2		4147.5		2271.5		476.0	
-17.665	2265.5	13859.0	821.9	9602.3	612.3	6360.81	469.9	3686.6	301.9	2802.5	195.5 🗸	1588.9	108.6	324.3	22.5
-18.094	2191.8	19363.7	863.9	16020.6	666.3	12652.72	494.4	7689.9	295.8	3285.1	158.3	1271.6	74.4	251.2	15.0
-18.509	3317.7	15931.4	888.0	9692.3	646.9	4836.74	440.0	3033.8	269.8	2018.4	133.4	1216.0	62.6	353.7	15.2
-19.137	2705.7	11851.1	1058.0	9471.8	729.8	7786.41	480.7	4810.3	298.7	2476.4	171.2	1353.1	97.8	442.7	30.3
-19.65	2604.8	10439.7	692.3	7148.9	516.2	4398.32	378.4	3574.2	260.4	1916.2	136.4	1019.7	73.7	131.1	17.8
-20.143	1896.5	21594.6	957.8	18603.9	770.0	14635.69	569.1	4592.9	244.2	2224.1	123.8	1394.4	72.2	639.3	23.0
-20.502	487.5	32088.6	1168.6	29640.3	1050.2	25900.95	882.4	12893.6	380.7	3948.1	134.4	1553.7	64.2	209.5	18.5
-20.594	33.0	11217.2	242.3	6312.6	201.2	6197.49	179.6	2145.0	84.2	938.6	27.3	695.7	12.6	398.3	3.4
-20.601	499.3	8072.1	7.3	5483.8	4.5	1993.4	3.1	1083.4	1.2	661.5	0.6	680.7	0.5	411.6	0.3
-20.695	2131.0	23068.1	178.5	17958.9	134.4	14198.99	92.8	9739.0	62.0	4727.3	30.9	2255.4	16.8	458.6	5.0
-21.099	567.3	23015.2	1127.2	19672.7	920.5	17232.25	768.8	14873.4	602.0	5109.2	240.6	1645.3	95.4	424.9	21.6
-21.206	70.6	12330.4	230.1	9684.6	191.1	7101.99	158.4	8516.8	152.3	1284.6	41.6	956.3	16.9	503.1	6.0
-21.22	309.2	7754.4	16.3	5616.3	12.4	3739.53	8.8	3064.5	9.4	1151.9	2.0	939.0	1.5	488.9	0.8
-21.278	1673.3	15284.3	81.8	11803.1	61.8	9265.32	46.2	5774.3	31.4	3263.1	15.7	1569.5	8.9	295.1	2.8
-21.595	4198.1	23503.9	745.0	17558.9	563.9	13724.76	441.6	9184.8	287.3	5650.1	171.2	2995.2	87.7	454.6	14.4
-22.39	1749.1	19981.6	2095.4	14947.1	1566.4	11684.39	1224.4	7611.8	809.4	3605.0	446.0	1802.4	231.2	261.3	34.5
-22.722	145.2	14472.5	691.7	11019.2	521.3	8588.73	407.0	5486.0	263.0	2623.3	125.0	1228.1	60.8	402.7	13.3
		Total	11866.3 🗸	/	9169.2 🗸		7045.7 🗸		4353.6 🗸		2153.9 🗸		1085.9 🏑		244.5 🗸

Storage (ac-ft)	Outflow (cfs)
245	1000
1086	5000
2154	10000
4354	20000
7046	35000
9169	50000
11866	75000

>	~			
Froude # Chil 0.59 1.35 1.02 0.89 0.80 0.89 0.81 0.82 0.85 0.85 0.58 0.58		0.35 0.40 0.49 0.65 0.68 0.70 0.53 0.53 0.61 0.48 0.48		0.51 0.69 0.71 0.76 0.74 0.69 0.59 0.57 0.49 0.49 0.56
Top Width (ff) 58.81 71.15 368.42 540.05 740.60 818.39 1202.17 146.04 304.99 539.22 720.79 784.16	928.33 115.43 197.86 699.75 1066.36 1194.65 1443.47 1452.96 601.61 636.40 671.21 824.77 950.02 205.20 637.51 756.86 836.09	186.32 743.64 859.39 893.55 932.11 973.2 1138.32 134.53 327.11 977.32 1310.90 1368.76 1380.04		92.22 111.92 608.10 799.51 845.73 905.94 193.51 554.51 960.90 1030.21 1123.04
(sq ft) 173.27 311.86 789.15 2117.22 4017.87 4908.64 8380.49 827.70 1506.56 2439.56 2672.02	4776.76 193.64 829.88 1642.92 3472.42 5596.87 7394.31 9825.55 278.90 576.90 1444.63 2353.84 3326.59 4621.75 6965.54 1324.06 2236.54 3708.40 7376.88 10888.14	361.85 1425.13 2231.69 3339.64 4764.89 5945.75 7904.16 227.22 808.93 2230.32 4599.26 6764.07 8565.79	206.30 816.50 1519.48 3068.25 5282.98 7081.88 9702.31 277.38 651.80 2175.01 3771.29 5145.07	223.37 566.73 1375.98 2745.02 4075.46 5420.43 7653.75 762.51 1810.78 3840.97 5526.86 7714.96
Vel Chull (1/8) 5.77 16.03 (15.69 16.19 19.71 19.71 19.51 10.85 10.85 17.77 18.72	23.42 6.38 6.38 8.53 8.94 9.81 10.65 11.97 11.97 11.97 15.45	3.12 4.86 6.47 8.36 10.65 11.90 11.90 13.35 6.33 6.33 6.57 6.57 9.70	11111111111111111111111111111111111111	4.48 8.82 10.15 11.79 13.57 14.24 14.79 7.08 7.08 7.54 8.41 10.40
E.G. Slope (tuft) 0.005890 0.027134 0.013274 0.008501 0.008501 0.006470 0.006159 0.005839 0.005839 0.005839 0.005839	0.0025334 0.004555 0.004555 0.003768 0.003284 0.003284 0.002484 0.006860 0.008699 0.010040 0.008508 0.006218 0.0022433 0.002845 0.002845 0.002845 0.002845 0.002845	0.002227 0.002345 0.003274 0.004189 0.005121 0.005302 0.005299 0.005299 0.005293 0.002759 0.002759 0.002759	0.005564 0.003430 0.003773 0.00411 0.003765 0.003764 0.003765 0.003765 0.003061 0.002260 0.002496 0.002496 0.002496 0.002496	0.004506 0.00625 0.005715 0.005820 0.004820 0.004498 0.003231 0.003231 0.002704 0.002703
(f) 6741.18 6741.18 6752.61 6752.61 6755.06 6755.06 6757.03 6755.06 6757.03 6755.06 6743.17 6743.17 6745.28 6745.28	6752.02 6732.49 6732.49 6734.28 6736.17 6736.17 6720.51 6720.51 6720.51 6720.51 6720.51 6720.51 6720.51 6720.51 6720.51 6720.51 6720.51 6734.51 6720.51 6734.51 6734.51 6734.51 6736.64 6736.64 6737.98	6719.02 6721.92 6723.18 6726.79 6726.79 6728.31 6730.41 6718.51 6718.51 6720.06 6721.94 6723.66 6725.09		6704.92 6709.17 6711.96 6715.90 6717.62 6701.74 6701.74 6705.78 6710.97 6712.95 6717.97
Crit W.S. (ft) 6739.63 6747.85 6750.41 6752.61 6756.77 6736.92 6736.92 6736.92 6736.92 6736.92 6741.05 6745.26 6745.26	6725.33 6725.33 6725.33 6724.81 6735.91 6721.87 6721.87 6720.46 6720.46 6721.88 6720.46 6721.88 6720.46 6721.88	6717.23	6713.13 6715.98 6703.43 6706.65 6710.86 6712.90 6714.31 6715.43	6710.54 6712.46 6705.71 6708.75
W.S. Elev. (ft) 6740.66 6742.76 6749.65 6752.60 6752.75 6753.75 6753.75 6742.42 6744.21 6744.21 6745.67	6725.71 6729.90 6731.68 6733.55 6735.42 6736.76 6720.31 6720.31 6720.31 6720.31 6720.31 6720.31 6720.31 6720.31 6720.31 6720.91 6720.91 6720.91 6720.91 6720.91	6718.90 672.75 672.75 672.75 672.70 672.07 672.88 672.88 6717.91 6717.91 6717.91 6717.91 6721.56 6724.49 6724.49		6704,61 6710,54 6712,46 6712,46 6714,14 6718,31 6701,41 6701,41 6707,79 6707,79 6710,23 6711,92 6711,92
(ft) (735.40 6735.40 6735.40 6735.40 6735.40 6735.40 6735.40 6735.40 6735.54 6735.54 6735.54 6735.54		6715.39 6715.39 6715.39 6715.39 6715.39 6714.00 6714.00 6714.00 6714.00		6701.17 6701.17 6701.17 6701.17 6701.17 6698.89 6698.89 6698.89 6698.89 6698.89 6698.89
Reach: Reach	75000.00 1000.00 5000.00 35000.00 75000.00 75000.00 10000.00 20000.00 75000.00 10000.00 20000.00 35000.00 75000.00 10000.00 50000.00 75000.00	Bridge 1000.00 5000.00 10000.00 35000.00 50000.00 75000.00 10000.00 50000.00 50000.00 50000.00 75000.00 75000.00	1000.00 5000.00 10000.00 35000.00 5000.00 75000.00 1000.00 5000.00 2000.00 35000.00 35000.00 75000.00	1000.00 10000.00 20000.00 35000.00 75000.00 1000.00 1000.00 2000.00 2000.00 20000.00 20000.00 75000.00
River: River Profile PF 1 PF 2 PF 5 PF 7	7	1	PF 7	PF 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Plan: Mod Puls River Sta -8.056 -8.056 -8.056 -8.056 -8.056 -8.056 -8.188 -8.188 -8.188	-8.188 -8.597 -8.597 -8.597 -8.597 -8.597 -8.819 -8.819 -8.819 -8.819 -8.819 -8.907 -8.907 -8.907 -8.907 -8.907 -8.907	-8.91 -8.927 -8.927 -8.927 -8.927 -8.927 -9.011 -9.011 -9.011	-9.232 -9.232 -9.232 -9.232 -9.232 -9.232 -9.410 -9.410 -9.410 -9.410 -9.410	-9. 539 -9. 539 -9. 539 -9. 539 -9. 539 -9. 539 -9. 539 -9. 539
AS con	Reach	Reach	Reach	Reach

17ED 11/6/13 7/17
GGS 11/14/13

	***		7				7				1
Froude # Chl	0.48 0.61 0.79 0.50 0.48 0.48	0.80 0.67 0.53 0.35 0.38 0.44	0.65 0.73 0.44 0.40 0.46 0.54	0.41 0.63 0.89 0.88 0.84 0.84	0.65 0.64 0.72 0.89 1.15 1.02	0.51 0.65 0.75 0.83 0.95 1.34	0.56 0.58 0.38 0.19 0.26 0.29	0.44 0.51 0.56 0.34 0.50 0.64 0.70	0.61 0.61 0.67 0.63 0.91	0.37 0.60 0.81 1.17 1.03 1.09	1.00 0.59 0.34 0.33
Top Wiath (ft)	96.52 148.58 180.52 510.19 809.16 840.29	76.46 132.92 327.52 327.52 459.04 683.23 710.97 729.43	88.20 103.24 403.95 528.32 564.22 685.36	76.00 94.87 106.30 120.92 436.66 585.50 652.55	98.10 117.53 134.43 164.19 213.61 567.82 652.09	85.52 109.97 368.30 384.88 473.96 475.43	102.00 141.76 684.76 1164.48 1287.72 1302.57	110.90 127.41 557.69 1260.32 1278.48 1287.68	99.09 120.73 321.62 988.54 1037.02 1135.33	131.11 168.71 397.66 620.40 1033.96 1139.85	71.25 804.58 1131.87 1150.01 1158.75
Flow Area (sq.ft)	234.60 673.93 951.37 2014.46 5382.31 7329.23	154.82 553.79 1489.19 4119.37 6589.32 8137.76 10349.64	243.27 841.82 2492.27 4674.46 5666.60 7113.32	243.07 571.39 852.65 1233.36 2090.48 3433.32 4752.28	194.06 606.35 933.83 1343.99 1711.70 2823.54 4088.52	216.85 589.75 1148.94 1943.76 2759.70 2773.14 4627.94	216.38 685.76 2460.84 7991.56 9782.73 11542.29	263.04 725.82 1142.16 4508.11 5407.99 6107.81 8035.75	225.19 634.25 980.44 2471.10 3085.67 4587.92 6356.13	309.00 693.59 1020.48 1514.35 3381.29 4379.81 6091.98	130.23 1124.80 3173.89 5745.09 8551.84 10901.87
Vel Chnl (ft/s)	4.26 7.42 10.51 12.56 9.90 10.38	0 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9.19 11.88 9.49 9.94 11.86	8.75 11.73 16.22 18.37 19.22 22.07	8.25 10.71 14.92 21.08 21.27 23.84	4.61 8.48 11.06 13.73 17.16 24.40 23.76	4.62 7.29 5.36 3.63 5.29 6.39 8.06	3.80 6.89 8.76 7.08 10.80 13.90	7.88 10.20 11.57 17.36 18.37 20.41	3.24 7.26 11.14 17.42 17.41 19.25 20.50	7.68 7.12 5.62 5.66 5.66 6.23 6.23
E.G. Slope (ft/ft)	0.004069 0.005393 0.008850 0.007413 0.002505 0.002182	0.0011907 0.006100 0.003178 0.001050 0.001206 0.001355	0.002511 0.005657 0.001991 0.001507 0.001898	0.002657 0.005266 0.00541 0.00544 0.007984 0.006943	0.007807 0.005653 0.006449 0.014649 0.014649 0.010566	0.004515 0.005691 0.007131 0.008231 0.009930 0.020010	0.005741 0.004808 0.001890 0.000364 0.000659 0.000843	0.003357 0.003602 0.003840 0.001160 0.002520 0.003969 0.004691	0.004823 0.005034 0.005555 0.008965 0.008579 0.008130	0.002432 0.005007 0.008667 0.017116 0.012063 0.012063	0.019253 0.004953 0.001890 0.001132 0.001132
E.G. Elev (ft)	6696.87 6701.09 6703.64 6706.78 6710.17 6712.56 6715.90		6690.92 6694.91 6702.97 6707.47 6709.73 6712.86	6685.53 6690.34 6694.06 6699.37 6705.27 6707.66 6710.69	6684.40 6688.86 6692.21 6696.69 6702.03 6704.98	6684.63 6687.11 6689.80 6692.80 6698.24 6698.24	6674.36 6678.72 6681.86 6687.26 6690.35	6673.17 6677.59 6681.09 6688.49 6689.80 6691.69	6672.97 6680.70 6684.83 6687.55 6688.81 6689.61	6670.89 6674.22 6676.47 6679.84 6680.85 6682.15 6683.85	6665.24 6668.88 6670.58 6672.82 6675.31
Crit W.S.	6703.98		6687.83 6680.92 6695.32 6701.93 6704.46 6707.14	6694.42 6701.66 6704.10 6706.32	6692.49 6697.25 6700.61 6702.76	6685.39 6687.50 6689.43 6689.45 6689.45	6679.38 6681.26 6682.98 6684.14 6685.57	6671.89 6674.56 6676.90 6680.96 6685.36 6687.70 6689.18	6677.14 6682.97 6685.03 6686.29 6687.69	6674.61 6677.22 6678.57 6679.42 6680.98	6664.32 6667.76 6669.02 6670.22 6671.23
W.S. Elev (ft)	6696.58 6701.92 6704.56 6709.11 6711.47		6689.61 6692.72 6701.66 6706.26 6710.45	6689.15 6691.92 6695.29 6700.12 6702.68	6683.98 6687.81 6690.42 6693.23 6695.20 6698.46 6700.53	6679.69 6683.51 6685.39 6687.50 6689.43 6689.45	6674.03 6677.89 6681.50 6687.13 6688.60 6689.96 6699.78	6672.94 6676.85 6679.90 6686.45 6687.16 6687.10	6672.67 6676.37 6679.08 6682.97 6683.67 6685.07 6686.56	6670.73 6673.40 6674.61 6675.62 6677.59 6677.59 6678.54	
Min Ch E	6693.20 6693.20 6693.20 6693.20 6693.20 6693.20		6680.56 6680.56 6680.56 6680.56 6680.56	6680.45 6680.45 6680.45 6680.45 6680.45	6681.15 6681.15 6681.15 6681.15 6681.15 6681.15	6676.44 6676.44 6676.44 6676.44 6676.44	6671.31 6671.31 6671.31 6671.31 6671.31	6669.80 6669.80 6669.80 6669.80 6669.80 6669.80	6669.68 6669.68 6669.68 6669.68 6669.68		6661.20 6661.20 6661.20 6661.20 6661.20
Q Total Min Ch El (cfs) (ft)	1000.00 5000.00 10000.00 20000.00 35000.00 50000.00 75000.00	1000.00 5000.00 10000.00 20000.00 35000.00 50000.00 75000.00	5000.00 10000.00 20000.00 35000.00 50000.00 75000.00	1000.00 5000.00 10000.00 20000.00 35000.00 50000.00	1000.00 5000.00 10000.00 20000.00 35000.00 75000.00	1000.00 5000.00 10000.00 20000.00 35000.00 50000.00	1000.00 5000.00 10000.00 20000.00 35000.00 75000.00	1000.00 5000.00 10000.00 20000.00 35000.00 50000.00 75000.00	Bridge 1000.00 5000.00 10000.00 20000.00 35000.00 50000.00	1000.00 5000.00 10000.00 20000.00 35000.00 50000.00 75000.00	1000.00 5000.00 10000.00 20000.00 35000.00 50000.00
I Profile	+ 5 6 4 6 9 7 4 4 6 9 7 4 4 6 9 7 4 6 9 7 4 6 9 9 7 4 6 9 9 7 4 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 0 0 4 0 0 c t	- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	+ 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 2 & 4 & 6 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7	7 6 4 6 9 7 4 4 6 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6	P P P P P P P P P P P P P P P P P P P	PF 2 4 4 3 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	PF P P P P P P P P P P P P P P P P P P	H H H H H H H H H H H H H H H H H H H	7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9
Reach River Sta	-9.719 -9.719 -9.719 -9.719 -9.719	-9.962 -9.962 -9.962 -9.962 -9.962 -9.962 -10.051	-10.051 -10.051 -10.051 -10.051 -10.051	-10.064 -10.064 -10.064 -10.064 -10.064	-10.113 -10.113 -10.113 -10.113 -10.113	.10.255 -10.255 -10.255 -10.255 -10.255 -10.255	-10.466 -10.466 -10.466 -10.466 -10.466	-10.517 -10.517 -10.517 -10.517 -10.517 -10.517	-10.525 -10.525 -10.525 -10.525 -10.525 -10.525	-10.641 -10.641 -10.641 -10.641 -10.641	-10.841 -10.841 -10.841 -10.841
Reach	Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach Reach	Reach Reach Reach Reach Reach

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chril	Flow Area	op Width	Fronde # Chl
			(cfs)	(u)	(tt)	Œ	(jj)	(ft/ft)	(tr/s)	(3q ft)	(u)	
Reach	-10.841	PF 7	75000.00	6661.20	6679.21	6673.21	6679.73	0.001246	8.07	13556.50	1227.55	0.36
Reach	-11.055	PF 1	1000.00	6652.72	6658.78	6656.87	6659.01	0.002334	3.87	258.28	79.82	0.38
Reach	-11,055	PF2	2000.00	6652.72	6662.88		6663.92	0.004097	8.17	612.31	94.25	0.56
Reach	-11.055	PF3	10000.00	6652.72	6665.45	6663.40	6667.30	0.005445	11.17	1029.34	238.77	79.0
Reach	-11.055	PF4	20000.00	6652.72	6669.02	6669.02	6670.62	0.003871	11.76	2983.93	1049.02	09'0
Reach	-11.055	PF5	35000.00	6652.72	6673.91		6674.31	0.000965	7.38	9201.23	1389.34	0.32
Reach	-11.055	PF6	20000 00	6652.72	80.9299		6676.47	0.000860	7.55	12246.27	1419.43	0.30
Reach	-11.055	PF7	75000.00	6652.72	6678.13		6678.66	0.001046	8.91	15195.25	1488.59	0.34
Reach	-11.093	PF.1	1000.00	6654.92	6658.16	6657.07	6658.43	0.003764	4.14	241.55	97.88	0.46
Reach	-11,093	PF2	2000.00	6654.92	6662.23	90.0999	6662.96	0.004626	6.88	726.24	159.52	0.57
Reach	-11.093	PF 3	10000.00	6654.92	6665.37	6662.74	6666.15	0.003296	7.20	1475.18	496.16	0.51
Reach	-11.093	PF4	20000.00	6654.92	6668.41	6665.66	6669.63	0.003163	9.18	2436.38	901.51	0.53
Reach	-11,093	PF 5	35000.00	6654.92	6672.94	6667.90	6674.00	0.001880	9.21	5590.90	1249.31	0.44
Reach	-11,093	PF 6	200000.00	6654.92	80.5299	6668.97	6676.18	0.001800	9.92	7993.08	1465.92	0.44
Reach	-11.093	PF.7	75000.00	6654.92	68.929	6674.64	6678.31	0.002195	11.76	10187.88	1491.78	0.49
									9			2
Reach	÷		Bridge							1		
Reach	14.11.	PF 1	1000:00	6653.74	6657.93		6658.07	0.001384	2.94	340.68	108.86	0.29
Reach	-11,111	PF2	2000.00	6653.74	6661.81		6662.37	0.002854	6.02	831.03	154.87	0.46
Reach	-11-111	PF3	10000.00	6653.74	6664.92		6665.49	0.002642	60.9	1763.22	515.15	0.45
Reach	-11,111	PF4	20000.00	6653.74	6667.47		6668.29	0.002609	7.62	3015.15	980.35	0.47
Reach	-11.111	PF5	35000.00	6653.74	6668.42	6667.16	6670.44	0.005581	12.00	3589.12	1009.41	0.70
Reach	-11,111	PF 6	200000:00	6653.74	09'2999	16.7999	6672.59	0.016114	18.99	3027.79	980.60	1,17
Reach	-11,111	PF 7	75000.00	6653.74	96.6999	6671.56	6675.92	0.016559	22.07	4290.96	1022.40	1.23
			almo d									
Reach	-11.142	PF1	1000.00	6654.51	6657.30		6657.61	0.005684	4,45	224.47	110.99	0.55
Reach	-11.142	PF2	2000.00	6654.51	6660.45		6661.55	0.006285	8.46	609.11	147.96	19.0
Reach	-11,142	PF3	10000.00	6654.51	6662.57	6661.70	6664.44	0.007200	11.24	1008.23	312.68	0.75
Reach	-11.142	PF4	20000.00	6654.51	6665,45	6665.45	6667.38	0.005729	12.65	2451.79	711.45	0.71
Reach	-11.142	PF 5	35000.00	6654.51	92.7999	6667.76	6669.51	0.004892	13.48	4773.29	1166.14	0.68
Reach	-11.142	PF 6	200000.00	6654.51	6668.79	62.8999	6670.87	0.005740	15,41	6020.29	1264.20	0.75
Reach	-11.142	PF7	75000,00	6654.51	6670.10	6670.10	6672.67	0.006841	17.93	7742.78	1394.42	0.83
											7	
Reach	-11.390	PF 1	1000.00	6646.50	6649.35		6649.70	0.006399	4.77	209.62	102.15	0.59
Reach	-11.390	PF 2	2000.00	6646.50	6652.78		6653.60	0.005695	7.50	755.78	261.92	0.63
Reach	-11,390	PF3	10000.00	6646.50	6654.51	6653.74	6655.63	0.005908	9.34	1549.28	867.30	19.0
Reach	-11.390	PF4	20000.00	6646.50	6656.21	6655.98	6657.29	0.005529	10.43	3337.90	1247.22	0.67
Reach	-11,390	PF 5	35000.00	6646.50	6657.33	6657.25	6658.78	0.007023	12.89	4779.97	1349.59	0.78
Reach	-11,390	PF 6	20000.00	6646.50	6658.33	6658.26	90.0999	0.007720	14.55	6218.05	1527.12	0.83
Reach	-11,390	PF.7	75000.00	6646.50	6659.85	6659.56	6661.66	0.007302	15.60	8638.74	1660.12	0.83

1 TEO 11/6/13 9/1-

				>									>											>											>									>									-	>		
1	Froude # Chl	0.59	0.67	0.67	0.83	0.39	0.49	0.62	0.56	0.58	0.89	0.70	0.63	0.83	0.00	0.38	0.49	0.59	0.52	0.53		0.75	0.78	0.55	0.43	0.46	0.36	0.39	0.63	0.73	0.67	030	0.49	0.47	0.51	0.59	0.04	1,01	0.49	0.52	0.47	44.0	0.34	0.37	0.40	0.44	100	0.92	0.80	0.75	0.74	0.38	0.60	0.67	0.04	
110000	Top Width (ft)	102.15	867.30	1247.22	1527.12	115.31	1015.23	1610.87	1753.03	1868.98	132.74	552.50	950.50	1387.02	1045.03	149.58	915.71	1624.37	2707.31	2813.15		114.83	882.78	1827.61	2628.42	2782.66	187.50	203.40	659.02	1135.01	1853.59		477.28	1751.81	1797.86	1935.99	1945.25	125.42	700.25	1354.80	2408.44	2401.30	103.80	1343 91	1564.76	1918.61	100 45	215.13	910.30	1098.22	1458.46	134.46	821.83	1360.76	1698.21	
	Flow Area (sq.ft)	209.62	1549.28	3337.90	6218.05	285.49	1408.04	4364.63	7183.08	12015.90	173.53	1499.07	2944.69	5189.09	7,00.40	319.04	2045.07	3745.81	10649.38	14210.31		185.79									10127.47	00 000	1126.72	2878.24	7242.94	8526.05					10683.60					10584.71				4663.66				5120.03		
	Vel Chnl (fl/s)				14.55				8.75		rçi r		7.	12.22	<u>0</u>	in in	.9	α α	8.50	ற்		5.38								,	12.89	c	9 9	1 0	8	10.22					9.05		0 0	9	8	9.99				12.82				10.95	5-3	
>	E.G. Slope (ft/ft)	0.006399	0.005908	0.005529	0.007720	0.002681	0.003413	0.004951	0.003781	0.003634	0.017051	0.008074	0.005633	0.008713	0.0000.0	0.002609	0.002757	0.003891	0.002769	0.002946		0.010988	0.006557	0.003546	0.002215	0.002480	0.002533	0.002123	0.004825	0.005916	0.004528	0.004504	0.003442			0.004105					0.002367					0.001853				0.006522	0.005707			0.005313		
100	E.G. Elev (ft)	6649.70		6657.29		6644.	6647.36	6649.72	6651.35	6654.23	6629.30	6633.94		6639	j	6622.56			6633.09			6622.25	6628.		6632.78	34	6616.98	6620		6627	6630.54	6612 72	6616.11		6618.66	6620.92		6603.43		6612.03			6599.14	6606.17	6610.04	6611.74			6600.49	6604.27						
1	Crit W.S.		6653	6655	6658.26		6645.37	100			6628.68			6636	0000		6625	6628	6631.29	6632			6627.14					6619	6622	6625.15	6628	0,524		6615.81				6602.79	6606.93	6609			6596.04					6597.05	j V					6599.12		
	Š			6656	6658.33	6643			6650.79		6628.79	1 = 1	6635.09	6637	0000	6622.41			6632.49			6621.80				6633.62	6616	6620.21	6623		6628		6615.69					6602.79	6099	6611		90 00	6599.04	6605	6099	6613			6601.15				T	6599.93		
	Σ				6646.50				6640.10			Ш		6626.07				1	6619.10			6619.10	6619.	6619.	6619.	6619.					6613.22					6609.52		6601.11		6601.11			6591.93		6591	6591.93	0000	6592.	6592			× 1		6587.79		d)
	Q Total (cfs)	1000.00	10000.00	35000.00	50000.00	1000.00	5000.00	20000.00	35000.00	75000.00	1000.00	10000.00	20000.00	50000.00	n nonc i	1000.00	10000.00	35000.00	50000.00	75000.00	Bridge	1000.00	10000.00	20000.00	50000.00	75000.00	1000.00	5000.00	20000.00	35000.00	75000.00	70001	5000.0	10000.0	35000.0	50000.00	0.00067	1000.00	10000.0	35000.0	50000.00	0.0000	1000.0	10000.0	35000.0	50000.00	7000	5000.0	20000.0	35000.00	75000.0	1000.00	10000.0	35000.00	n.nnng/	Bridge
ls River: River		PF1	PF3	PF 4	PF6 PF7	PF 4	PF2 DE3	PF4	PF 5 PF 6	PF 7	PF 1	PF 3	PF 4	D BH C		PF 1	PF 3	PF 4	9 1 F 1 9 0 1	\ \ \		PF 1	PF3	PF4	PFIG 9	PF.7		PF 2 PF 3		H L		05.4	PF2	PF3	PF 5	PF 6	È.	PF1		PE 4	PF 6	5	PF1	PF3			i i	PF 2	PF 4	PF 5	PF7	P	PF3 PF4	PF 5 PF 6	7	
Plan: Mod Puls	River	-11.390			-11.390		-11.657	-11,657	-11.657	-11.657	-12.165	-12.165	-12.165	-12.165	201-71-	-12.398	-12.398	-12.398	-12.398	-12.398	ci 📗	-12.406	101	COC	-12.406	N	-12.615	-12.615	-12.615	-12.615	-12.615	0	1 0	CV C	NO	-12.938	000	-13.457	-13.457	-13.457	-13.457	70. 70.	-13.772	-13.772	-13.772	-13.772		-14.090	-14.090	-14.090	-14.090	-14.196	-14.196	-14.196 -14.196	-14 08 08	-14.20
HEC-RAS	Reach	Reach	Reach	Reach	Reach Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	i i	Reach Reach	Reach	Reach	Reach	Кеасл	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	hosed	Reach	Reach	Reach	Reach	Readil	Reach	Reach	Reach	Reach	Year N	Reach	Reach	Reach	Reach	docod	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Кеасп	Reach

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(cfs)	(u)	(tt)	æ	(u)	(tt/tt)	(th/s)	(sq ft)	(£)	
	E .											
Reach	-14.208	PF1	1000.00	6587.54	6591.69		6591.84	0.002017	3.10	322.88	127.29	0.34
Reach	-14.208	PF2	5000.00	6587.54	6595.38		6595.71	0.001939	4.94	1369.19	602.00	0.38
Reach	-14.208	PF3	10000.00	6587.54	6596.57		6597.10	0.002927	6.74	2300.79	961.10	0.48
Reach	-14.208	PF4	20000.00	6587.54	6597.90		6598.66	0.003930	8.70	3686.70	1249.65	0.57
Reach	-14.208	PF5	35000.00	6587.54	6599.32		6600.30	0.004575	10.32	5383.65	1453.07	0,63
Reach	-14.208	PF6	50000.00	6587.54	6600.42		6601.62	0.004930	11.63	6807.08	1570.94	99.0
Reach	-14.208	PF.7	75000.00	6587.54	6601.76		6603.32	0.005688	13.64	8922.98	1689.25	0.73
Reach	-14.317	PF-1	1000.00	6586.18	6590.05		6590.29	0.003691	3.91	255.52	111.54	0.46
Reach	-14.317	PF2	5000.00	6586.18	6593.82	6591.77	6594.39	0.003032	6.25	1001.23	432.65	0.47
Reach	-14.317	PF3	10000.00	6586.18	6595.15	6594.86	6595.74	0.003268	7.33	2507.72	1262.41	0.51
Reach	-14.317	PF4	20000.00	6586.18	6596.85	6595.86	6597.35	0.002746	7.74	4825.75	1619.56	0.48
Reach	-14.317	PF 5	35000.00	6586.18	6598.28	6596.98	6598.88	0.002972	8.98	7320.98	2001.90	0.52
Reach	-14.317	PF 6	50000.00	6586.18	6599.43	6597.75	60.0099	0.002940	9.65	9697.41	2161.98	0.52
Reach	-14.317	PF 7	75000.00	6586.18	6600.58		6601.47	0.003612	11.46	12379.79	2516.85	0.59

>	· >	>	· · · · · · · · · · · · · · · · · · ·	>
Froude # Chi 0.46 0.47 0.51 0.52 0.52 0.59	0.50 0.73 0.78 0.82 0.82 0.82 0.43 0.41 0.35 0.35 0.35	0.48 0.48 0.55 0.57 0.62 0.29 0.73 0.73 0.74 0.71	0.38 0.38 0.32 0.36 0.38 0.41 0.41 0.49 0.46 0.46	0.22 0.64 0.64 0.77 0.77 0.77 0.74 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.4
Top Width Fr (ff) 111.54 432.65 1262.41 1619.56 2001.90 2161.98 2516.85	124.75 367.40 717.33 756.45 1601.91 1757.46 1808.20 200.74 608.30 629.64 1485.52 1757.60 2193.02 2626.42 119.83	189.23 1076.26 1175.01 1219.42 1234.23 626.82 1315.57 1387.41 1494.77 1722.69 2218.33	121.25 1542.30 1984.02 2263.57 2586.47 2616.66 2647.25 69.36 1846.16 2733.71 3187.20 3464.53 3573.45	92.52 1675.83 2017.71 2440.83 2670.22 3250.37 3521.04 412.64 1316.76 2524.64 2783.42 3054.74 3054.74 3054.74 267.39 1459.89 2079.87 2665.79 2665.79
	249.19 696.22 1590.22 2567.94 4821.23 6415.56 9774.50 325.39 1584.94 2995.66 6109.56 9549.95 17988.10	1382.14 3526.78 5445.66 7121.20 9135.49 1737.71 1791.86 2503.12 3932.24 6416.13 8557.40	155.54 2091.22 4351.34 7464.15 10616.53 13077.22 16374.70 365.53 1212.39 2181.96 5515.59 8404.48 9998.48	393.05 1109.14 2134.84 2925.08 4531.12 8224.98 11726.85 1794.13 3489.54 5859.23 9175.56 12322.70 16633.34 475.96 2271.50 4147.49 7044.15
(ft/s) 3.91 6.25 7.33 7.74 8.98 9.65 11.46	8.59 9.69 9.69 13.22 13.22 14.51 14.51 14.62 4.62 4.62 6.82 6.82 6.82 6.82 6.82 6.82 6.83 7.88	7.37 9.19 11.19 12.27 14.08 6.19 6.19 6.19 10.20 10.20 10.39	6.43 4.18 4.14 4.14 5.78 6.74 6.51 7.73 7.29 8.19 8.19	2.54 6.90 6.90 1.2.46 1.2.46 1.2.46 1.2.37 1.3.37 2.10 6.68 6.68 7.09 7.00 7.
E.G. Slope (10,10) 0.003691 0.003268 0.0022746 0.002972 0.002972 0.002940 0.002940 0.003612	0.004708 0.007945 0.006557 0.008187 0.007019 0.007406 0.005325 0.001382 0.001382 0.001206 0.001232 0.001232 0.001233	0.002203 0.002478 0.003057 0.003210 0.003659 0.005001 0.008012 0.006540 0.006540 0.006534	0.0021518 0.002159 0.001521 0.001638 0.001729 0.001898 0.003358 0.003368 0.002872 0.002872 0.004025	0.000700 0.003648 0.012029 0.012029 0.015747 0.007114 0.003835 0.003747 0.003747 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740 0.003740
(ft) 6590.29 6594.39 6595.74 6697.35 6500.09 6600.09	6582.64 6585.82 6587.49 6589.26 6590.89 6591.99 6593.58 6575.02 6577.84 6580.12 6582.68 6588.68 6588.04	6576.38 6580.97 6580.97 6582.46 6582.46 6561.28 6562.51 6563.21 6564.35 6565.85 6565.85	6550.24 6553.18 6554.44 6555.91 6557.23 6558.24 6558.24 6558.91 6548.91 6554.70 6553.01 6555.85 6555.85	6548.88 6551.51 6552.55 6554.02 6555.16 6555.16 6556.52 6550.13 6550.13 6550.13 6551.83 6550.13 6551.8
(ft) (ft) (5591.77 (5594.86 (5595.86 (5596.98 (5597.75	6584.50 6586.37 6587.70 6589.40 6590.34 6577.28 6578.53 6579.94 6581.67	6574.83 6578.88 6580.08 6581.48 6559.60 6551.79	6549.59 6544.09 6549.52 6551.82 6553.54 6553.54 6555.09	6549.07 6551.68 6552.98 6553.71 6549.23 6549.23 6550.82 6551.49
	6582.39 6584.74 6586.37 6589.40 6590.34 6592.22 6577.64 6577.64 6577.64 6577.64 6577.64 6577.64 6577.64 6588.52 6588.52	6575.54 6577.98 6579.66 6581.05 6582.69 6562.27 6562.27 6562.27 6562.27 6562.27 6562.27 6565.27 6565.27	6549.59 6553.00 6554.31 6555.78 6557.03 6557.98 6557.98 6557.42 6554.32 6554.32 6555.42 6555.99 6555.99	6548.78 6550.88 6551.71 6552.24 6553.00 6554.43 6555.61 6555.61 6549.94 6550.08 6551.56 6553.00 6553.00 6554.00 6554.00 6555.00 6555.00 6555.00 6555.00 6555.00
E	6578.99 6578.99 6578.99 6578.99 6578.99 6571.71 6571.71 6571.71 6571.71 6571.71 6571.71	6564.55 6564.55 6564.55 6564.55 656.33 6556.33 6556.33 6556.33 6556.33 6556.33	6548.00 6548.00 6548.00 6548.00 6548.00 6548.00 6548.00 6538.64 6538.64 6538.64 6538.64 6538.64 6538.64 6538.64	6539.98 6539.98 6539.98 6539.98 6539.98 6539.98 6539.98 6539.98 6539.90 6546.00 6546.00 6546.00 6546.00 6546.00 6538.11 6538.11 6538.11
	1000.00 5000.00 20000.00 35000.00 75000.00 1000.00 5000.00 1000.00 20000.00 35000.00 1000.00 75000.00 75000.00	10000.00 35000.00 50000.00 75000.00 1000.00 5000.00 10000.00 20000.00 35000.00 50000.00	1000.00 5000.00 2000.00 35000.00 5000.00 75000.00 1000.00 5000.00 35000.00 50000.00 75000.00	Bridge 1000.00 5000.00 3500.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00 75000.00
	7 4 4 6 6 7 4 6 6 6 6 6 7 7 7 7 7 7 7 7	E 4 2 9 7 1 2 6 4 5 9 7 7 1 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 2 2 4 4 5 5 4 4 5 5 7 4 4 5 5 7 4 4 5 5 7 4 5 5 7 5 7	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Plan: Mod Puls River Sta -14.317 -14.317 -14.317 -14.317 -14.317 -14.317	-14.665 -14.665 -14.665 -14.665 -14.665 -14.665 -14.665 -15.023 -15.023 -15.023 -15.023 -15.023 -15.023 -15.023	-15.426 -15.426 -15.426 -15.426 -15.426 -16.032 -16.032 -16.032 -16.032 -16.032	-16.610 -16.610 -16.610 -16.610 -16.610 -16.610 -16.707 -16.707 -16.707 -16.707 -16.707 -16.707 -16.707	-16.71 -16.715 -16.715 -16.715 -16.715 -16.715 -16.786 -16.786 -16.786 -16.786 -16.786 -17.200 -17.200 -17.200 -17.200 -17.200
८५८ ।	Reach	Reach	Reach	Reach

			>									>									>									>									>					14				>		
Froude # Chi	0.28	0.32	0.31	0.39	0.34	0.39	0.65	0.67	0.53	0.48	0.44	0.36	0.24	0.28	0.29	0.34	0.52	0.49	0.22	0.33	0.37	0.35	0.44	1.00	0.47	0.51	0.62	0.17	0.30	0.36	0.18	0.23	1.01	0.32	0.12	0.10	0.22	0.52	0.56	0.63		0.99	0.54	1.18	0.79	0.33	0.30	0.27	0.27	0.30
uli)	(m) 267.39	1459.89	2167.44	2665.79 2718.78 2853.62	164 80	917.42	14/2.11	2559.81	2647.57	117.70	664.44	1526.64	2195.72	2327.31	138.56	308.56	533.79 1265.48	3552.96 3783.00	140.56	393.60	1166.35	1336.18	1447.54	72.95	472.45	1458.02	1617.44	241.65	403.90	712.95	2451.61	2523.17	303.59	1158.65	2284.54	2459.11	100.16	119.24	1876.18	2430.76		106.83	118.17	410.43	2355.99	357.19	2524.13	3756.03	3774.61	221.47
Area	(sq rr) 475.96	2271.50	7044.15	12162.07 15359.08	324 31	1588.88	3686.60	6360.81	9602.34	251.20	1271.61	3285.10 7689.89	12652.72	19363.74	353.67	2018.39	3033.80	9692.29	442.67	1353.12	4810.29	7786.41	11851.10	131.11	1916.18	3574.21	7148.85	639.25	1394.39	2224.12	14635.69	18603.86 21594.59	209.51	3948.12	12893.58	29640.31 32088.59	398.25	695.68	2144.99	6312.59		444 55	680.69	1083.44	5483.78	458.63	4727.29	14198.99	23068.10	424.94
E	(US) 2.10	2.83	3.96	5.82	2,00	4.74	9.18	10.38	8.24	3.98	5.56	4.71	4.64	6.10	2.96	6.34	11.61	11,54	2.26	4.54	6.80	3.46	9.84	7.63	7.20	13.31	12.11	1.56	3.80	5.29	3.81	5.34	4.77	3.31	1.84	3.11	2.51	7.19	10.97	15.20		2 42	7.35	19.96	17.31	2.97	3.45	4.24	4.96	2.35
edo	(100) 0.001521	0.001776	0.001368	0.001466	0.003050	0.003351	0.008582	0.008636	0.004987	0.005308	0.003389	0.000996	0.000724	0.000935	0.001639	0.001590	0.002421	0.002760	0.001032	0.001772	0.001973	0.001597	0.002360	0.024653	0.003463	0.003794	0.005161	0.000617	0.001538	0.002141	0.000404	0.000625	0.034288	0.001950	0.000206	0.000105	0.000934	0.004626	0.004132	0.004641		0000000	0.004909	0.021605	0.007674	0.002363	0.001753	0.001063	0.001027	0.002136
E,G. Elev	(ii) 6543.17	6545.28	6547.82	6549.20 6549.98 6551.25	6538 05	6540.04	6541.09	6543.26	6544.33	6253.09	6532.58	6537.04	6539.35	6542.40	6523.13	6530.80	6533.73	6537.94	6518.85	6522.30	6526.67	6529.10	6532.35	6511.07	6517.27	6519.60	6522.36	6505 95	6508.75	6510.59	6518.04	6519.65	6502.29	6505.48	6512.32	6519.28	6500.62	6504.03	6511.90	6518.87		2500 57	6503.71	6511.34	6517.15	6499.88	6501.99	6505.94	6508.36	6495.21
Crit W.S.		6543.64						6541.92					ν.					6535.23						6510.16	6515.01	6516.90		6504 03	00.		6511.85		6501.94				6497.04	6500.83	6507.98	6513.78			6503.16	6507.16	6514.84	6498.58	6501.38	6503.27 6503.25	6504.71	
W.S. Elev	(T) 6543.10	6545.17	6547.66	6548.97 6549.65 6550.78	6537 89	6539.82	6541.35	6542.57	6543.82	6528.85	6532.18	6536.88	6539.20	6542.13	6523.00	6530.32	6532.84	6536.98	6518.77	6522.02	6526.23	6528.67 6529.90	6531.57	6510.16	6516.71	6518.83	6521.20	6505.91	6508.53	6510.19	6517.91	6520.67	6501.94	6505.29	6512.27	6519.23	6500.52	6503.23	6510.22	6516.20		98,0038	6502.87	6506.05	6513.59	6499.78	6501.89	6505.83 6506.83	6508.18	6495.13
Min Ch El	(11) 6538.11	6538.11	6538.11	6538.11 6538.11 6538.11	6533 64	6533.64	6533.64	6533.64	6533.64	6526.00	6526.00	6526.00	6526.00	6526.00	6518.28	6518.28	6518.28	6518.28	6514.27	6514.27	6514.27	6514.27	6514.27	6506.80	6506.80	6506.80	6506.80	6502.82	6502.82	6502.82	6502.82	6502.82	6500.78	6500.78	6500.78	6500.78	6492.79	6492.79	6492.79	6492.79		04 00 80	6492.80	6492.80	6492.80	6494.15	6494.15	6494.15 6494.15	6494.15	6491.28
Q Total	1000.00	5000.00	20000.00	35000.00 50000.00 75000.00	1000 00	5000.00	20000.00	35000.00	50000.00	1000.00	5000.00	20000.00	35000.00	75000.00	1000.00	10000.00	35000.00	50000.00	1000.00	5000.00	20000.00	35000.00	75000.00	1000.00	10000.00	35000.00	50000.00	1000 00	5000.00	10000.00	35000.00	75000.00	1000.00	10000.00	35000.00	50000.00	1000.00	5000.00	20000.00	50000.00	Bridge	00 000 F	5000.00	35000.00	50000.00	1000.00	10000.00	35000.00	75000.00	1000.00
Profile			PF 4	0 0 N	7	PF2 .	PF 4	PF 5	PF 6	PF-1	PF 2	7	PF 5) Ł	PF 1	. G .	PF 5	PF 6		PF.2 PF.3		PF 5	PF7	PF1	PF3	7. P.	PF6 PF7	된 되 집	PF 2	PF 3	PF 5	7 H 7 T 7 T	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	77.2 2.6 8.	PF 4	PF 6 PF 7	PF 4	PF2 PF3	PF4	9 9 9 7 7 7			PF2 PF3		PF6 PF7	H H	PF2	PF 74) <u> </u>	PF-4
River Sta	-17.200	-17.200	-17.200	-17.200 -17.200 -17.200	-17.665	-17.665	-17.665	-17.665	-17.665	- 60	00 0	-18.094 -18.094	00 00	0 0	-18.509	-18.509	-18.509 -18.509	-18.509	-19.137	-19.137	-19.137	-19.137 -19.137	-19.137	-19.650	-19.650	-19,650	-19.650 -19.650	-20 143	-20.143	-20.143	-20.143	-20.143	-20.502	-20.502	-20.502	-20.502	-20.594	-20.594	-20.594	-20.594	-20.6	20 804	-20.601	-20.601 -20.601	-20.601	-20.695	-20.695	-20.695 -20.695 -20.695	-20.695	-21,099
Reach	Reach	Reach	Reach	Reach Reach Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach Reach	Reach	Reach Reach	Reach	Reach	Reach	Reach	Reach	Reach Reach	Reach Reach	Reach	Reach	Reach Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Reach	Doorh	Reach	Reach Reach	Reach	Reach	Reach Reach	Reach Reach	Reach	Reach							

VTEO 11/6/13
665 11/14/13

V TEO 11/6/13

Parameters, Initial Conditions, and Boundary Conditions

The basic information requirements for all routing models are:

- A description of the channel. All routing models that are included in HEC-HMS require a description of the channel. In some of the models, this description is implicit in parameters of the model. In others, the description is provided in more common terms: channel width, bed slope, cross-section shape, or the equivalent.
- Energy-loss model parameters. All routing models incorporate some type of energy-loss model. The physically-based routing models, such as the kinematic-wave model and the Muskingum-Cunge model use Manning's equation and Manning's roughness coefficients (n values). Other models represent the energy loss empirically.
- Initial conditions. All routing models require initial conditions: the flow (or stage) at the downstream cross section of a channel prior to the first time period. For example, the initial downstream flow could be estimated as the baseflow within the channel at the start of the simulation, as the initial inflow, or as downstream flow likely to occur during a hypothetical event.
- Boundary conditions. The boundary conditions for HEC-HMS routing
 models are the upstream inflow, lateral inflow, and tributary inflow
 hydrographs. These may be observed historical events, or they may be
 computed with the precipitation-runoff models of HEC-HMS.

Modified Puls Model

Basic Concepts and Equations

The Modified Puls routing method, also known as storage routing or level-pool routing, is based upon a finite difference approximation of the continuity equation, coupled with an empirical representation of the momentum equation (Chow, 1964; Henderson, 1966).

For the Modified Puls model, the continuity equation is written as

$$\frac{\partial Q}{\partial x} + \frac{\partial A}{\partial t} = 0 \tag{8-6}$$

This simplification assumes that the lateral inflow is insignificant, and it allows width to change with respect to location. Rearranging this equation and incorporating a finite-difference approximation for the partial derivatives yields

$$\overline{I_t} - \overline{O_t} = \frac{\Delta S_t}{\Delta t} \tag{8-7}$$

where $\overline{I_t}$ = average upstream flow (inflow to reach) during a period Δt ; $\overline{O_t}$ = average downstream flow (outflow from reach) during the same period; and ΔS_t = change in storage in the reach during the period. Using a simple backward differencing scheme and rearranging the result to isolate the unknown values yields:

16/17

$$\left(\frac{S_t}{\Delta t} + \frac{O_t}{2}\right) = \left(\frac{I_{t-1} + I_t}{2}\right) + \left(\frac{S_{t-1}}{\Delta t} - \frac{O_{t-1}}{2}\right) \tag{8-8}$$

in which I_{t-1} and I_t = inflow hydrograph ordinates at times t-1 and t, respectively; O_{t-1} and O_t = outflow hydrograph ordinates at times t-1 and t, respectively; and S_{t-1} and S_t = storage in reach at times t-1 and t, respectively. At time t, all terms on the right-hand side of this equation are known, and terms on the left-hand side are to be found. Thus, the equation has two unknowns at time t: S_t and O_t .

A functional relationship between storage and outflow is required to solve Equation 8-8. Once that function is established, it is substituted into Equation 8-8, reducing the equation to a nonlinear equation with a single unknown, O_t . This equation is solved recursively by HEC-HMS, using a trial-and-error procedure. [Note that at the first time t, the outflow at time t-1 must be specified to permit recursive solution of the equation; this outflow is the initial outflow condition for the storage routing model.]

Defining the Storage-outflow Relationship

The storage-outflow relationship required for the Modified Puls routing model can be determined with:

Water-surface profiles computed with a hydraulics model. Steady-flow
water surface profiles, computed for a range of discharges with programs like
HEC-2 (USACE, 1990), HEC-RAS (USACE, 1998), or a similar model,
define a relationship of storage to flow between two channel cross sections.

Figure 8-1 illustrates this; it shows a set of water-surface profiles between cross section A and cross section B of a channel. These profiles were computed for a set of steady flows, Q_1 , Q_2 , Q_3 , and Q_4 .

For each profile, the volume of water in the reach, S_i , can be computed, using solid geometry principles. In the simplest case, if the profile is approximately planar, the volume can be computed by multiplying the average cross-section area bounded by the water surface by the reach length. Otherwise, another numerical integration method can be used. If each computed volume is associated with the steady flow with which the profile is computed, the result \checkmark is a set of points on the required storage-outflow relationship.

This procedure can be used with existing or with proposed channel configurations. For example, to evaluate the impact of a proposed channel project, the channel cross sections can be modified, water surface profiles recalculated, and a revised storage-outflow relationship developed.

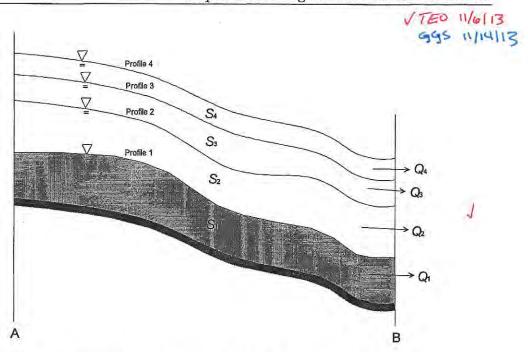


Figure 8-1. Steady-flow water-surface profiles and storage-outflow curve

Historical observations of flow and stage. Observed water surface profiles, obtained from high water marks, can be used to define the required storage-outflow relationships, in much the same manner that computed water-surface profiles are used. Each observed discharge-elevation pair provides information for establishing a point of the relationship.

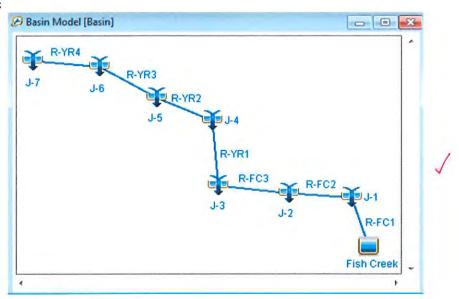
Sufficient stage data over a range of floods is required to establish the storage-outflow relationship in this manner. If only a limited set of observations is available, these may best be used to calibrate a water-surface profile-model for the channel reach of interest. Then that calibrated model can be exercised to establish the storage-outflow relationship as described above.

 Calibration, using observed inflow and outflow hydrographs for the reach of interest. Observed inflow and outflow hydrographs can be used to compute channel storage by an inverse process of flood routing. When both inflow and outflow are known, the change in storage can be computed using Equation 8-7. Then, the storage-outflow function can be developed empirically. Note that tributary inflow, if any, must also be accounted for in this calculation.

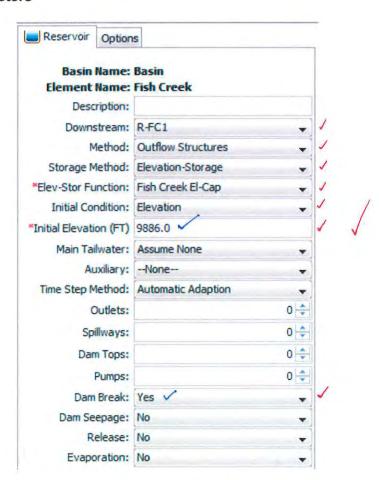
Inflow and outflow hydrographs also can be used to find the storage-outflow function by trial-and-error. In that case, a candidate function is defined and used to route the inflow hydrograph. The outflow hydrograph thus computed is compared with the observed hydrograph. If the match is not adequate, the function is adjusted, and the process is repeated. Chapter 9 provides more information regarding this process, which is referred to as calibration.

USACE

Client Steamboat Springs Checked 11/12/13 By TEO

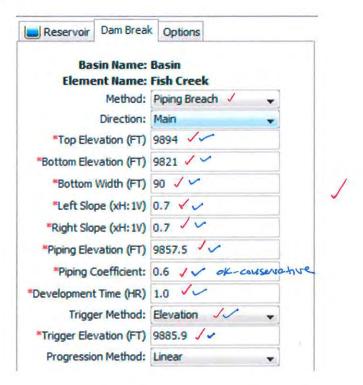

Subject Fish Creek Dam Approved 11/14/12 By GGS

Project <u>13117</u> Page <u>1/10</u>

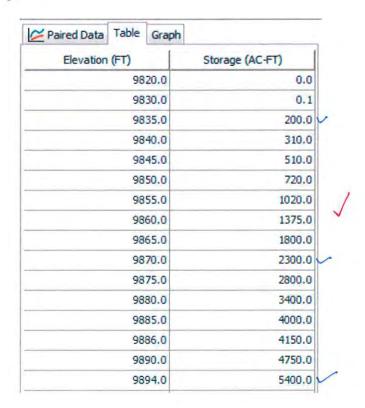

breach	HEC-HMS hydrologic model to develop the dam nydrograph and evaluate attenuation of the aph through the downstream channel
ASSUMPTIONS- 1) U	se RJH Dam Breach Parameters analysis //
	se RJH Muslengum-Cunge channel vouting pavameters nalysis Nated 9/23/13.
3) U	lse RIH Midified Puls channel routing parameters nalysis dated 10/30/13.
4t) U	ISE USACE HEC-HMS Version 3.5 V
	Use RJH Elevation - capacity analysis dated 9/18/1
ANALYSIS-	Evaluate a sunny-day piping failure /
- The HEC-HMS mo channel reaches.	del consists -f the reservoir and downstran
- model input is s	
- Model output is s	Mohm on P. 8-10 /
Summary -	
	a outflow = $72,100$ efs
Took Dum Dreact	

Fish Creek Dam Breach Inundation Study Project No. 13117

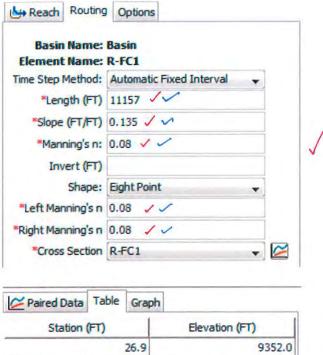
Schematic



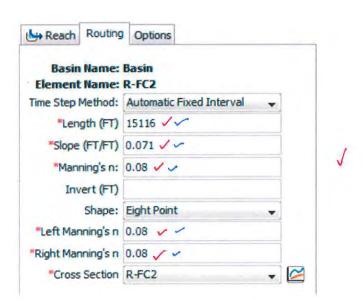
Reservoir Parameters



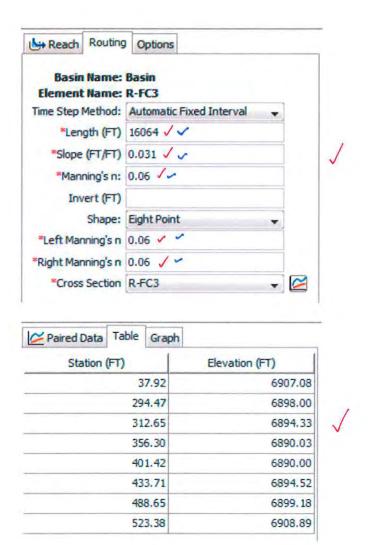
P:\13117 - Steamboat\Engineering\Hydraulics\13117 Fish Creek HEC-HMS Results.docx


Breach Parameters

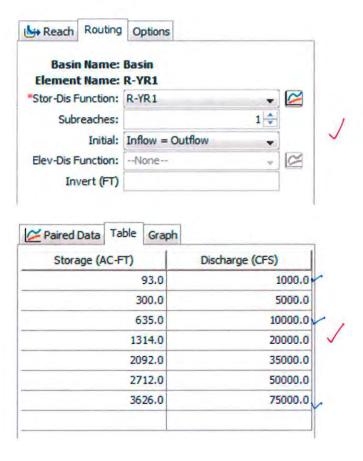
Elevation-Capacity



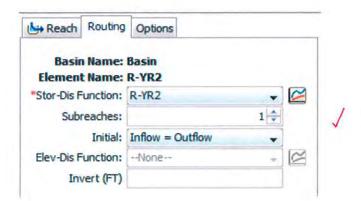
Reach FC-1


	Graph	Table	Paired Data
Elevation (FT)	1	FT)	Station (
9352.0	26.9		
9340.3	55.4		
9332.0	83.5	8	
9326.0	18.8	1	
9326.0	24.9	1	
9330.6	51.5	1	
9335.3	76.0	1	
9348.7	18.8	2	

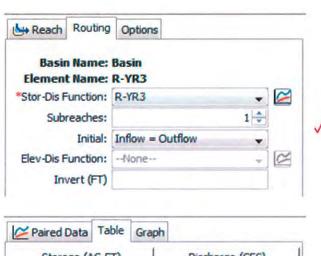
Reach FC-2



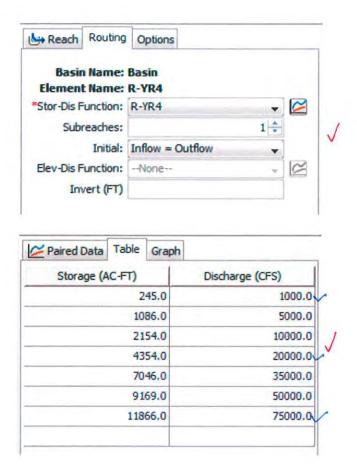
	Paired Data Table Graph
Elevation (FT)	Station (FT)
7972.0	61.8
7966.1	86.1
7956.0	105.6
7954.0	118.5
7955.2	139.5
7956.0	179.1
7964.0	206.6
7974.0	233.9


Reach FC-3

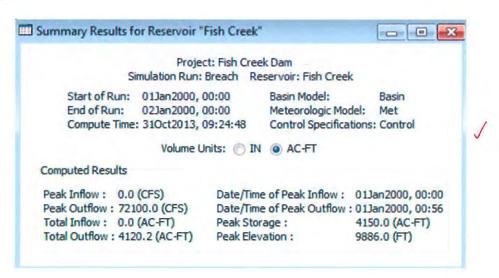
Reach YR-1

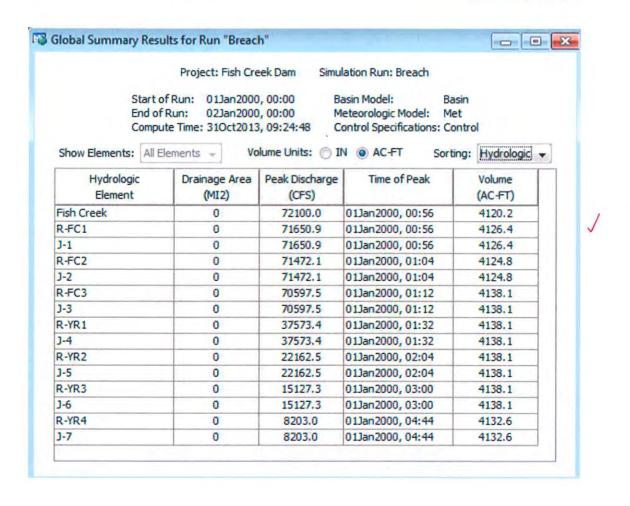


Reach YR-2

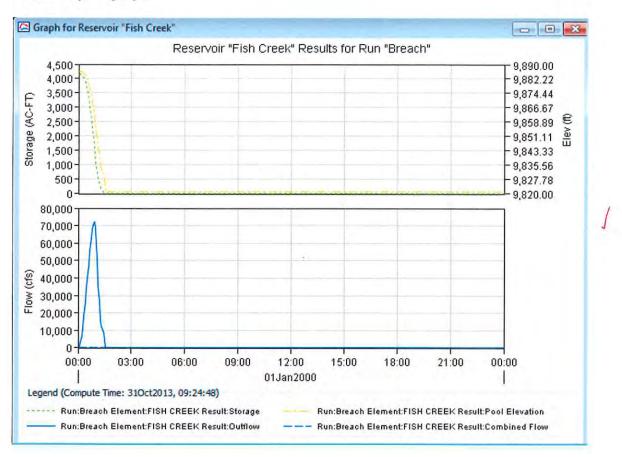

Discharge (CFS)	Storage (AC-FT)
1000.0	97.0
5000.0	354.0
10000.0	740.0
20000.0	1391.0
35000.0	2239.0
50000.0	3003.0
75000.0	4082.0

Reach YR-3




Discharge (CFS)	Storage (AC-FT)
1000.0	133.0
5000.0	516.0
10000.0	932.0
20000.0	1695.0
35000.0	2634.0
50000.0	3419.0
75000.0	4598.0

Reach YR-4



Results

Breach Hydrograph

APPENDIX C

Manning's n Values

Client Steamboat Springs Checked 11/1/13 By TEO

Project 13117 Page 1/11 Date 10(31/13 By EMH

Subject Fish Creek Dam Approved 11/14/13 By GOS

REDUIRED- Evaluate Manning's n values for the downstream drainage 1) Use FEMA Effective hydraulic models for the ASSUMPTIONS -Yampa River and Fish Creek 2) Use photographs from site visit October 2013 3) Use FEMA Flood Insurance Study Routt County Colorado and Unincorporated Areas (2005) 1 a) Use USDA NAIP Aerial Imagery (2011) 1 5) Use V.T. Chow Open Channel Hydranlies (1959) 1. Table of mannings in coefficients as shown in T. L. Starm Open Channel Hydraulies (2001). ANALYSIS -- TRIH will generally use Manning's n values as presented in the FEMA Flood Insurance Study (FIS) and FEMA affective models > The intent of this evaluation is to confirm that these v Manning's in values are appropriate, and adjust where required - Middle Fork Fish Creek (Dam to XS-2.15) Northfork Fish Creek 1(XS-2,15 to -4.325) and Fish (reek (XS-7.325 to-5.013) V - Main channel consists of a steep mountain stream with large boulders and minimal vegetation (see p. 5) - FEMA model used n=0.08 for upper reaches of Fish Creek main channel - From Sturm: Min. Avg. Max - Mountain stream w/ 0.07 (See > 11 0:04 0.05 large boulders

Client Steamboat Springs Checked 11/1/13 By TEO
Subject Fish Check Dam Approved 11/14/13 By GGS

Project 13117 Page 2111

minease Sturm values to account for significant presence of large but use n=0.08 y for main channel > FEMA model confirmed. Overbanks consist of some areas of thick pine trees and brush with some areas of rock prival & notive grasses interspersed (see p. 5) - FEMA model used n=0.00 for upper reaches of V Fish Creek overbanks - From Sturm: Min. Avg. Mux. - Trees heavy Stand of timber of timber on 0.08 o.10 o.12 (see p. 4) Grass Ibane areas (n=0.10 used in a few, select areas densely forested areas) No Creek (XS-5.013 to -8.05) Main channel consists of a steep mountain stream with gravel cobbles, and some boulders (see p. 6) - From Sturm:	-increase Sturm values to account for significant presence of large bin - use n = 0.08 V for main channel > FEMA model confirmed - Overbanks Consist of some areas of thick pine trees and brush with some areas of brocklyrovel & noting rasses interspersed (see 7.5) - FEMA model used n = 0.10 for upper veaches of V Fish Creek overbanks - From Sturm: Min. Aug. Max. J - Trees heavy Stand of Fimber 0.08 0.10 0.12 (see > V see of timber 0.08 0.10 0.12 (see > V see of timber of the present areas of short grass / bare areas (n = 0.10 used in a few y select areas deniely forested areas) Fish Creek (XS - 5.013 to - 8.05) - Main Channel (consists of a steep mountain stream with gravel, cobbles, and some boulders (see p. 6) - FEMA model used n = 0.06 for main channel V - From Starm:	- Overbanks consist of some areas of thick pine trees and brush with some areas of trock grovel & notine grasses interspersed (see 7.5) - FEMA model used N=0.10 for upper veaches of V Fish Creek overbanks - From Sturm: Min. Avg. Max. - Trees, heavy stand of timber 0:08 0:10 0:12 (see p - use N=0.08 for account for interspersed areas of short grass / bare areas (n=0.10 used in a few) select areas densely forested areas) - Fish Creek (XS-5.013 to -8.05) - Main Channel Consists of a steep mountain stream with gravel, cobbles, and some boulders (see p. 6) - FEMA model used n=0.06 for main channel V - From Starm:		J		.16)		1				h/	
recrease Sturm values to account for significant presence of large use h=0.08 V for main channel > FEMA model confirm Overbanks consist of some areas of thick pine trees and bruch with some areas of rock prevel & noting rass interspersed (see p. 5) - FEMA model used h=0.10 for upper reaches on Fish (reck overbanks) - From Sturm: Min. Aug. Max. - Trees heavy stand o.08 0.10 0.12 (s. Use n=0.08 to account for interspersed areas of sho grass (bare areas (n=0.10 used in a few select areas densely forested areas) In Creek (XS-5.018 to -8.05) Main channel consists of a steep mountain stream we gravel, cobbles, and some boulders (see p. 6) - FEMA model used n=0.06 for main channely - From Stherm:	- increase Sturm values to account for significant presence of large - use n = 0.08 V for main channel > FEMA model confirm - Overbanks consist of some areas of thick pine trees and bruch with some areas of rocklyrovel & native grass interspersed (see p. 5) - FEMA model used n = 0.10 for upper reaches of Fish (reck overbanks) - From Sturm: Min. Avg. Max - Trees heavy stand of timber 0.08 0.10 0.12 (s. - use n = 0.08 to account for interspersed areas of sho grass / bare areas (n = 0.10 used in a fee select areas densely forested areas) Fish Creek (XS + 5.013 to - 8.05) - Main Chennel (consists of a steep mountain stream we gravel cobbles, and some boulders (see p. 6) - FEMA model used n = 0.06 for main channely - From Starm:	- use n=0.08 V for main channel > FEMA model con firm - use n=0.08 V for main channel > FEMA model con firm - overbanks consist of some areas of thick pine trees and bruch with some areas of rocklyrively noting rass interspersed (see p. 5) - FEMA model used n=0.10 for upper reaches of Fish (reck overbanks) - From Sturm: Min. Avg. Max - Trees, heavy stand of timber 0.08 0.10 0.12 (s. - use n=0.08 to account for interspersed areas of sho grass / bare areas (n=0.10 used in a fee select areas densely forested areas) - Fish Creek (XS-5.013 to -8.05) - Main channel consists of a steep mountain stream we gravel cobboles and some boulders (see p. 6) - FEMA model used n=0.06 for main channely - From Starm:		es	4 🗸		v+,	ĩΗ		*		d	VU.
ricrease Sturm values to account for significant presence of la use n=0.08 y for main channel > FEMA model confi overbanks consist of some areas of thick pine the and bruch with some areas of rock grovel & notive gra interspersed (see p. 5) - FEMA model used n=0.10 for upper reaches Fish (reck overbanks) - From Sturm: - Trees heavy stand of timber of timber of timber oreas (n=0.10 used in a f select areas densely forested areas) h Creek (XS-5.018 to -8.05) Main channel consists of a steep mountain stream gravel, cobbles, and some boulders (see p. 6) - From Sturm:	-increase Sturm values to account for significant presence of la - use n = 0.08 V for main channel > FEMA model confi - Overloanks consist of some areas of thick pine the and brush with some areas of rock grovel & notive gra interspersed (see 70.5) - FEMA model used n = 0.10 for upper reaches Fish Creek overbanks - From Sturm: Min. Avg. Max. - Trees heavy stand of timber 0.08 0.10 0.12 - use n = 0.08 to account for interspersed areas of s grass / bare areas (n = 0.10 used in a f select areas densely forested areas) Fish Creek (XS - 5.013 to - 8.05) - Main channel consists of a steep mountain stream gravel, cobboles, and some boulders (see p. 6) - FEMA model used n = 0.06 for main channel v - From Sturm:	- increase Sturm values to account for sinal finant presence of la - use n = 0.08 V for main channel > FEMA model confi - Overbanks Consist of some areas of thick pine the and brush with some areas of brock prival & native gra interspersed (see p. 5) - FEMA model used n = 0.10 for upper reaches Fish Creek overbanks - From Sturm: Min. Avg. Max. - Trees heavy Stand of timber 0.08 0.10 0.12 - use n = 0.08 to account for interspersed areas of s grass I bare areas (n = 0.10 used in a f select areas densely forested areas) - Fish Creek (XS + 5.013 to - 8.05) - Main Channel Consists of a steep mountain stream gravel, cobbles, and some boulders (see p. 6) - FEMA model used n = 0.06 for main channel v - From Sturm:	1	ees x & S	0		ho Sec	bi	-	7			me 6
merease Sturm values to account for significant presence of use n=0.08 V for mash channel > FEMA model cor overbanks consist of some areas of frick pine and brush with some areas of rock prove & notives interspersed (see p. 5) - FEMA model used n=0.10 for upper reach Fish Creek overbanks - From Sturm: - Trees heavy stand of timber 0.08 0.10 0.11 - Use n=0.08 to account for interspersed areas of grass / bare areas (n=0.10 used in a select areas densely forested area in Creek (XS-5.013 to -8.05) Main channel consists of a steep mountain stream gravel, cobboles, and some boulders (see p. 6) - FemA model used n=0.06 for main channely - From Sturm:	- increase Sturm values to account for significant presence of - use n = 0.08 V for main channel > FEMA model cor - overbanks consist of some areas of thick pine and bruch with some areas of rock grovel & notive interspersed (see 7.5) - FEMA model used n = 0.10 for upper reach Fish Creek overbanks - From Sturm: Min. Avg. Max - Trees heavy Stand of timber old 0.08 0.10 0.11 - use n = 0.08 to account for interspersed areas of grass I bare areas (n = 0.10 used in a select areas densely forested area Fish Creek (XS - 5.013 to - 8.05) - Main channel consists of a steep mountain stream gravel, cobboles, and some boulders (see p. 6) - FEMA model used n = 0.00 for main channel v - From Sturm:	- increase Sturm values to account for significant presence of - use n = 0.08 V for main channel > FEMA model cor - Overbanks consist of some areas of thick pine and brush with some areas of Mock of provel & notice interspersed (see 70.5) - FEMA model used n = 0.10 for upper reach Fish (neek overbanks - From Sturm: - Trees heavy stand of timber - use n = 0.08 to account for interspersed areas of grass / bare areas (n = 0.10 used in a select areas densely forested area - Fish Creek (XS + 5.013 to - 8.05) - Main Channel (consists of a steep mountain stream gravel, cobbles, and some boulders (see F. 6) - FEMA model used n = 0.06 for main channely - From Sturm:		tra	67		s . +	m	lax	0.0			fir
markage Sturm values to account for significant presence use n=0.08 yfor main channel > FEMA model Overbanks consist of some areas of thick pi and bruch with some areas of mock provel of nor interspersed (see p. 5) - FEMA model used n=0.10 for upper rea Fish (reck overbanks - From Sturm: Min. Avg. y - Trees heavy stand of timeer or nterspersed areas grass I bare areas (n=0.10 used: select areas densely forested areas select areas densely forested are pravel (xS + 5.013 to -8.05) Main channel consists of a steep mountain str gravel, cobbles, and some boulders (see p. 6) - FEMA model used n=0.06 for main channel - From Sturm:	- increase Starm values to account for significant presence - use n = 0.08 V for main channel > FEMA model - overbanks consist of some areas of thick pi and bruch with some areas of rock provel & no interspersed (see 70.5) - FEMA model used n = 0.10 for upper rea Fish Creek overbanks - From Sturm: Min. Avg. V - Trees heavy stand of timber - use n = 0.08 to account for interspersed areas grass / bane areas (n = 0.10 used); select areas densely forested are Fish Creek (XS - 5.013 to - 8.05) - Main channel consists of a steep mountain str gravel, obbles, and some boulders (see p. 6) - FEMA model used n = 0.00 for main channel - From Sturm:	- use n=0.08 for main channel > FEMA model - use n=0.08 for main channel > FEMA model - overbanks consist of some areas of thick p and bruch with some areas of rock gravel & no interspersed (see p. 5) - FEMA model used n=0.10 for upper rea Fish (reck overbanks - From Sturm: Min. Aug. r - Trees heavy stand of timber - use n=0.08 to account for interspersed areas grass I bare areas (n=0.10 used: select areas denicely forested are select areas denicely forested are - Fish Creek (XS - 5.013 to -8.05) - Main channel consists of a steep mountain str gravel cobbles, and some boulders (see p. 6) - FEMA model used n=0.06 for main channel - From Sturm:		ne tive	ich		of n.	ea	/	-			con
markage Sturm values to account for significant presences of the sound of the model overbanks consist of some areas of the cock of the coc	- increase Sturm values to account for significant present use n=0.08 for main channel > FEMA model - use n=0.08 for main channel > FEMA model - overbanks consist of some areas of thick and brush with some areas of frocklyrovel of interspersed (see p. 5) - FEMA model used n=0.10 for upper v Fish Creek overbanks - From Sturm: - Trees heavy stand of timber of timber ose n=0.08 to account for interspersed area grass / bare areas (n=0.10 used select areas densely forested) Fish Creek (XS-5.013 to -8.05) - Main channel consists of a steep mountain s gravel, cobbles, and some boulders (see p. 6) - FEMA model used n=0.00 for main channely - From Sturm:	- use n=0.08 for main channel > FEMA model - use n=0.08 for main channel > FEMA model - overbanks consist of some areas of thick and bruch with some areas of rocklyrively interspersed (see p. 5) - FEMA model used n=0.10 for upper v Fish (neek overbanks) - Trees, heavy stand of timber - use n=0.08 for account for interspersed area grass (bane areas (n=0.10 used select areas dencely forested) - Fish Creek (XS - 5.013 to - 8.05) - Main channel consists of a steep mountain s gravel cobbles, and some boulders (see p. 6) - FEMA model used n=0.00 for main channel promothers.		P	e.		i	5 tv	21		5		ul ee
marked setterm values to account for significant pouse in a consist of some areas of third and bruch with some areas of third and bruch with some areas of rockly gravel interspersed (see p. 5) - FEMA model used in = 0.10 for upper Fish (neek overbanks) - From Sturm: - Trees heavy stand of timeer of timeer oso in = 0.08 to account for interspersed are grass I bane areas (n = 0.10 us select areas denicely foreste in Creek (XS - 5.013 to - 8.05) Main channel consists of a steep mountain gravel cobbles, and some boulders (see p. 6) - FEMA model used n = 0.00 for main chan- From Sturm:	- man channel consists of account for significant pour less and some areas of third and bruch with some areas of thockly gravel interspersed (see p. 5) - FEMA model used n=0.10 for upper Fish (reck overbanks) - Trees heavy stand of timber of timber of timber of timber ones (n=0.10 us select areas densely foreste to the consists of a steep mountain of ravel, cobbles, and some boulders (see p. 6) - FEMA model used n=0.00 for main chance of the consists of a steep mountain of a steep mountain of a steep mountain of the consists of a steep mountain of a steep mountain of the consists of the consists of a steep mountain of the consists of t	- ricrease Sturm values to account for significant prouse n=0.08 V for main channel > FEMA m - use n=0.08 V for main channel > FEMA m - overbanks consist of some areas of thick and brush with some areas of trock grovel interspersed (see p. 5) - FEMA model used n=0.10 for upper Fish (reck overbanks - From Sturm: - Trees heavy stand of timber - use n=0.08 to account for interspersed are grass (h=0.10 us select areas densely foreste - Fish Creek (XS + 5.013 to - 8.05) - Main channel consists of a steep mountain gravel, cobbles, and some boulders (see p. 6 - FEMA model used n=0.06 for main chan- - From Sturm:		K &	V		ea ed	VV	tv		5, 6		de tn
racrease Sturm values to account for significant use h = 0.08 V for main channel > FEMA Overbanks Consist of some areas of this and bruch with some areas of rocklyrs interspersed (see p. 5) - FEMA model used h = 0.10 for upper Fish Creek overbanks - From Sturm: Min. As of timer 0.08 o use n = 0.08 to account for interspersed of grass I bare areas (n = 0.10 select areas densely forest in Creek (XS - 5.013 to - 8.05) Main channel consists of a steep mounta gravel cobbles, and some boulders (see p. - FEMA model used h = 0.00 for main ch - From Sturm:	- main channel consists of account for significant - use n = 0.08 V for main channel > FEMA - overbanks consist of some areas of this and bruch with some areas of rocklyrs interspersed (see p. 5) - FEMA model used n = 0.10 for upper Fish (reck overbanks) - From Sturm: - Trees, heavy stand of timber 0.08 o - use n = 0.08 to account for interspersed a grass bare areas (n = 0.10 select areas densely forcs! Fish Creek (XS - 5.013 to - 8.05) - Main channel consists of a steep mounta gravel, cobbies and some boulders (see p. - FEMA model used n = 0.00 for main ch - From Sturm:	- marked session to account for significant - use n=0.08 V for main channel > FEMA - overbanks consist of some areas of this and brush with some areas of rocklyrs interspersed (see p. 5) - FEMA model used n=0.10 for upper Fish (reck overbanks - From Sturm: Min. A. - Trees heavy stand of timber 0.08 o - use n=0.08 to account for interspersed of grass I bane areas (n=0.10) select areas densely forcs! - Fish Creek (XS + 5.013 to -8.05) - Main channel consists of a steep mounta gravel, cobbles, and some boulders (see p. - Fema model used n=0.06 for main ch - From Sturm:		vel	1		us us	in			C		M a
ncrease Sturm values to account for significances in the source of the s	- use n = 0.08 V for main channel > FEM - overbanks consist of some areas of the and brush with some areas of the area	- use n=0.08 for main channel > FEM - overbanks consist of some areas of tand bruch with some areas of rock! interspersed (see p. 5) - FEMA model used n=0.10 for up Fish (reck overbanks - From Sturm: Min. - Trees heavy stand of timber ose n=0.08 fo account for interspersed grass I bare areas (n=0.1) select areas densely fore - Fish Creek (XS-5.013 to -8.05) - Main channel consists of a steep moun gravel cobbles, and some boulders (see p. 1) - Fema model used n=0.06 for main compositions.		n i gra	gs.e		0	42			¥.		t p
Trees heavy stand of timber overbanks consists of some areas of and bruch with some areas of rock interspersed (see 7.5) - FEMA model used n=0.10 for Fish creek overbanks - From Sturm: Min. - Trees heavy stand of timber overbanks have areas (n=0.08) of timber overbanks Min. - Trees heavy stand of timber overbanks - From Sturm: Min. - Trees heavy stand of timber overbanks - From Sturm: Min. - Trees heavy stand of timber overbanks - From Sturm: Select areas densely for creek (XS-5.013 to -8.05) Main channel consists of a steep more gravel, cobbles, and some boulders (see - FEMA model used n=0.06 for main - From Sturm:	- use n = 0.08 V for main channel > FE - overbanks consist of some areas of and brush with some areas of rock interspersed (see p. 5) - FEMA model used n = 0.10 for Fish (nee k overbanks - From Sturm: - Trees, heavy stand of timber - use n = 0.08 to account for intersperse grass/bane areas (n = 0 select areas densely for Fish Creek (XS - 5.013 to - 8.05) - Main channel consists of a steep more gravel cobbles, and some boulders (see - FEMA model used n = 0.06 for main - From Sturm:	- increase Sturm values to account for signification of the some areas of and brush with some areas of and brush with some areas of rod interspersed (see p. 5) - FEMA model used n=0.10 for Fish Creek overbanks - From Sturm: - Trees heavy stand of timber 0.08 - use n=0.08 to account for intersperse grass I bare areas (n=0) select areas densely for select areas densely for main channel consists of a steep more gravel, cobbles, and some boulders (see - FEMA model used n=0.06 for main - From Sturm:		+ <] ·	wF		ed Oil	ani	l l	Е	1		n A
markase Sturm values to account for signi- use n=0.08 V for main channel > Overbanks consist of some areas of and brush with some areas of interspersed (see p. 5) - FEMA model used n=0.10 for Fish (neek overbanks - From Sturm: Mir - Trees heavy stand of timber O.0 - use n=0.08 to account for interspe grass / bare areas (n select areas densely in Creek (XS-5.013 to -8.05) Main channel consists of a steep m gravel, cobboles, and some boulders (SI - FEMA model used n=0.06 for ma - From Sturm:	- marease Sturm values to account for signing in the sound of the some areas of and brush with some areas of the interspersed (see p. 5) - FEMA model used n = 0.10 for Fish (neck overbanks) - From Sturm: - Trees heavy stand of timber - use n = 0.08 to account for interspersed (not seek (xs - 5.013 to - 8.05) - Main channel consists of a steep or gravel, cobbles, and some boulders (some of the properties) - From Sturm:	- increase Sturm values to account for signing increase Sturm values to account for signing increased in the source areas of and brush with some areas of the interspersed (see p. 5) - FEMA model used n=0.10 for interspersed (see p. 5) - FEMA model used n=0.10 for Fish Creek overbanks - From Sturm: - Trees, heavy stand of timber - use n=0.08 for account for intersperse grass / bare areas (n select areas densely) - Fish Creek (XS + 5.013 for - 8.05) - Main channel consists of a steep my gravel, cobbles, and some boulders (significant areas) - From Sturm:		fool	~		rsu = (loz	Th		04		E
markage Sturm values to account for signal use h=0.08 for main channel Overbanks consist of some areas and brush with some areas of interspersed (see p. 5) - FEMA model used h=0.00 Fish (neek overbanks - From Sturm: Mon Janual (see p. 5) Main channel consists of a steep gravel, cobbles, and some boulders (pravel, cobbles, and some boulders (pravel, cobbles, and some boulders) - From Sturm:	- marease Sturm values to account for signary use n=0.08 for main channel - overbunks consist of some areas and brush with some areas interspersed (see p. 5) - FEMA model used n=0.10 Fish (reck overbanks - From Sturm: M - Trees heavy stand of timber of timber of select areas densel Fish Creek (XS - 5.013 to - 8.05) - Main channel consists of a steep gravel, cobbles, and some boulders - From Sturm:	- use n=0.08 for main channel - overbanks consist of some areas and bruch with some areas interspersed (see p. 5) - FEMA model used n=0.10 Fish Creek overbanks - Trees, heavy stand of timber - use n=0.08 fo account for inters grass/bane areas (select areas denice) - Fish Creek (XS-5.013 to -8.05) - Main channel consists of a steep gravel, cobbies, and some boulders (- FEMA model used n=0.06 for n - From Sturm:		l C	fo		se n		M		0:		F
increase Sturm values to account for so use n=0.08 V for main channe Overbanks Consist of some area and bruch with some areas of interspersed (see p. 5) - FEMA model used n=0.10 Fish (nee k overbanks - From Sturm: - Trees, heavy stand of timber - use n=0.08 to account for rate grass / bare areas select areas dens. sh Creek (XS - 5.013 to - 8.05) Main channel consists of a steep gravel cobbles and some boulders - FEMA model used n=0.06 for - From Sturm:	- use n = 0.08 for main channe - overbanks consist of some area and brush with some areas of interspersed (see To. 5) - FEMA model used n = 0.10 Fish Creek overbanks - Trees, heavy stand of timber - use n = 0.08 for account for interspersed (see To. 5) - From Sturm: - Trees, heavy stand of timber - use n = 0.08 for account for intersections of timber - use n = 0.08 for account for intersections of the see of the second series of the seri	- use n=0.08 V for main channe - overbanks consist of some area and bruch with some areas of interspersed (see p. 5) - FEMA model used n=0.10 Fish (reek overbanks) - Trees, heavy stand of timber - use n=0.08 to account for inte grass / bare areas select areas dens. - Fish Creek (XS + 5.013 to -8.05) - Main channel consists of a steep gravel, cobbles, and some boulders - FEMA model used n=0.06 for		2			rsi (-> 12
increase Sturm values to account for use n=0.08 V for main chan overbanks consist of some areas and bruch with some areas interspersed (see p. 5) - FEMA model used n=0. Fish (neek overbanks - Trees heavy stand of timber - Use n=0.08 to account for in grass / bare area select areas de she creek (XS-5.013 to -8.0) Main channel consists of a stepy avel, cobbles, and some boulder - FEMA model used n=0.06 for - Prom Sturm:	- use n=0.08 V for main chan - use n=0.08 V for main chan - overbanks consist of some ar and brush with some areas interspersed (see p. 5) - FEMA model used n=0. Fish Creek overbanks - Trees, heavy stand of timber - use n=0.08 to account for in grass / bare area select areas de Fish Creek (XS + 5.013 to -8.0 - Main channel consists of a ste gravel cobbles and some bowler - FEMA model used n=0.06 fo	- use n=0.08 V for main chan - use n=0.08 V for main chan - overbanks consist of some ar and bruch with some areas interspersed (see p. 5) - FEMA model used n=0. Fish (reck overbanks - trees heavy stand of timber - use n=0.08 to account for in grass I bare area select areas de - Fish Creek (XS - 5.013 to -8.0 - Main channel consists of a ste gravel, cobbles, and some boulder - FEMA model used n=0.06 fo		ea af	10		te us ns.						- (
increase Sturm values to account use n = 0.08 V for main che overbanks consist of some and brush with some areas interspersed (see 7.5) - FEMA model used n = Fish Creek overbanks - Trees, heavy stand of timber - use n = 0.08 to account for grass I bane av select areas in Creek (XS - 5.013 to - 8 Main channel consists of a s gravel, cobbles, and some bould - FEMA model used n = 0.06 - From Sturm:	- use n=0.08 V for main che - use n=0.08 V for main che - overbanks consist of some areas and bruch with some areas interspersed (see 7.5) - FEMA model used n= Fish (reek overbanks - Trees, heavy stand of timber - use n=0.08 to account for grass/bare ar select areas Fish Creek (XS-5.013 to -8 - Main channel consists of as gravel, cobbies, and some boul - FEMA model used n=0.06	- use n = 0.08 for main che - overbanks consist of some and bruch with some areas interspersed (see To. 5) - FEMA model used n = Fish Creek overbanks - trees, heavy stand of timber - use n = 0.08 for account for grass I bare av select areas - Fish Creek (XS - 5.013 to - 8 - Main channel consists of a s gravel, cobbles, and some bould - FEMA model used n = 0.06		ar	0,	(rn		,	V	✓ 		ne
increase Sturm values to account use n=0.08 V for main consists of some are overbanks consists of some are interspersed (see p. 5) - FEMA model used verbanks - From Sturm: - Trees, heavy state of timber - use n=0.08 to account for grass I bare select area sh Creek (XS - 5.013 to - Main channel consists of a gravel cobbles, and some bo - FEMA model used n=0.0 - From Sturm:	- use n=0.08 V for main c - overbanks consist of some are interspersed (see 7=.5) - FEMA model used v Fish Creek overbank - trees, heavy sta of timber - use n=0.08 to account for grass / bare select area Fish Creek (XS - 5.018 to - - Main channel consists of a gravel, cobbbles, and some bo - FEMA model used n=00	- use n=0.08 V for main c - overbanks consist of som and brush with some are interspersed (see p. 5) - FEMA model used v Fish Creek overbank - trees heavy sta of timber - use n=0.08 to account for grass / bare select ovea - Fish Creek (XS - 5.013 to - - Main channel consists of a gravel, cobbles and some bo - FEMA model used n=0.0		e .	\ = - s	nd	a v			./	/د		an vi
increase Sturm values to accertions in the some a consist of so and brush with some a interspersed (see 72.5 inter	- ncrease Sturm values to accert use n = 0.08 V for main - overbunks consist of so and bruch with some a interspersed (see p. 5 - FEMA model used Fish (reck overba) - Trees heavy 5 of timber - use n = 0.08 to account grass I ban select and Fish Creek (XS - 5.013 to grave), cobbies and some - FEMA model used n = 0	- use n=0.08 V for massin - overbanks consist of so and brush with some a interspersed (see p. 5 - FEMA model used Fish Creek overba - trons Sturm: - Trees, heavy 5 of timber - use n=0.08 to account grass / ban select and select and - Fish Creek (XS - 5.013 to - Main channel consists of gravel, cobbles, and some - FEMA model used n=0		re)	\ \ \	ta	for e				in in		h
increase Sturm values to a use n=0.08 V for ma overbanks consist of and brush with some interspersed (see p. 5 - FEMA model us Fish Creek over - Trees heav of timber - use n=0.08 to accoun- grass 16 select h Creek (XS-5.013 Main channel consists or ravel cobbles and som - FEMA model used n - From Sturm:	- increase Sturm values to a - use n = 0.08 V for ma - overbanks consist of and brush with some interspersed (see p. 5 - FEMA model us Fish Creek over - trees heav of timber - use n = 0.08 to account grass 16 select Fish Creek (XS - 5.013 - Main channel consists of gravel cobbles, and some - FEMA model used n	- use n=0.08 V for ma - overbanks consist of and brush with some interspersed (see 7).5 - FEMA model us Fish Creek over - trees, heaver of timber - use n=0.08 to accoung rass 16 select - Fish Creek (XS-5.013 - Main channel consists of gravel cobbles, and some		50	ed ba	j 5	t an			4	rgo	750	1 6
increase Sturm values use n=0.08 V for i overbanks consist and brush with so interspersed (see p - FEMA model Fish Creek o - From Sturm: - Use n=0.08 to acc grass sele h Creek (XS-5.01: Main channel consist: gravel, cobbles and s - FEMA model used - From Sturm:	- increase Sturm values - use n=0.08 V for i - overbanks consist and brush with so interspersed (see p - FEMA model Fish Creek o - Trees, he of time - use n=0.08 to acc grass sele Fish Creek (XS-5.01: - Main channel consist: gravel, cobbles, and s - FEMA model used	- use n=0.08 / for in the second seco		ne	us ver	eav	0 u.			+	tre	14	lai ar
increase Sturm value use h = 0.08 V fo Overbanks Consis and bruch with interspersed (see - FEMA model From Sturm - Trees, of ti use n = 0.08 fo a gravel placek (XS - 5.0 Main channel Consis gravel, cobbles, and - FEMA model use - From Sturm:	- use n=0.08 for - use n=0.08 for - overbanks consis and bruch with interspersed (see - FEMA mode Fish Creek - Trees of ti - use n=0.08 for a gravel gravel, cobbles, and - FEMA model use	- use n=0.08 / for - use n=0.08 / for - overbanks consis and bruch with interspersed (see - FEMA mode Fish Creek - Trees, of ti - use n=0.08 for a gravel gravel, cobbles, and - FEMA model use		+ So P	10	he	225 1e			1	mark.	n_(n
increase Sturm va use n=0.08 Overbanks Cons and bruch with interspersed (- FEMA M Fish Cree - Tre of use n=0.08 4 Creek (XS- Main channel cons gravel cobbles, a - FEMA model - From Sturm:	- increase Sturm va - use n = 0.08 - overbanks cons and bruch with interspersed (- FEMA IN Fish Created (- Tree of - use n = 0.08 for a - Main channel con gravel, cobbles, a - FEMA model	- use n=0.08 - overbanks cons and brush with interspersed (- FEMA m Fish Creek - Use n=0.08 - Tre of - use n=0.08 - Tre of - year channel con ogravel, cobbles, a - FEMA model		sis Th see	0 ds	es,	gra gra			4 30	s an	evs	for
increase Sturm use n=0.0 Overbanks C and bruch interspersed - FEMA Fish C - Wse n=0.08 Main channel c pravel cobbles, - FEMA mode - From Sture	- increase Sturm - use n=0.0 - overbanks c and bruch interspersed - FEMA Fish C - Wse n=0.08 Fish Creek (XS - Main channel c gravel, cobbles, - FEMA mode	- use n=0.0 - overbanks c and brush interspersed - FEMA Fish C - use n=0.08 - Was n=0.08 - Main channel c gravel, cobbles, - FEMA mode		2 (m	Tre	1			4	DIC	11	11
increase Struse use n= C Overbanks and brush intersper - FEM Fish Creek (Main channe gravel, cobbil - FEMA M	- increase Str - use n = C - Overbanks and brush intersper - FEM Fish Fish Fish Creek (- Main channe gravel, cobbi - FEMA M	- increase Str - use n = C - overbanks and brush intersper - FEM Fish - From - use n = 0.0 - Main channe gravel, cobbil - FEMA M		sed	n A	_	28	1	hv	Ma	00	DDU	0 .0 r y
increase use n Overba and bri intersp - F Main chai gravel, co - FEMA - From	- increase - use n - overba. and bri intersp - F - F - F - F - J - F - Main chas gravel, co - FEMA	- use n - overba. - overba. and br. intersp - F - F - F - F - F - F - F -		nks	EV	ron	0.0			- 1	-	l	1 = Va
increa use over and inte	- increa - use - over and inte - use - use - the cre - main cogravel - the	- Main a gravel	Se N	bu bv rsi	- F	F	n=		om			ž [125
- Us	- No	- Vi	rea ISQ	ver nd rten			0		Pr			use	oan
	Five		- inc	- 0 a			- us		17				- Overlio C

Client Steamboat Springs Checked 1/1/13 By TEO

Project 131(7 Page 3/11

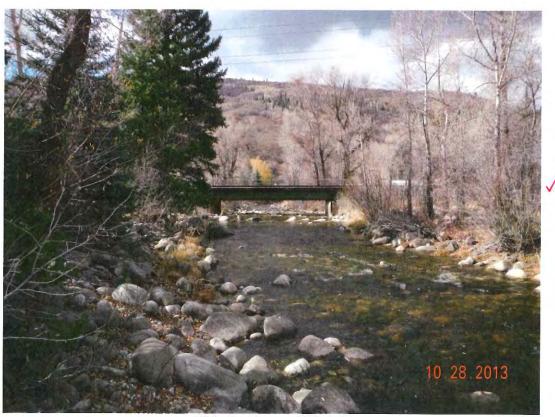
Subject Fish Creek Dam Approved 11/14/13 By 665 ANALYSIS - For golf course areas Inativegrass areas - Prom Sturm: Min. - Pasture/grass 0,03 0.035 0.05 use n=0.05 at higher end of range to account for some site features and scattered trees that would morease vaughness - Jampa River (XS-8,05 to -22,72) - Manning's n values were generally unchanged from the FEMA model except in isolated places where land use may have changed - Main channel consists of an intermountain valley stream that rs generally clean (i.e. no sign - ficant boulders/vegetation) with some gentle meandering (see p. 7-9) - FEMA model used n=0.04 to 0.045 05 - Prom Sturmi m:n. Avg. - Clean, winding stream 01045 1 with some pools 01033 - Use n=0.04-0.045 > FEMA model confirmed / - Overbanks vary from pasture areas, notive areas w/ grasses and some trees, native areas with dense trees and residential/ commercial developed areas - Pasture areas -> FEMA used n=0.05 of - From Sturm Min.
- Pasture Igrass 0103 0.05 - use n=0.05 > FEMA model confirmed 1

Client Steamboat Springs Checked 11/1/13 By FMH

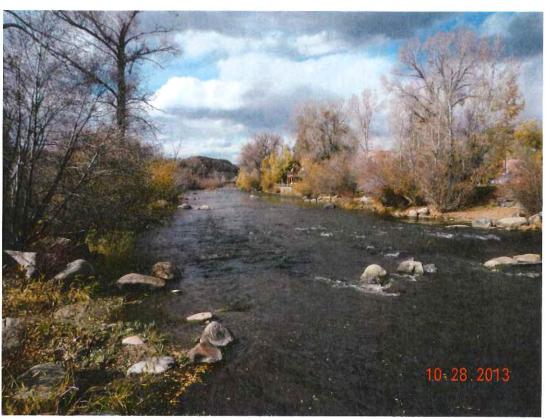
Subject Fish Creek Dam Approved 11/14/13 By GGS

Project 13117 Page 4/11

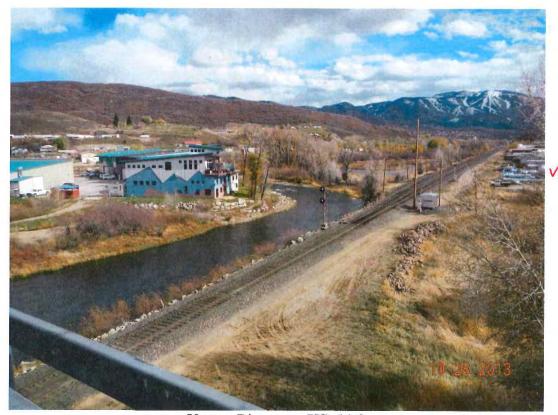
ANALYSIS		
- Natio	e areas with some scattered	treas
-	EmAmodel used 0.06 05	
-1	rom Sturm:	Min. Avs. Max.
		0.04 0.06 0.08
_	Ase u=0.06 -> FEMA mode	(confirmed)
	h	
- Dens		
		<u> </u>
-	rom Sturm:	Min. Avg. Max.
	- Iteauy stand of timber	Min. Avg. Max.
= 61		
	se n=0.10 > FEMA model	contivined V
- Reside	at (commercial Developed Avea	
	Em A model used n=0.05-6	
		neted for manning's n values
	developed areas	orchen in pranting or united
- u	se FEMA model values >	n=0.05-0.06 VV


Middle Fork Fish Creek – Aerial photograph near XS -3.6

Fish Creek (representative of Middle Fork Fish Creek near confluence of Fish Creek and Middle Fork Creek near XS -5.9)

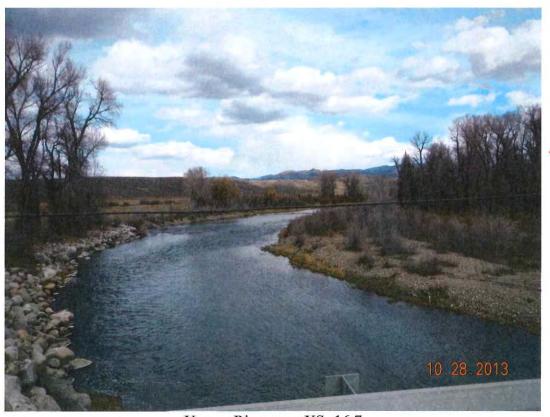


Fish Creek near XS -7.5

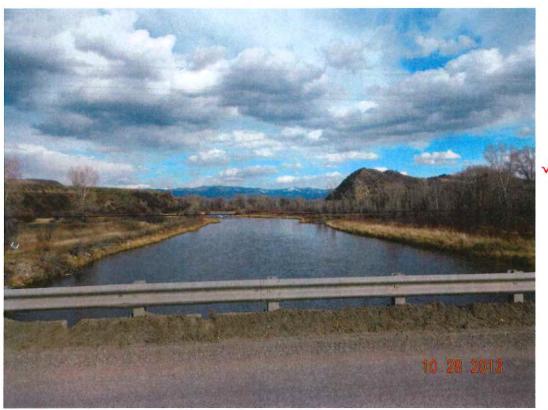


Fish Creek near XS -7.9

 $P:\ \ 13117-Steamboat\ Engineering\ \ Hydraulics\ \ 13117\ Fish\ Creek\ Mannings\ n.docx$


Yampa River near XS -9.5

Yampa River near XS -11.0



Yampa River near XS -12.4

Yampa River near XS -16.7

P:\13117 - Steamboat\Engineering\Hydraulics\13117 Fish Creek Mannings n.docx

Yampa River near XS -21.2

17E0 11/1/13 10/11
665 11/11/13
CHAPTER 4: Uniform Flow 117

13	pe of Channel and Description	Minimum	Normal	Maximun
	2. Clean, after weathering	0.018	0.022	0.025
	3. Gravel, uniform section, clean	0.022	0.025	0.030
	4. With short grass, few weeds	0.022	0.027	0.033
ł	 Earth, winding and sluggish 		05-16-9-1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	No vegetation	0.023	0.025	- 0.030
	2. Grass, some weeds	0.025	0.030	0.033
	3. Dense weeds or aquatic plants in		0.050	0.032
	deep channels	0.030	0.035	0.040
	4. Earth bottom and rubble sides	0.028	0.030	0.035
	5. Stony bottom and weedy banks	0.025	0.035	0.040
	6. Cobble bottom and clean sides	0.030	0.040	0.050
(c. Dragline excavated or dredged	0.0270	0.040	0.030
	1. No vegetation	0.025	0.028	0.033
	Light brush on banks	0.035	0.050	
ć	J. Rock cuts	0.033	0.030	0.060
	Smooth and uniform	0.025	0.02=	0.010
	Jagged and irregular	0.025	0.035	0.040
2	Channels not maintained, weeds and	0.035	0.040	0.050
C	brush uncut			
		0.050	0.000	
	1. Dense weeds, high as flow depth	0.050	0.080	0.120
	2. Clean bottom, brush on sides	0.040	0.050	0.080
	3. Same, highest stage of flow	0.045	0.070	0.110
5.	4. Dense brush, high stage	0.080	0.100	0.140
	l Streams			
	Minor-streams (top width at flood			
	stage $< 100 \text{ ft}$			
3	. Streams on plain			
	1. Clean, straight, full stage, no rifts			
	or deep pools	0.025	0.030	0.033
	2. Same as above, but more stones			
	and weeds	0.030	0.035	0.040
	3. Clean, winding, some pools and			
	shoals	0.033	0.040	0.045
	4. Same as above, but some weeds			
	and stones	0.035	0.045	0.050
	5. Same as above, lower stages, more		30104034	
	ineffective slopes and sections	0.040	0.048	0.055
	6. Same as 4, but more stones	0.045	0.050	0.060
	7. Sluggish reaches, weedy, deep pools	0.050	0.070	0.080
	8. Very weedy reaches, deep pools, or	.,,,,,,,,	0.070	0.000
	floodways with heavy stand of			
	timber and underbrush	0.075	0.100	A 170
1.	Mountain streams, no vegetation in	U.OTJ	0.100	0.150
	channel, banks usually steep, trees			
	and brush along banks submerged at			
	high stages			
	1. Bottom: gravels, cobbles, and	0.020	3-2-2	
	few boulders	0.030	0.040	0.050
D O T	2. Bottom: cobbles with large boulders	0.040	0.050	0.070 🗸
	lood plains			
a	. Pasture, no brush			
	Short grass	0.025	0.030	0.035
				(continued
				Acountimeta.

Sturm

	4 112	11/
665	11/14/1	3

Type of Channel and Description	Minimum	Normal	Maximum
2. High grass	0.030	0.035	0.050
b. Cultivated areas	0.000	0.030	0.040
1. No crop	0.020	0.035	0.045
2. Mature row crops	0.025	0.040	0.050
3. Mature field crops	0.030	0.040	0.000
c Brush	0.025	0.050	0.070
 Scattered brush, heavy weeds 	0.035	0.050	0.060
2 Light brush and trees, in winter	0.035	0.060	0.080
3 Light brush and trees, in summer	0.040 0.045	0.070	0.110
4 Medium to dense brush, in winter	0.070	0.100	0.160
Medium to dense brush, in summer	0.070	0.100	
d Trees	0.110	0.150	0.200
1. Dense willows, summer, straight	0.110	0.150	
2. Cleared land with tree stumps.	0.030	0.040	0.050
no sprouts	0.030	0.040	
3. Same as above, but with heavy	0.050	0.060	0.080
growth of sprouts	0.030	0.000	
A Heavy stand of timber, a few down			
trees, little undergrowth, flood stage	0.080	0.100	0.120
below branches	0.050	0.1,0.7	
5. Same as above, but with flood stage	0.100	0.120	0.160
reaching branches	0.100	4,,,,,,	
D-3. Major streams (top width at flood stage			Œ.
> 100 ft). The n value is less than that for			
minor streams of similar description,			
because banks offer less effective resistance.			
a. Regular section with no boulders	0.025	42.	0.060
or brush	0.035		0.10
 b. Irregular and rough section 	gasse		

Source: Chow 1959. Used with permission of Chow estate.

Chow (1959) presented methods by Horton, Einstein and Banks, and Lotter for obtaining a composite value of Manning's n for a single channel; that is, for the main channel only of a compound channel or a canal with laterally varying roughness. The Horton method is based on the assumption that the velocities in each wettedperimeter subsection are equal to one another as well as equal to the mean velocity of the whole cross section. The resulting composite value of Manning's n, denoted n_c , is given by

$$n_{\varepsilon} = \left[\frac{\sum_{i=1}^{N} P_{i} n_{i}^{3/2}}{P}\right]^{2/3} \tag{4.27}$$

in which P_i , n_i = wetted perimeter and Manning's n of any section i; P = wetted perimeter of the entire cross section; and N = total number of sections into which

APPENDIX D

HEC-RAS MODEL RESULTS

Client Steamboat Springs Checke

Project 13117 Page 1/4

Date 10/31/13 By EMH

Checked 11/12/13 By TEO

Subject Fish Creek Dam Approved 11/14/13 By 665

REDUBED - I	evelop a HECRAS model to mappe the peak dam	brend
- Junices of I.	low through the downstream drainage (Middle Fork	Fish
	reek, Fish Creek, Yampa River)	
	reet, lish creet, lampa liver)	
ASSUMPTIONS -	1) Use RJH Manning's n evaluation dated 10/31/	13 /
1, 28 ann 1, 1, 1, 1, 1, 1, 2, 2	y use 151 mannings in evaluation stated 13 517	
	2) Use attended to be at flower form RTH HE	1- Hm
	2) Use attenuated peak flows from RJH HE analysis dated 10/3/1/3, V	CITIEN
	analysis harled to sitis	
	3) Develop HECRAS sections in Ark GIS using the	
	HEC-GEORAS extension & 2' topography provided 6	1./.
	Steambout Sorrys and 3-m DEM data provided	4
	the Fre District and supplemented with char	
	topography from the FEMA effective hydranic	
	model, as appropriate.	
	4) Use by doe data from FEMA offective hydra, by	1/
	4) Use bridge data from FEMA effective hydraulic models, where available, and field work measure by RIH elsewhere.	in ents
	lan DIH also where	
	7 (311 6/35/30 1976)	
	5) Assume the two upstream bridges are blocked	with
ANALYSIS -	aum breach debris	
7111121313		
- Crass-section	ns were developed for middle Fork Fish Creek	
(dam to X	-2.151) North Fork fish Creek (XS-2151 to	
X C.	4.325), Fish Creak (XS-4.325 to -8.058) and	1
Vann Piu	r (XS-8,058 to XS-22,722)	
James a la		
- The following	bridges were modeled:	
		,
- Steamburg	Blud - based on field measurements by RJH (XS-5.	47)
- Pedostria	-bridge - based on field measurements by RIH (XS-5	518)
	(assumed blocked)	
- Rollinset	ne Bridge - based on field measurements by RJH (XS	7.6
- Hwy 40	based on data from FEMA effective model (XS-7.	XI)V.
- Railroad	Bridge - bused on data from FEMA effectivemedel V	
130/11/00/01	(XS-7.93)	

Client Steam boat Springs Checked 11/12/13 By EMH

Checked 11/12/13 By TEO

Subject Fish Cneek Dam

Approved 1/11/2 By GGS

Project 13117 Page 214

ANALYSIS-				
- Railroad	Bridge - data from	m FEMA model	(xs-8,91) /	
- Sth St. 1	Bridge - duta fr	om FEMA mode	el CXS-9.4	2) / /
	Bridge - data f			/
	retrail Pedestrian E			
	r. bridge - data			
	t Campground Brid			
	Bridge-data from			
	Road 338 bridge			
	Bridge - data .			
	Poad 179-data f			
- Manning's n	values were imp	ut from KJ	H 10/31/18 M	Manny 5 n
- Flow data h	sas input from t	the HEC-HM:	s model 1	
- XS	Flow (cfs)			
- 0.037 - 2.151 - 5.013 - 8.056	70,5981			
-11,390 -14,317 -17,20 -22,727	22, 163 V 15,127 V			
- Normal depth and exitics	n was used as the will depth as the wi	- downstream pstream bound	boundary con lary condition	dition /v

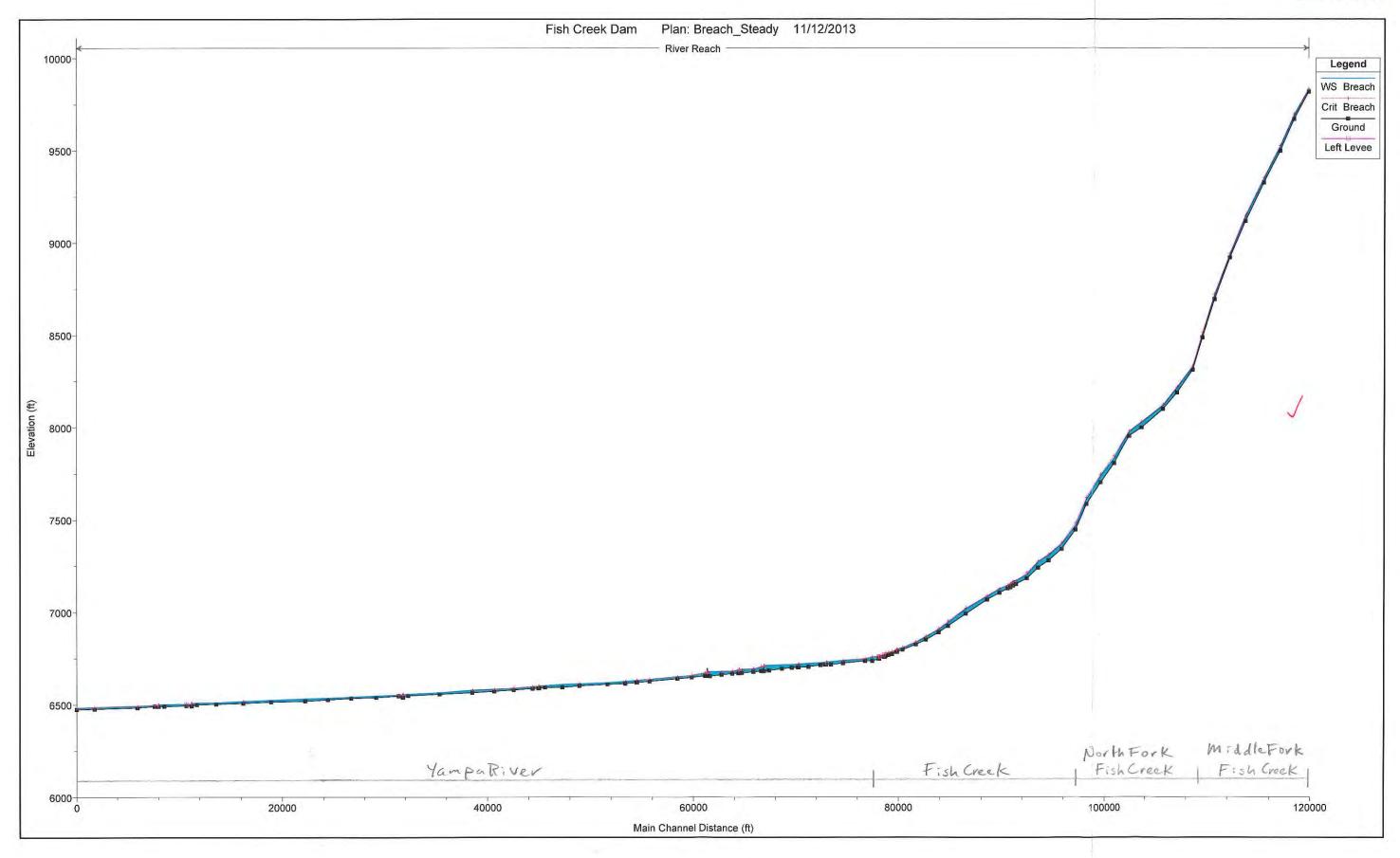
Client Steamboat Springs Checked 11/12/13 By FED

Subject Fish Eveck Dam

Approved 11/14/13 By GGS

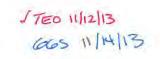
Project 13117 Page 3/4

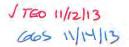
ANALYSIS - See HEC-RAS results in Attachment IV - QAIQC - Check in ArcGIS - Cross- Section layout - Reach Longths V - Check in HECRAS - Reach Lengths V - Manning's n values V - Flow Data - Cross-section topography - Bridge data / - General Model per formance

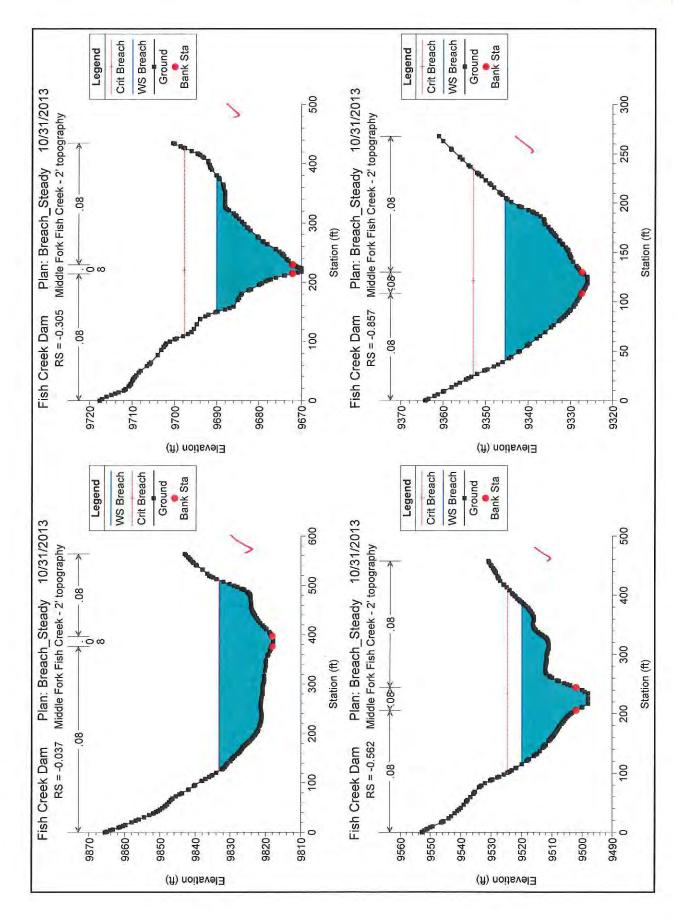


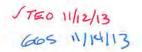
Client Steamboat Springs Checked 11/12/13 By EMIH

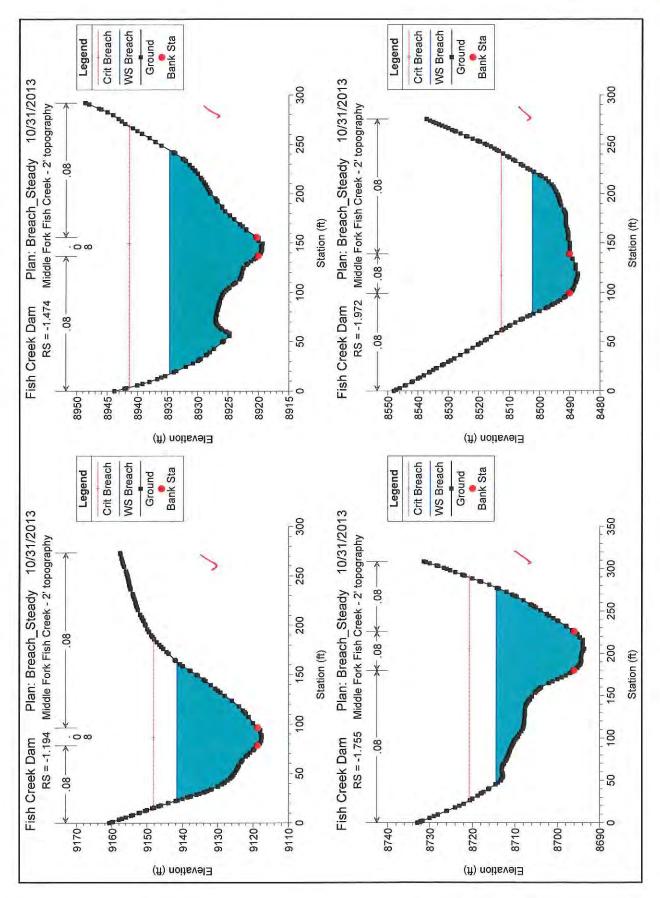
Subject Fish Creek Dam Approved 11/14/13 By GGS

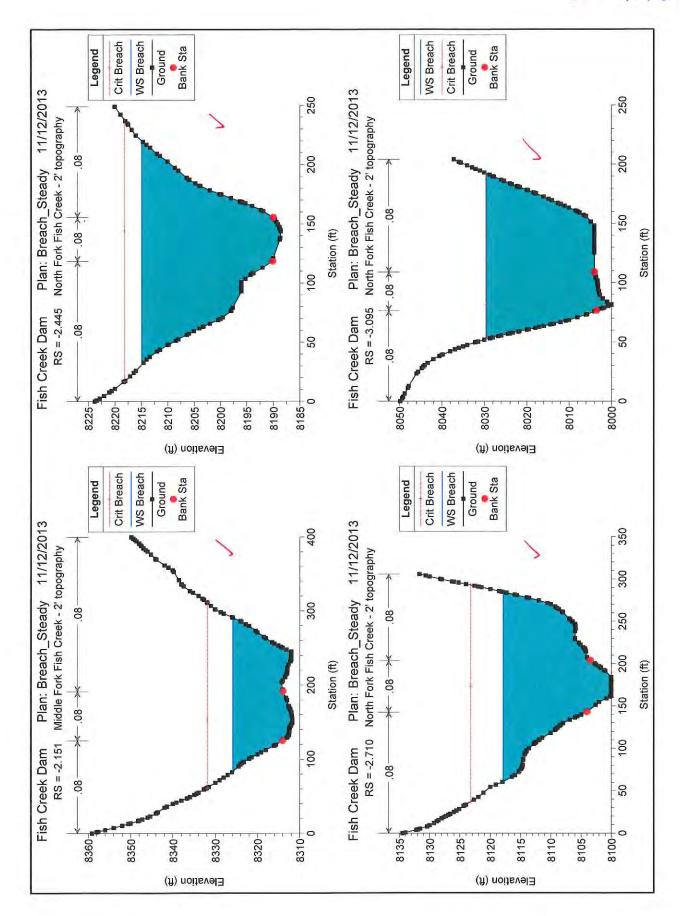

Project 13117 Page 414

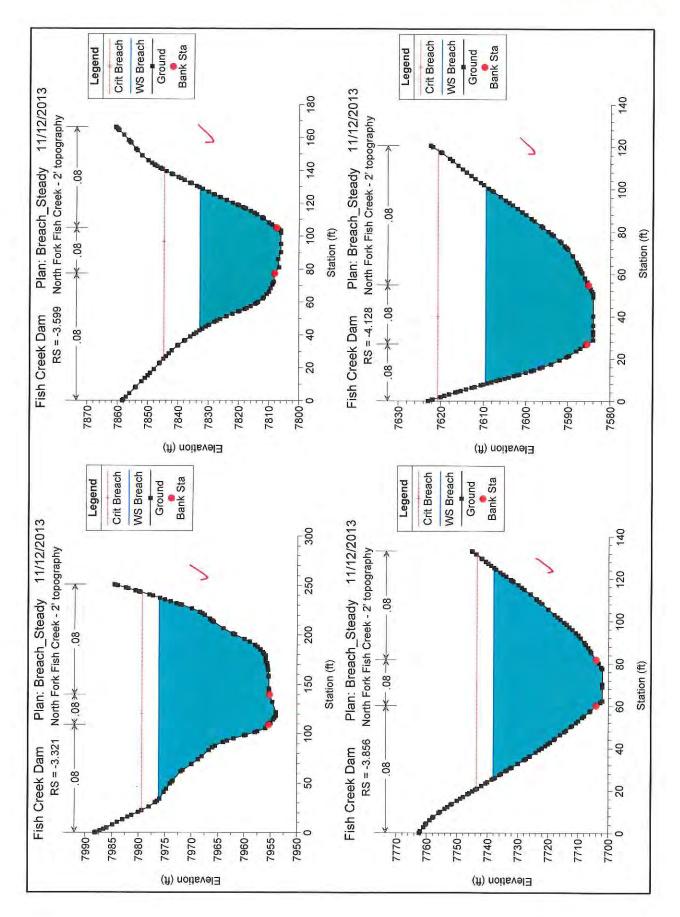

Attachment
The Date Of the Da
HEC-RAS Results

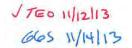


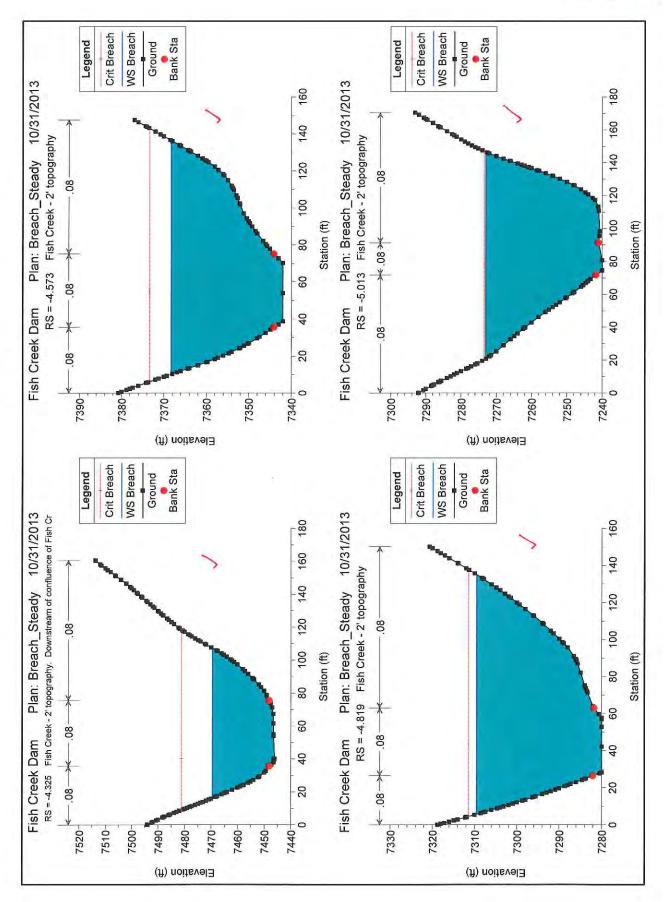

983.01.62 983.03.61 983.03.62 983.03.61 983.03.62 <t< th=""></t<>
955,416 956,43 0.02320 0.03520 <th< th=""></th<>
6857.287 9359.00 0.145402 50.06 1549.90 6841.88 9848.29 0.217200 20.47500 20.47500 6851.26 8641.26 0.217200 20.47500 20.47500 8831.10 8845.10 0.026489 39.29 2110.09 8831.10 8845.10 0.026489 39.29 2110.09 8831.10 8845.10 0.018980 44.70 2284.38 8831.10 8845.10 0.018980 44.70 2284.38 8831.10 8845.10 0.018980 44.70 2284.38 8831.10 8845.10 0.018980 44.70 2284.38 8831.10 8845.10 0.018980 44.70 2284.38 8831.10 8845.10 0.018980 44.70 2284.38 8831.10 8845.10 0.018980 45.11 46.61 46.61 8831.10 8845.10 0.018980 46.11 46.61 46.61 8831.10 88445.10 0.018980 46.11 46.61
8470.08 8770.09 8770
8720.86 8772.68 8772.69 8772.69 8772.69 8772.69 8772.70 8711.08 8710.08 8711.08 <t< td=""></t<>
8331 90 8345.15 8 8341.7 8 8341 8 8511 1 1434.0 1 8331 9 831 1 1434.0 1 8331 9 831 1 1434.0 1 8331 9 831 1 1434.0 1 8331 9 831 1 1434.0 1 8331 9 831 1 1434.0 1 831 1 1434.0 1 1344.0 1 1344.0 1 1344.0 1 1344.0 1 1344.0 1 1344.0 1 1344.0 1
8023 65 8040 22 8051 1 0 004698
77878.25 6734.24 6710152.23 224.25 224.25 7878.25 7784.46 7773.46 7773.46 7773.46 7773.46 7773.46 7773.46 7773.46 7773.46 7773.46 7773.46 7773.47 7743.46 7773.47 7743.46 7773.47 7743.46 7773.47 7743.46 7773.47 77
77979 356 7798 168 10055248 33.78 2755 93 7744 66 7788 65 0.124141 56 91 2755 93 7744 67 7788 65 0.124141 56 91 1553 41 7743 16 7784 66 0.105388 56 35 36 1558 53 7737 30 7784 86 0.105384 56 36 1553 41 7737 30 7784 76 0.005789 56 36 1582 41 7737 30 7784 76 0.005789 56 36 1582 41 7737 30 7784 77 0.00578 0.00578 0.00578 7714 26 7785 77 0.00578 0.00578 0.00578 0.00578 7715 80 7716 80 0.005845 0.005847 0.005878 0.00786 7716 80 7716 80 0.00786 0.00786 0.00786 0.00786 0.00786 7716 80 7715 80 0.00786 0.00786 0.00786 0.00786 0.00786 7716 80 7716 80 0.00786 0.00786 0.00786 0.00786
77844 67 77868 5 0.104791 56.91 1632.0 77873 8 77864 2 0.106295 66.13 1632.0 7773.14 7786 7 0.006078 7 0.00607
7175.27 7744.82 7744.82 7747.93 77417.92 77417.92 77417.92 77417.92 77417.92 77417.92 77417.92 77417.92 77417.92 77417.92 77417.93
7481,14 7507.87 7181.68 5.58 1578.83 1578.81 7373.39 7322.80 0.008045 3.42.17 2265.73 7373.42 7322.80 0.008045 3.42.17 2265.73 7373.42 7322.80 0.008045 3.42.17 2265.73 771.43 7222.80 0.007912 3.62.90 2264.18 7716.43 7272.80 0.007912 1.67.6 2266.73 7716.44 7716.74 2.00.74 2667.31 2260.15 7716.47 7716.74 2.00.74 2667.74 2667.74 7716.47 7716.74 2.00.74 2667.74 2667.74 7716.47 7716.74 2.00.74 2667.74 2667.74 7716.48 7716.74 2.00.74 2667.74 2667.74 7716.49 7716.74 2.00.74 2667.74 2667.74 7716.44 7716.74 2.00.74 2667.74 2667.74 7716.47 7716.74 2.00.74 2767.74 2767.74
7313.42 7.322.80 0.0038945 3.42.17 2255.33 7.223.42 7.322.80 0.0038945 3.42.17 2259.13 7.222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.2222.42 7.222
7715.27 7223.42 7228.45 0.004945 34.67 2790.13 7211.26 7223.85 0.0079155 49.58 2.617.77 715.80 0.0079759 13.89 7307.21 7165.07
7211 26 7229 65 0.079125 49.56 2161.77 7165.19 71765.10 71785.19 0.077299 15.89 7307.21 7186.10 717829 15.89 7307.21 7186.10 7186.78 0.077299 15.89 7307.21 7186.11 7196.65 0.007299 15.35 2200.15 7182.41 7196.65 0.007295 15.35 2200.15 7182.41 7196.65 0.007295 15.35 2200.15 7182.42 7181.99 0.007155 24.30 7182.42 7181.99 0.007155 24.30 7182.42 7181.99 0.007295 15.35 24.30 7182.42 7181.99 0.007295 15.35 24.30 7182.42 7182.42 7181.99 0.007295 15.35 24.30 7182.42
7.156.07 7.182.79 0.002789 10.77 0.002.01 17.158.77 7.168.78 0.007865 15.36 7.307.21 7.158.78 0.007865 15.36 7.307.21 7.158.47 7.156.65 0.007865 15.35 27.05 82.738 7.158.49 7.151.89 7.150.42 0.002863 26.71 7.158.49 7.151.89 7.150.42 0.002863 26.71 7.158.49 7.151.89 7.150.42 0.002863 26.71 7.158.49 7.151.89 7.150.42 0.002863 26.71 7.158.49 7.151.89 7.150.42 0.002863 26.71 7.151.89 7.150.42 0.002863 26.71 7.151.89 7.150.42 0.002863 26.71 7.151.89 7.150.42 0.002863 26.71 7.151.89 7.150.42 0.002863 26.71 7.151.89 7.150.42 0.002863 26.71 7.151.89 7.150.42 0.002863 26.71 7.151.89 7.150.42 0.002863 27.06 868.11.3 0.002863 27.06 868.11.3 0.002863 27.06 868.11.3 0.002863 27.06 868.11.3 0.002863 27.06 868.11.3 0.002863 27.06 868.11.3 0.002863 27.06 868.11.3 0.002863 17.257 0.002863 27.06 868.11.3 0.002863 17.257
7158.19 7161.46 0.038067 19.35 5200.15 7152.41 7161.66 0.0070855 15.36 8277.38 715.88 7151.88 7155.56 0.0071655 15.36 8277.38 712.84 7126.48 7150.42 0.002863 26.71 4334.92 712.84 7126.48 7131.98 0.017155 24.30 4067.56 728.54 7008.52 708.75 0.02456 24.30 4067.56 729.61 7008.52 708.75 0.02456 42.30 4067.56 729.61 7008.52 708.75 0.02456 42.30 4067.56 729.61 807.08 80.71 90.02456 10.03 <t< td=""></t<>
7.152.41 7166.65 0.007665 15.36 2201.3 7.152.41 716.65 0.007665 15.36 2201.3 7.152.41 716.65 0.007665 15.36 2201.3 7.152.42 710.62 0.002963 15.36 2201.3 7.152.43 710.62 0.002963 24.30 4067.36 7.152.42 710.02 0.002963 24.30 4067.36 7.008.52 7009.61 0.002973 35.85 220.19 8950.08 896.11 0.006094 42.67 2450.50 8950.08 896.11 0.006094 42.67 2450.50 8950.08 896.11 0.006094 42.67 2450.50 8950.08 896.12 0.003367 12.82 30.39 3290.19 8950.08 897.59 884.16 0.003367 12.82 7835.40 8970.00 896.11 0.006094 42.67 2450.50 8950.00 896.11 0.006094 42.67 2450.50 8950.00 896.11 0.006094 42.67 2450.50 8950.00 896.11 0.006094 42.67 2450.50 8950.00 896.12 0.003367 12.82 7835.40 8950.00 896.12 0.003367 12.82 7835.40 8950.00 896.12 0.003367 12.82 7835.40 8950.00 896.12 0.003367 12.25 740413.72 8950.00 896.12 0.003368 15.31 882 7835.40 8950.00 8950.00 896.12 0.003368 15.31 882 7835.40 8950.00 8950.00 8950.00 11.13 87.3 7865.63 8972.70 0.00246 15.31 89.50 1938.96 8972.70 0.00246 19.30 19.31 89.32 14.31 8 8972.70 0.00246 19.30 19.31 8 8950.40 8950.40 0.00246 19.30 19.32 886.16 8950.40 8950.40 0.00246 19.30 19.33 896.10 8950.40 8950.40 0.00246 19.30 19.30 19.32 896.10 8950.40 8950.40 0.00246 19.30 19.30 19.32 896.10 8950.40 8950.40 0.00246 19.30 19.30 19.32 896.10 8950.40 8950.40 0.00246 19.30 19.30 19.30 19.30 1 8950.40 8950.40 0.00246 19.30 19.30 19.30 1 8950.40 8950.40 0.004473 19.31 73 7865.63 896.10 8950.40 8950.40 0.004473 19.31 73 7865.43 8 8950.40 8950.40 0.004473 19.31 73 7865.43 8 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7 8950.40 8950.40 0.001938 19.33 7
7151.88 7155.55 0.011366 18.13 7288.54 7144.28 7155.45 0.011366 18.13 7288.54 7144.28 7154.48 7155.43 0.002373 35.85 2701.66 7728.48 7131.98 0.002373 35.85 2701.66 7028.23 7028.4 1.002373 35.85 2701.66 6908.81 6915.42 0.002963 30.33 3290.10 6897.77 6873.13 0.0033221 1.02.53 4102.45 6897.76 6809.36 0.0033221 1.02.53 4102.45 6897.77 6809.36 0.002323 1.02.54 4102.45 6897.77 6809.36 0.002323 1.02.54 433.40 6775.84 6779.45 0.002323 1.02.54 457.66 6776.85 6771.72 0.003328 1.02.54 457.66 6775.86 6771.72 0.002433 1.02.54 4713.72 6775.86 6772.72 0.002434 1.02.54 4714.37
7151 RB 7155 SD 0.001366 18.13 7288 54 7154 RB 7155 SD 0.001365 28.13 7288 54 7154 AB 7154 JBB 0.0071455 26.43 4534 32 7154 AB 7131 JBB 0.0071755 26.24.30 4057 56 7020 ZB 7028 AB 7028 AB 26.71 AB 40.26 7020 ZB 7028 AB 20.70 AB 36.20 AB 7020 ZB 702 AB 20.70 AB 36.20 AB 8867 77 6873 12 0.00382AB 27.00 AB 36.20 AB 687 76 AB 681 AB 0.00382BB 18.05 AB 29.00 BB 687 76 AB 687 77 AB 0.00382BB 18.05 AB 29.00 AB 677 AB 677 AB 0.00382BB 18.05 AB 29.00 AB 677 AB 677 AB 0.00382BB 18.05 AB 27.00 AB 677 AB 677 AB 0.00282BB 19.05 AB 27.00 AB 677 AB 677 AB 0.00284BB 19.00 AB 17.22 AB 173.00 AB
7.126.48 7131.98 0.1025963 2.6.71 43.34 9.2 717.84.20 717.84.80 7130.48 0.1025963 2.6.71 45.34.92 7102.23 7028.54 710.89 0.1024596 31.51 36.84.12 6806.81 6806.77 6873.12 0.002959 27.09 36.81.13 6807.29 6808.81 6816.42 0.003321 22.53 4102.45 6807.89 67.99.66 0.003321 22.53 4102.45 6807.89 67.99.66 0.003321 22.53 4102.45 6807.89 67.99.66 0.003321 18.82 759.30 6779.99 6779.99 0.003321 18.82 759.30 6779.99 6779.99 0.003321 18.82 759.30 6779.99 6779.99 0.003321 18.82 759.30 6779.99 6779.99 0.003321 18.82 759.34 0.00331 6779.99 6779.99 0.003321 18.82 759.34 0.00331 6779.99 6779.99 0.003321 18.32 70.33 8079.80 6773.70 0.00231 19.33 8079.80 6773.70 0.00231 19.33 8079.80 6773.70 0.00231 19.33 8079.80 6770.70 6770.70 19.32 8070.70
7/08.22 7/09.28 7/09.29 3.5.8 2701.66 7/09.02.3 7/02.84 0.024.96 31.51 36.41.2 690.0.81 6964.17 0.026.094 42.67 2450.15 690.0.81 691.4 0.026.094 42.67 2450.15 680.7.7 6877.12 0.039.23 20.53 320.19 680.7.8 6894.16 0.035.23 3.06 4102.45 680.7.7 6877.12 0.039.23 20.01 320.01 680.6 6894.16 0.033.21 2.2.53 4102.45 680.7 680.0 0.033.21 2.2.53 4102.45 680.0 680.0 0.033.20 18.06 4102.45 680.0 680.0 0.003.23 18.66 4102.45 680.0 670.0 600.0 18.06 693.00 6778.4 670.0 600.0 19.26 44.10.45 6779.4 670.0 600.0 19.26 44.11.77 6772.5 677.7 670.
7020 23 7028 54 0.024596 31.51 3694 12 6950.08 695.08 42.67 2450.50 6960.08 691.08 42.67 2450.50 6960.08 691.08 3230.13 3230.19 867.77 6873.12 0.039363 30.39 3230.19 867.66 684.16 0.03321 22.53 4102.46 867.76 689.95 0.023321 22.53 4102.46 867.76 678.94 6.005322 16.74 6573.66 6778.93 6778.95 0.00532 9.78 9926.93 6778.94 6778.95 0.00532 16.74 6573.40 6778.95 6778.75 0.005623 9.78 9926.93 6778.96 6778.97 0.005623 9.78 9926.93 6778.97 6779.66 1.01.03 1.2.26 1.0413.72 6778.97 6.006993 1.2.26 1.0413.72 6778.94 6761.72 0.00734 9.97 6777.86
6960.08 6964.11 0.006094 42.67 2450.50 6960.81 6962.81 6964.11 0.0069094 42.67 2450.50 6960.81 6967.17 68173.12 0.0039291 27.06 3631.13 6837.89 6841.86 0.0033290 27.06 3631.13 6795.84 6799.68 0.0033290 18.05 5370.73 795.84 6773.95 6.0033280 18.05 5493.00 6776.84 6777.97 0.006933 13.82 7933.40 6775.97 0.006933 13.82 7933.40 6775.97 0.006933 13.82 7933.40 6775.97 0.006933 13.82 7933.40 6775.97 0.006933 12.25 7933.40 6775.97 0.006934 19.73 8079.80 6775.75 6759.44 0.006934 19.73 8079.80 6775.75 6759.44 0.006934 19.73 8079.80 6775.75 6775.77 0.006934 19.73 8079.80 6775.77 0.006934 19.73 8079.80 6775.77 0.006938 15.34 6584.52 6775.75 6775.77 0.006938 15.34 6584.52 6775.75 6775.77 0.006938 15.34 6584.52 6775.75 6775.77 0.006938 15.34 6584.52 6775.87 0.002244 9.90 1033.89 6775.87 6773.87 0.002244 9.90 1033.89 6775.87 6773.87 0.002246 17.73 6726.00 6772.87 0.002246 17.73 6726.00 6772.87 0.0004973 11.43 7727.45 6872.46 6882.46 6772.40 0.002245 17.73 6726.00 6772.87 0.006938 6772.87 0.006938 6772.87 0.006938 6772.87 6772.80 6882.40 0.001701 7.80 7727.46 6882.46 6890.31 0.006935 20.04 4707.75 6882.46 6890.31 0.006934 17.73 777 7727.46 6882.46 6892.46 0.001701 7.80 7739.73 6673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673.86 673
6908.81 6915.42 0.039763 30.39 3290.19 6873.75 6873.12 0.030990 27.06 3631.13 687.76 6873.12 0.030990 27.06 3631.13 687.77 6873.12 0.033821 25.83 3631.13 687.84.36 6796.74 0.033280 18.06 5493.00 6786.43 6794.78 0.021330 18.06 5493.00 6778.46 6777.37 0.009693 1.226 10413.72 6778.46 6777.37 0.009693 1.226 10413.72 6778.46 6777.37 0.009693 1.226 10413.72 6778.46 6777.37 0.009693 1.226 10413.72 6778.46 6771.27 0.0006941 1.226 10413.72 6778.47 6770.09 1.226 10413.72 6778.76 6771.00 0.000244 9.90 10238.00 6778.76 6772.00 0.000244 9.90 10238.20 6770.77 6770.00
6867.77 6873.12 0.030990 27.06 3831.13 6837.59 6841.66 0.033521 22.35 4102.45 6807.63 6841.66 0.03223 18.85 4102.45 6807.63 6809.66 0.005233 18.06 5493.00 6778.43 6796.74 0.003280 18.06 5493.00 6778.43 6778.64 0.003280 18.06 5493.00 6778.43 6778.64 0.003280 18.25 10413.72 6778.43 6778.64 0.003280 18.26 10413.72 6778.66 6771.79 0.003683 12.25 10413.72 6778.70 0.003683 12.25 10413.72 6778.70 0.00263 12.35 4518.63 6779.74 0.00263 12.35 4518.63 6779.75 6732.70 0.00263 13.73 768.63 6779.74 6773.20 0.00264 9.90 1038.65 6770.75 6773.20 0.00264 9.90 10
6837.56 6841.66 0.033821 22.53 4102.46 6807.05 6809.96 0.002383 16.86 5370.73 6796.34 6796.74 0.003280 18.05 5493.00 6794.35 6796.74 0.003280 18.05 5493.00 6778.43 6776.74 0.003280 18.05 5493.00 6778.43 6771.60 0.00433 1.225 1.0413.72 6778.43 6771.60 0.00433 1.225 1.0413.72 6778.64 6771.79 0.009633 1.225 1.0413.72 6778.65 6761.02 0.001497 4.92 1.723.02 6778.76 6761.02 0.001497 4.92 1.723.02 6778.76 6774.06 0.002318 1.0.59 936.09 6777.76 6772.06 0.002044 9.50 1.023.87 6772.75 6774.06 0.002043 1.2.74 3272.02 6772.75 6773.00 0.002044 9.50 1.023.87 6770.76
6796.54 6809.95 0.0032856 16.86 5370.73 6796.54 6799.64 0.005223 9.78 9926.98 6779.54 6799.64 0.005223 9.78 9926.98 6779.43 6787.58 0.021320 18.05 5493.00 6778.43 6777.97 0.009693 12.25 10413.72 6758.94 6761.02 0.007961 10.03 11227.07 6758.94 6761.02 0.007961 10.03 11227.07 6758.76 6759.14 0.006341 19.13 8079.80 6772.76 6759.14 0.006341 19.13 8079.80 6772.76 6772.91 0.002491 10.33 10.35 10.35 6772.76 6772.77 0.002404 9.90 10338.96 6772.76 6772.80 0.002404 9.90 10338.96 6772.76 6772.91 0.002404 9.90 10338.96 6772.77 6723.79 0.002404 9.90 10338.96 <t< td=""></t<>
6795.94 6799.66 0.005223 9,78 9926.98 6794.35 6796.74 0.0032200 18.05 5493.00 6786.43 6781.58 0.021330 18.05 5493.00 6786.44 6777.97 0.009663 12.25 1.0413.72 6776.95 6761.02 0.001487 1.25 1.0413.72 6756.86 6910.48 0.759829 96.71 918.02 6757.76 6757.97 0.009633 1.25 1.0413.72 6757.76 6759.14 0.006341 1.91 90.01 6779.94 6761.02 0.007487 4.92 7.736.33 6779.75 6779.14 0.002618 1.531 6584.52 6777.76 6773.70 0.002618 1.531 6584.52 6776.76 6773.70 0.002618 1.531 6584.52 6777.75 6773.70 0.002618 1.531 7.74 7.756.33 6776.76 6773.70 0.002618 1.574 7.777.46 <
6794.35 6796.74 0.033260 18.05 5493.00 6786.43 6787.8 0.023280 18.05 5493.00 6786.43 6787.8 0.02330 16.74 6573.66 6778.46 6777.97 0.009693 12.25 10413.72 6758.64 6761.02 0.007961 10.03 11227.07 6757.76 6751.72 0.007961 10.03 11227.07 6757.76 6751.72 0.007961 10.03 11227.07 6757.76 6751.72 0.007961 10.03 492 17895.30 6777.86 6752.76 674.06 0.006388 15.31 688.65 6772.66 6739.15 0.002618 15.31 688.45 6772.75 6779.82 0.002044 9.90 10837.47 6770.60 0.002044 9.90 10837.47 6770.76 6770.83 0.002044 9.50 10837.47 6770.77 6770.80 0.002268 11.13 9728.74 6
6764.35 6796.74 6796.75 0.033250 18.05 5493.00 6776.43 6776.43 6776.43 6777.97 0.003240 18.05 5493.00 6776.44 6777.97 0.009693 1.2.55 1.0413.72 673.40 6758.69 6761.02 0.001487 4.92 17236.34 1 6759.44 6761.02 0.001487 4.92 17236.30 1 6756.25 6754.14 0.0006341 19.13 8079.80 1 6776.26 6776.172 0.0006341 19.13 8079.80 1 6776.27 6776.77 0.002693 1.5.31 6874.52 1 6776.76 6779.76 6732.50 0.002044 9.90 10338.46 6776.77 6776.87 0.002268 1.5.31 6884.52 1 6776.77 6720.60 0.00248 1.5.74 9272.02 6776.77 6720.60 0.00248 1.5.31 1.665.74 6776.77 6720.60 0.00248
6779.37 6777.97 0.009693 12.25 10413.72 6776.46 6777.97 0.009693 12.25 10413.72 6756.59 6701.04 0.759829 96.71 918.02 6759.94 6761.72 0.007961 10.03 11227.07 6759.77 6761.02 0.007461 10.03 11227.07 6776.52 6761.02 0.007461 10.03 11227.07 6776.77 6761.02 0.006341 19.13 8079.80 6774.76 6773.79 0.006341 19.13 8079.80 6774.76 6773.79 0.006348 16.31 6584.22 6774.76 6773.81 0.006348 16.31 6584.22 6776.76 6770.40 0.002044 9.90 10338.96 6776.77 6770.60 0.002044 9.90 10338.96 6776.76 6770.60 0.002048 15.31 6584.22 6776.77 6770.60 6770.80 0.002048 15.37 10837.4
6776.46 6777.97 0.009663 12.26 10413.72 6758.69 6910.48 0.759829 96.71 918.02 6759.94 6761.72 0.007961 10.03 11227.07 6757.76 6751.72 0.005341 4.92 17936.30 6736.52 6759.14 0.006341 19.13 8079.80 6737.76 6759.14 0.006341 19.13 8079.80 6737.76 6773.79 0.002044 9.90 10338.66 6738.76 6732.50 0.002044 9.90 10338.66 6772.25 6773.60 0.002044 9.90 10338.66 6772.75 6772.06 0.002044 9.90 10338.66 6772.75 6772.06 0.002468 15.74 2720.60 6773.79 0.002468 14.27 8878.24 6706.74 6772.40 0.002468 14.27 8878.24 6707.85 6609.84 0.004720 17.93 5645.74 6708.99 6709.69
6768.69 6910.48 0.759829 96.71 918.02 6759.94 6761.72 0.007961 10.03 11227.07 6756.52 6751.76 6761.02 0.001487 4.92 17936.30 6736.52 6759.14 0.006341 19.13 8079.80 6747.85 6751.72 0.025933 23.23 4516.31 6735.76 6734.06 0.006388 10.59 9366.09 6727.25 6732.50 0.002044 9.90 10338.96 6727.25 6732.50 0.002044 9.90 10338.96 6727.65 6732.50 0.002044 9.90 10338.96 6720.60 6773.75 0.002044 9.90 10338.96 6774.75 6720.60 0.002044 9.90 10338.96 6775.75 6720.60 0.002044 9.90 10338.96 6776.74 67720.60 0.002044 9.90 10338.96 6776.75 6679.84 17.45 1068.74 670.85 <
6768.69 6910.48 0.759829 96.71 918.02 6759.94 6761.72 0.007961 10.03 11227.07 6757.76 6761.02 0.001487 4.92 17936.30 6747.85 6751.72 0.005331 10.59 9366.09 6747.85 6751.72 0.005338 10.59 9366.09 6727.26 6732.60 0.002044 9.90 10333.96 6727.25 6725.60 0.002044 9.90 10333.96 6727.25 6726.87 0.002044 9.90 10333.96 6727.25 6726.87 0.002044 9.90 10333.96 6776.77 6720.80 0.004018 13.73 766.53 6776.74 6775.40 0.002028 10.95 10865.16 6776.75 0.002428 10.95 10865.16 6776.74 6771.40 0.00203 11.13 9728.74 6776.75 0.002428 10.95 10.95 10.95 6608.74 6772.40
6759.34 6761.02 0.007961 10.03 11227.07 6736.52 6751.02 0.001487 4.92 17236.30 6736.76 6751.02 0.006381 19.13 8079.80 6736.76 6759.14 0.006381 10.59 9366.09 6727.25 6732.50 0.006388 15.31 6584.52 6727.25 6732.50 0.002044 9.90 10338.96 6727.25 6732.50 0.002044 9.90 10338.96 6772.75 6732.50 0.002044 9.90 10338.96 6772.75 6732.50 0.002044 9.90 10338.96 6776.77 6720.80 0.00208 12.74 9272.02 6776.77 6720.80 0.004018 13.73 7683.87 6702.86 6770.25 0.002028 10.35 1085.16 6688.40 6670.40 0.004573 14.27 6878.74 6688.41 6670.46 0.001457 17.74 1722.07 6688.42
6757.76 6761.02 0.001487 4.92 17936.30 6736.52 6759.14 0.006341 19.13 8079.80 6736.76 6736.72 0.025933 23.23 4516.31 6737.76 6720.33 10.59 9366.09 6727.25 6732.50 0.0002044 9.90 10338.96 6727.25 6732.50 0.002044 9.90 10338.96 6727.26 6732.70 0.002618 15.71 6544.52 6727.26 6732.70 0.002106 12.74 9272.02 6771.87 6771.82 0.004018 13.73 7665.87 6770.67 6771.82 0.004203 11.13 9728.74 6770.74 6771.40 0.002205 10.95 1086.74 6609.74 6770.25 0.004720 17.74 9728.74 6609.84 6691.39 0.004522 24.89 4234.68 6688.94 6691.39 0.004522 24.89 4234.68 6689.74 6689.34
6756.52 6756.14 0.006341 19.13 8079.80 6736.76 6756.72 0.025933 23.23 4516.31 6736.76 6736.72 0.002338 10.59 9366.09 6727.25 6732.50 0.002044 9.90 10338.96 6727.25 6732.50 0.002044 9.90 10338.96 6727.26 6732.50 0.002044 9.90 10338.96 6727.26 6732.50 0.002016 12.74 9272.02 6776.77 6720.60 0.004018 13.73 7665.87 6776.74 6772.40 0.002285 10.95 10865.14 6776.74 6772.40 0.002426 14.27 6878.24 6706.74 6772.40 0.002426 14.27 6878.24 6706.74 6772.40 0.004720 17.33 5545.74 6688.94 6698.41 0.001101 7.80 4407.76 6688.94 6691.39 0.002426 14.27 6723.66 6689.94
6747.85 6751.72 0.025933 23.23 4516.31 6735.76 6739.15 0.00338 10.59 9366.09 6727.25 6732.50 0.002044 9.90 10338.96 6727.25 6732.50 0.002618 9.57 10338.47 6727.26 6723.79 0.002618 9.57 10338.47 6716.77 6720.60 0.004018 13.73 7663.87 6716.77 6720.60 0.004913 14.65 7226.08 6706.74 6713.20 0.002285 10.95 10885.16 6707.25 0.002003 11.13 9728.74 6708.88 6698.41 0.002426 14.27 6978.74 6693.88 6698.41 0.015622 24.89 4234.68 6688.40 6693.89 6698.41 0.015622 24.89 4234.68 6688.44 6693.89 6698.41 0.01652 24.89 4234.68 6688.44 6693.49 0.00479 17.74 1727.46 <t< td=""></t<>
6732.76 6734.15 0.002044 9.90 10.59 9366.09 6727.25 6732.50 0.002044 9.90 10.38.96 6727.25 6732.50 0.002044 9.90 10.38.96 6727.26 6728.70 0.002618 9.57 10837.47 6728.77 0.002618 9.57 10837.47 6716.77 6720.60 0.004913 14.65 7296.08 6716.77 6720.60 0.004913 14.65 7296.08 6706.74 6712.40 0.002285 10.95 10865.16 6706.85 6698.41 0.01662 24.89 4234.68 6688.40 6691.39 0.00472 17.27 6878.24 6688.40 6691.39 0.004573 15.74 7727.46 6688.41 6691.39 0.004573 15.74 7727.46 6688.44 6691.39 0.004573 15.74 7727.46 6688.44 6691.39 0.004573 15.74 7727.46 6688.54
6727.25 6732.50 0.002044 9.90 10338.96 6718.70 0.002618 9.90 10338.96 6728.70 0.002618 9.57 10837.47 6728.77 0.003106 12.74 9272.02 6718.77 6720.60 0.004913 14.65 7296.08 6718.70 0.002285 10.95 10865.16 6718.82 0.004913 14.65 7226.08 6718.40 0.002285 10.95 10865.16 6718.40 0.002426 11.13 9728.74 6708.74 6712.40 0.002426 14.27 6878.24 6693.86 6688.41 0.004572 14.27 6878.24 6693.88 6689.41 0.015622 24.89 4234.68 6688.40 6692.04 0.001101 7.80 13591.59 6688.40 6690.31 0.004573 15.74 7727.46 6688.40 6690.31 0.002586 20.01 6103.93 6688.40 6690.31 0
6726.87 0.005327 13.15 7565.63 (6726.87 0.002618 9.57 10837.47 (6726.87 0.002618 9.57 10837.47 (6726.87 0.002618 9.57 10837.47 (6726.60 0.004018 13.73 7663.87 (6715.40 0.002285 10.95 10865.16 (6715.40 0.002285 10.95 10.865.16 (6715.40 0.002285 10.95 10.95 10865.16 (6715.40 0.002285 10.95 10.95 10865.16 (6713.32 0.001312 11.48 10038.58 (682.44 0.002285 10.95 17.24 6878.24 (682.04 0.001312 11.48 10038.58 (682.04 0.001312 17.83 5545.74 (682.44 0.002426 0.004573 17.93 5545.74 (682.44 0.001401 7.80 13591.59 (688.94 6690.31 0.008945 20.04 13591.59 (688.94 6691.39 0.004573 15.74 7727.46 (688.94 6691.39 0.00178 7.77 13280.43 (6673.05 6673.05 6673.46 0.001931 11.04 10215.55 (6673.05 6659.94 0.001931 11.04 10215.55 (6630.63 6632.20 0.002362 8.82 7595.48 (6625.32 6623.95 0.002362 8.82 7593.33 3385.47 (6625.32 6623.95 0.002362 8.82 7593.52 (6630.63 6623.95 0.002366 8.72 8.72 8.72 8.72 8.72 8.72 8.72 8.72
6726.87 0.005327 13.15 7565.63 6726.87 0.002618 9.57 10837.47 6716.77 6720.80 0.004018 12.74 9272.02 6716.77 6720.60 0.004018 13.73 7663.87 6717.50 0.002285 10.95 10865.16 6717.50 0.002285 10.95 10865.16 6717.40 0.002285 10.95 10865.16 6717.50 0.002426 11.13 9728.74 6705.99 6709.89 0.004720 11.42 878.24 6693.86 6699.41 0.002426 14.27 6878.76 6685.40 6691.39 0.004573 15.74 7727.46 6688.94 6691.39 0.004573 15.74 7727.46 6688.74 6699.31 0.004573 15.74 7727.46 6688.75 6699.31 0.004573 15.74 7127.46 6688.74 6699.31 0.004596 20.49 5727.36 6688.94 6
6726.87 0.002618 9.57 10837.47 6716.77 6720.60 0.004018 12.74 9272.02 6716.77 6720.60 0.004018 13.73 7663.87 6717.50 0.002285 10.95 10865.16 6717.50 0.002285 10.95 10865.16 6717.40 0.002285 10.95 10865.16 6717.40 0.002285 11.13 9728.74 6705.99 6709.69 0.004720 17.29 5645.74 6683.40 6699.41 0.016522 24.89 4234.68 6689.41 0.004522 24.89 4234.68 6689.31 0.004573 15.74 7727.46 6689.34 6691.39 0.004573 15.74 7727.46 6689.34 6691.39 0.004573 15.74 7727.46 6689.34 6691.39 0.004573 15.74 7127.46 6689.34 6691.39 0.004596 20.04 5722.36 6689.34 6691.39
6776.79 0.003106 12.74 9272.02 6719.82 0.004018 13.73 7663.87 6719.82 0.004913 14.65 7296.08 6717.50 0.002285 10.95 10865.16 6717.50 0.002285 10.95 10865.16 6705.40 0.002285 11.13 9728.74 6705.40 0.004720 17.83 5545.74 6702.66 6709.89 0.004720 17.83 5545.74 6693.88 6699.31 0.004573 17.74 1727.46 6685.40 6690.31 0.004573 15.74 7727.46 6688.94 6690.31 0.004573 15.74 7727.46 6680.77 6683.56 0.012536 20.49 5722.36 6680.77 6683.56 0.0012536 20.49 5722.36 6680.77 6683.56 0.012536 20.49 5722.36 6673.05 6679.46 0.001931 11.04 10215.56 6673.10 6673.47 <td< td=""></td<>
6719.82 0.004913 14.65 7296.08 (6719.82 0.004913 14.65 7296.08 (6715.40 0.002285 10.95 10.95 10.865.16 (6715.40 0.002285 10.95 10.95 10.865.16 (6715.40 0.002285 10.95 11.13 9728.74 (6712.40 0.002426 14.27 6878.24 (6705.99 6709.69 0.004720 17.93 5545.74 (6885.40 6692.04 0.001101 7.80 13591.59 (6885.40 6690.31 0.008945 22.02 4407.76 (6887.46 6690.31 0.008945 20.01 7.77 77.77.77.77.46 (6887.46 6690.31 0.008945 20.01 6103.97 (6673.05 6678.46 0.001103 11.10 11.04 10215.55 (6673.05 6678.46 0.001103 11.10 11.04 10215.55 (6673.05 6675.40 0.001931 11.04 10215.55 (6673.05 6673.93 0.000599 19.33 3385.47 (6653.20 0.003692 8.82 7595.48 (6620.13 0.000296 8.21 8.82 7595.48 (6620.13 0.000296 8.21 8.82 7595.48 (6620.13 0.000296 8.21 8.82 7595.48 (6620.13 0.000296 8.21 8.87 7484.43 (6620.14 0.0003216 8.67 7484.43
6719.82 0.004913 14.65 7296.08 6717.50 0.002285 10.95 10.865.16 6717.40 0.002285 10.95 10865.16 6706.74 6712.40 0.002083 11.13 9728.74 6705.99 6709.69 0.004720 17.93 5545.74 6689.04 6707.25 0.008985 22.02 4407.76 6689.04 6707.25 0.008985 22.02 4407.76 6689.04 6707.25 0.008985 22.02 4407.76 6689.04 6691.39 0.004573 15.74 7727.46 6680.77 6689.34 0.004573 15.74 7727.46 6680.74 6689.34 0.004573 15.74 7727.46 6680.74 6689.35 0.0012536 20.49 5722.36 6687.46 6699.31 0.000948 8.45 14993.38 6673.05 6678.46 0.0016048 8.45 14993.38 6679.84 6659.94 0.0016048 8.45
6717.50 0.002285 10.95 10.865.16 6715.40 0.002003 11.13 9728.74 6706.74 6712.40 0.002426 14.27 6878.24 6705.99 6709.69 0.004720 17.93 5545.74 6683.88 6699.31 0.004572 22.02 4407.76 6688.94 6690.31 0.004573 15.74 777.46 6688.94 6690.31 0.004573 15.74 777.7 6688.94 6690.31 0.004573 15.74 777.7 6680.77 6683.56 0.012536 20.49 5722.36 6673.05 6679.46 0.001783 11.04 10215.55 6673.05 6679.46 0.001783 11.04 10215.55 6680.77 6683.56 0.016048 8.45 14993.38 6673.05 6673.05 0.001783 11.04 10215.55 6673.05 6679.40 0.001783 12.44 4140.49 6669.94 60.003692 10.00696
6715.40 0.002003 11.13 9728.74 6706.74 6712.40 0.002426 14.27 6878.24 6705.99 6709.69 0.004720 17.93 5545.74 6693.88 6698.41 0.015622 24.89 4234.68 6693.8 6692.04 0.00472 17.93 5545.74 6688.40 6692.04 0.004573 15.74 7727.46 6688.94 6691.39 0.004573 15.74 7727.46 6687.46 6690.31 0.004573 15.74 7727.46 6687.46 6690.31 0.004573 15.74 7727.46 6687.46 6690.31 0.00178 8.45 14993.38 6673.05 6678.47 0.001931 11.04 10215.55 6673.68 6678.40 0.0016048 8.45 14993.38 6669.84 6677.40 0.0016048 8.45 14993.38 6669.84 6677.40 0.0016048 8.21 4140.49 6669.84 6677.38
6706.74 6713.32 0.001312 11.48 10038.58 6706.74 6712.40 0.002426 14.27 6878.24 6702.66 6707.25 0.008985 22.02 4407.76 6693.88 6698.41 0.015622 24.89 4234.68 6685.40 6692.04 0.001101 7.80 13591.59 6688.94 6690.31 0.004573 15.74 7727.46 6687.46 6690.31 0.004573 15.74 7727.46 6687.46 6690.31 0.004573 15.74 7727.46 6687.46 6690.31 0.0012536 20.01 6103.97 6687.46 6679.46 0.001783 7.77 13280.43 6673.05 6678.46 0.001931 11.04 10215.55 6673.68 6678.46 0.001931 11.04 10215.55 6669.84 6675.40 0.018863 19.33 3385.47 6669.84 6659.94 0.003692 8.21 8334.34 6663.66
6706.74 6712.40 0.002426 14.27 6878.24 6705.99 6709.69 0.004720 17.93 5545.74 6702.66 6707.25 0.008985 22.02 4407.76 6693.88 6698.41 0.015622 24.89 4234.68 6685.40 6699.31 0.004573 15.74 772.46 6687.46 6690.31 0.004573 15.74 772.46 6680.77 6683.56 0.012536 20.49 5722.36 6673.05 6679.46 0.001778 7.77 13280.43 6673.05 6678.47 0.000948 8.45 14993.38 6673.05 6678.46 0.0016048 8.45 149093.38 6673.68 6678.46 0.0016048 8.45 149093.38 6673.68 6675.40 0.006791 17.65 7390.76 6669.84 6657.39 0.006791 17.65 7595.48 6669.66 6651.59 0.008652 10.85 4206.57 6630.63
6705.99 6709.69 0.004720 17.93 5545.74 6702.66 6707.25 0.008985 22.02 4407.76 6693.88 66998.41 0.015622 24.89 4234.68 6685.40 6692.04 0.001101 7.80 13591.59 6688.94 6691.39 0.004573 15.74 7727.46 6687.46 6690.31 0.008945 20.01 6103.97 6687.46 6679.46 0.001758 20.49 5722.36 6673.05 6678.47 0.000948 8.45 14993.38 6673.05 6678.47 0.0016048 8.45 14993.38 6673.05 6677.47 0.0016048 8.45 14993.38 6673.05 6677.47 0.001831 11.04 10215.55 6669.84 6672.38 0.006791 17.65 7390.76 6669.84 6672.38 0.006791 17.65 7595.48 6649.66 6657.59 0.008052 10.85 4206.57 6630.63
6702.66 6707.25 0.008985 22.02 4407.76 6693.88 6699.41 0.001101 7.80 13591.59 6685.40 6692.04 0.004573 15.74 7727.46 6688.94 6690.31 0.004573 15.74 7727.46 6680.77 6683.56 0.012536 20.01 6103.97 6673.05 6679.46 0.001778 7.77 13280.43 6673.05 6678.47 0.000948 8.45 14993.38 6673.68 6678.46 0.0016048 8.45 14993.38 6673.68 6678.16 0.0016048 8.45 14993.38 6673.68 6678.16 0.0016048 8.45 14993.38 6673.68 6675.40 0.006791 17.65 7390.76 6669.84 6675.40 0.006791 17.65 7595.48 6669.86 6651.59 0.008052 10.85 4206.57 6630.63 6652.90 0.002796 8.21 8334.34 6625.32
6693.88 6699.841 0.015622 24.89 4234.68 6685.40 6692.04 0.001101 7.80 13591.59 6688.94 6691.39 0.004573 15.74 7727.46 6687.46 6690.31 0.008945 20.01 6103.97 6680.77 6683.56 0.012536 20.49 5722.36 6673.05 6678.47 0.000948 8.45 14993.38 6673.05 6678.47 0.001931 11.04 10215.55 6673.08 6677.12 6675.40 0.016048 21.44 4140.49 6669.84 6672.38 0.006791 17.65 7390.76 6669.84 6672.38 0.006791 17.65 7595.48 6669.84 6672.38 0.003692 8.82 7595.48 6649.66 6651.59 0.003692 10.85 4206.57 6630.63 6632.20 0.002696 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53
6685.40 6692.04 0.001101 7.80 13591.59 6688.94 6691.39 0.004573 15.74 7727.46 6688.746 6690.31 0.008945 20.01 6103.97 6680.77 6683.56 0.012536 20.49 5722.36 6673.05 6678.46 0.001178 7.77 13280.43 6673.08 6678.16 0.001931 11.04 10215.55 6673.08 6678.16 0.016048 21.44 4140.49 6669.84 6672.38 0.006791 17.65 7390.76 6669.84 6672.38 0.006791 17.65 7390.76 6649.66 6657.43 0.008052 19.33 3385.47 6649.66 6651.59 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6625.32 6627.95 0.006806 12.76 4380.53 6625.32 6627.95 0.003216 8.67 7484.43
6687.46 6690.31 0.00437.3 15.74 772.46 6687.46 6690.31 0.008945 20.01 6103.97 6680.77 6683.56 0.012536 20.49 5722.36 6673.05 6679.46 0.001778 7.77 13280.43 6673.05 6678.47 0.000948 8.45 14993.38 6673.08 6678.47 0.0016048 8.45 14993.38 6671.12 6675.40 0.016048 21.44 4140.49 6669.84 6672.38 0.006791 17.65 7390.76 6649.66 6651.59 0.003692 8.82 7595.48 6630.63 6637.97 0.008052 10.85 4206.57 6630.63 6631.89 0.002796 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.003216 8.67 7484.43
6687.46 6690.31 0.008945 20.01 6103.97 6680.77 6683.56 0.012536 20.49 5722.36 6673.05 6678.47 0.000948 8.45 14993.38 6673.68 6678.16 0.001931 11.04 10215.55 6673.08 6678.16 0.016048 21.44 4140.49 6669.84 6672.38 0.006791 17.65 7390.76 6657.43 6659.94 0.018883 19.33 3385.47 6649.66 6651.59 0.003692 8.82 7595.48 6635.96 6637.97 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.0003216 8.67 7484.43
6680.77 6683.56 0.012536 20.49 5722.36 6673.05 6679.46 0.001178 7.77 13280.43 6673.68 6678.47 0.000948 8.45 14993.38 6673.68 6678.16 0.001931 11.04 10215.55 6669.84 6672.38 0.016048 21.44 4140.49 6669.84 6659.94 0.018863 19.33 3385.47 6649.66 6651.59 0.003692 8.82 7595.48 6630.63 6637.97 0.008052 10.85 4206.57 6630.63 6631.89 0.002796 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.003216 8.67 7484.43
6673.05 6679.46 0.001178 7.77 13280.43 6678.05 6678.47 0.000948 8.45 14993.38 6673.68 6678.16 0.001931 11.04 10215.55 6669.84 6672.38 0.016048 21.44 4140.49 6669.84 6657.43 0.006791 17.65 7390.76 6649.66 6657.43 6650.99 0.003692 8.82 7595.48 6635.96 6637.97 0.003692 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.003216 8.67 7484.43
6673.68 6678.47 0.000948 8.45 14993.38 6673.68 6678.16 0.001931 11.04 10215.55 6669.84 6672.38 0.016048 21.44 4140.49 6659.84 6672.38 0.006791 17.65 7390.76 6649.66 6659.94 0.018883 19.33 3385.47 6635.96 6637.97 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.003216 8.67 7484.43
6671.12 6675.40 0.016048 21.44 4140.49 6669.84 6672.38 0.006791 17.65 7390.76 6649.66 6659.94 0.018883 19.33 3385.47 6649.66 6651.59 0.003692 8.82 7595.48 6635.96 6637.97 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.003216 8.67 7484.43
6671.12 6675.40 0.016048 21.44 4140.49 6669.84 6672.38 0.006791 17.65 7390.76 6669.84 6651.59 0.003692 8.82 7595.48 6649.66 6651.59 0.003692 8.82 7595.48 6635.96 6637.97 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.003216 8.67 7484.43
6669.84 6672.38 0.006791 17.65 7390.76 6657.43 6659.94 0.018883 19.33 3385.47 6649.66 6651.59 0.003692 8.82 7596.48 6635.96 6637.97 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6627.95 0.005806 12.76 4380.53 6625.32 6620.16 0.003216 8.67 7484.43
6657.43 6659.94 0.018883 19.33 3385.47 6649.66 6651.59 0.003692 8.82 7595.48 6635.96 6637.97 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6621.89 0.002158 6.72 9730.62 6625.32 6627.95 0.005806 12.76 4380.53 6625.16 0.003216 8.67 7484.43
6649.66 6651.59 0.003692 8.82 7595.48 6635.96 6637.97 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6631.89 0.002158 6.72 9730.62 6625.32 6627.95 0.005806 12.76 4380.53 6620.16 0.003216 8.67 7484.43
6630.63 6632.20 0.008052 10.85 4206.57 6630.63 6632.20 0.002796 8.21 8334.34 6631.89 0.002158 6.72 9730.62 6625.32 6627.95 0.005806 12.76 4380.53 6620.16 0.003216 8.67 7484.43
6630.63 6632.20 0.002796 8.21 8334.34 6631.89 0.002158 6.72 9730.62 6625.32 6627.95 0.005806 12.76 4380.53 6620.16 0.003216 8.67 7484.43
6623.32 6627.95 0.002158 6.72 9730.62 6625.32 6627.95 0.005806 12.76 4380.53 6620.16 0.003216 8.67 7484.43
6625.32 6627.95 0.002158 6.72 9730.62 6625.32 6627.95 0.005806 12.76 4380.53 6620.16 0.003216 8.67 7484.43
6625.32 6627.95 0.005806 12.76 4380.53 6620.16 0.003216 8.67 7484.43
002U.10 U.UU3Z1b 8.67 /484.43
6611.92 6613.98 0.002920 9.37 7907.73
6610.32 0.001849 8.28 8103.37
6604.54 0.006445 12.98 4949.13
15 6599.28 6601.36 0.005471 11.27 5353.98

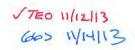

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Fronde # Chl
			(cfs)	(ft)	(H)	(#)	(tt)	(ft/ft)	(ft/s)	(sd ft)	(#)	
Reach	-14.20		Bridge									
Reach	-14.208	Breach	37573.00	6587.54	6598.58	6598.58	6600.28	0.008650	13.36	4475.74	1383.72	0.85
Reach	-14.317	Breach	22163.00	6586.18	6597.18	6595.96	6597.66	0.002593	7.73	5366.21	1662.20	0.47
Reach	-14.665	Breach	22163.00	6578.99	6587.98	6587.98	6589.71	0.008586	13.03	2630.72	681.45	0.84
Reach	-15.023	Breach	22163.00	6571.71	6582.88	6578.78	6583.11	0.001142	5.29	6757.51	1541.53	0.31
Reach	-15.426	Breach	22163.00	6564.55	6577.98	6575.52	6579.27	0.003030	10.16	3534.67	1076.53	0.53
Reach	-16,032	Breach	22163.00	6556.33	6564.21		6564.71	0.007162	9.75	4601.12	1692.43	0.72
Reach	-16,610	Breach	22163.00	6548.00	6556.04		6556.19	0.001540	4.44	8068.28	2532.02	0.34
Reach	-16.707	Breach	22163.00	6538.64	6554.54	6553.67	6554.91	0.002570	7.35	6085.32	3261.53	0.46
Reach	-16.71		Bridge									
Reach	-16.715	Breach	22163.00	6539.98	6552.31	6553.12	6554.29	0.013514	14.96	3039.27	2481.73	1.02
Reach	-16.786	Breach	22163.00	6546.00	6551.66	6551.02	6551.95	0.004159	6.38	6115.52	2800.30	0.54
Reach	-17.200	Breach	15127.00	V 6538.11	6547.02		6547.18	0.001470	3.74	5679.95	2132.18	0.32
Reach	-17.665	Breach	15127.00	6533.64	6540.98		6541.62	0.007268	9.00	3071.10	1429.77	99'0
Reach	-18.094	Breach	15127.00	6526.00	6535.86		6536.05	0.001249	4.89	5643.53	1766.61	0.29
Reach	-18.509	Breach	15127.00	6518.28	6532.00		6532.67	0.001900	7.64	2606.63	482.68	0.38
Reach	-19.137	Breach	15127.00	6514.27	6525.07		6525.63	0.002548	7.14	3475.98	1138.25	0.42
Reach	-19.650	Breach	15127.00	6506.80	6518.76	6515.96	6519.22	0.002276	68.9	3478.35	1409.86	0.40
Reach	-20.143	Breach	15127.00	6502.82	6511.31		6512.19	0.003604	7.51	2015.52	545.30	0.48
Reach	-20.502	Breach	15127.00	6500.78	6510.30		6510.37	0.000370	2.63	8206.08	2163.18	0.16
Reach	-20.594	Breach	15127.00	6492.79	6507.67	6202.49	6509.72	0.006378	11.64	1415.09	1008.11	0.66
Reach	-20.6		Bridge		/							
Reach	-20.601	Breach	15127.00	6492.80	6504.41	6202.29	6509.15	0.021333	17.47	865.93	139.01	1.16
Reach	-20.695	Breach	15127.00	6494.15	6503.82	6501.96	6504.11	0.003177	6.03	3856.79	1243.08	0.44
Reach	-21.099	Breach	15127.00	6491.28	6502.22		6502.28	0.000425	2.62	9825.11	3043.72	0.17
Reach	-21.206	Breach	15127.00	6489.63	6500.23	6498.00	6501.59	0.005302	9.43	1709.35	3473.48	0.59
Reach	-21.21		Bridge			À						
Reach	-21.220	Breach	15127.00	6489.87	6498.73	6497.80	6500.48	0.010360	10.84	1776.95	2596.51	0.79
Reach	-21.278	Breach	15127.00	6491.73	6497.03	6496.71	6497.41	0.006009	6.11	3917.52	2627.56	0.56
Reach	-21.595	Breach	15127.00	6484.18	6493.43	6491.73	6493.50	0.001120	3.30	8653.14	4458.17	0.26
Reach	-22.390	Breach	15127.00	6477.41	6486.14	6485.36	6486.71	0.004305	8.67	4227.56	2830.54	0.59
Reach	-22.722	Breach	8203.00	6474.55	6482.29	6479.03	6482.49	0.001001	3.91	3272.12	1810.12	0.28

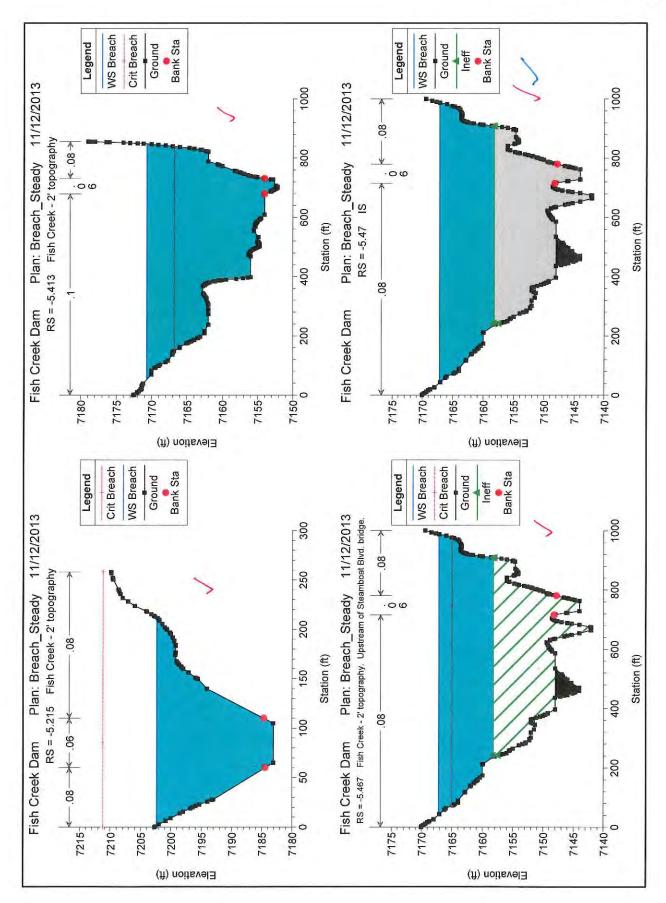


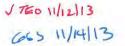


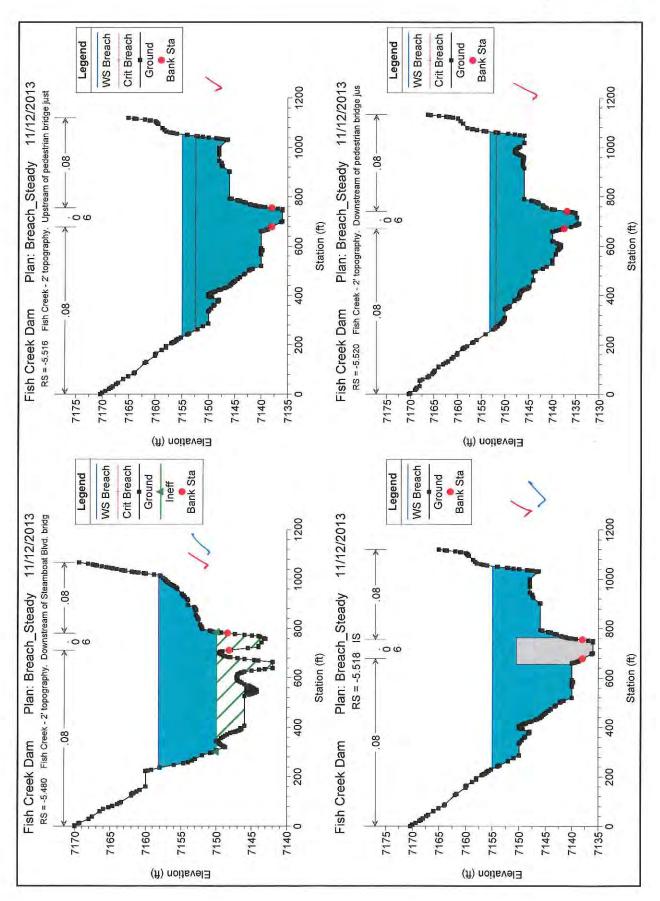


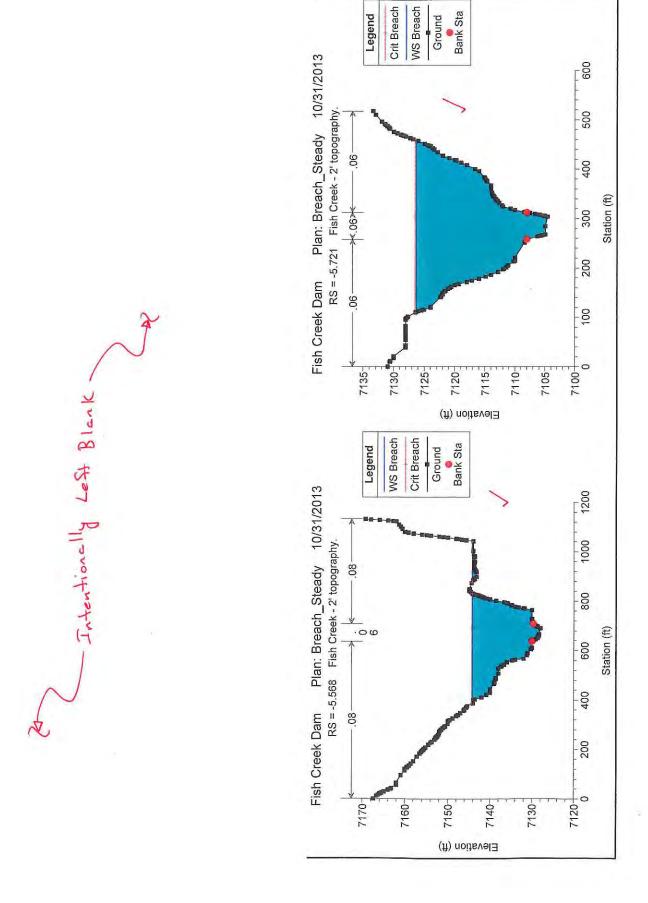


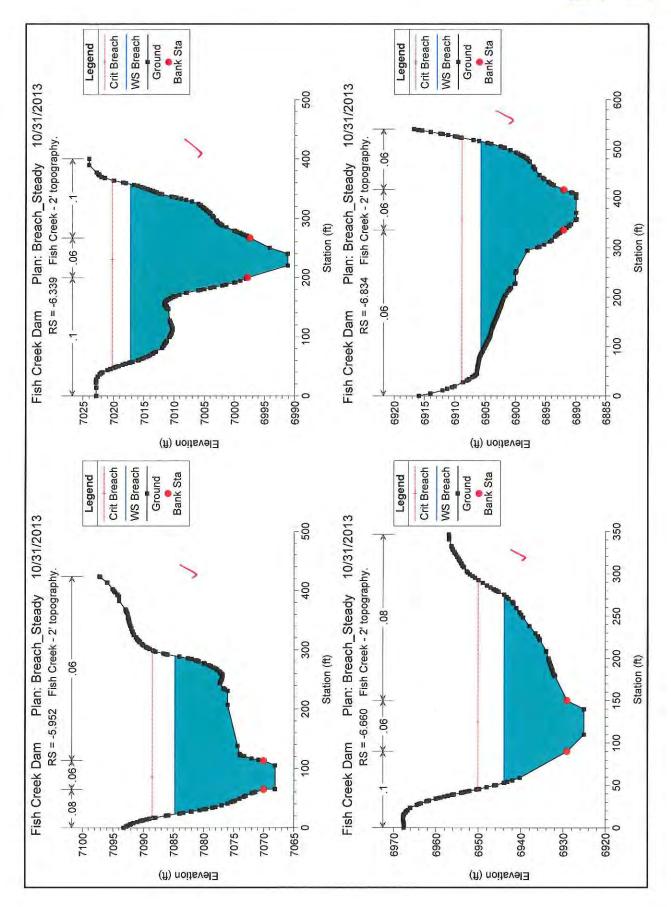


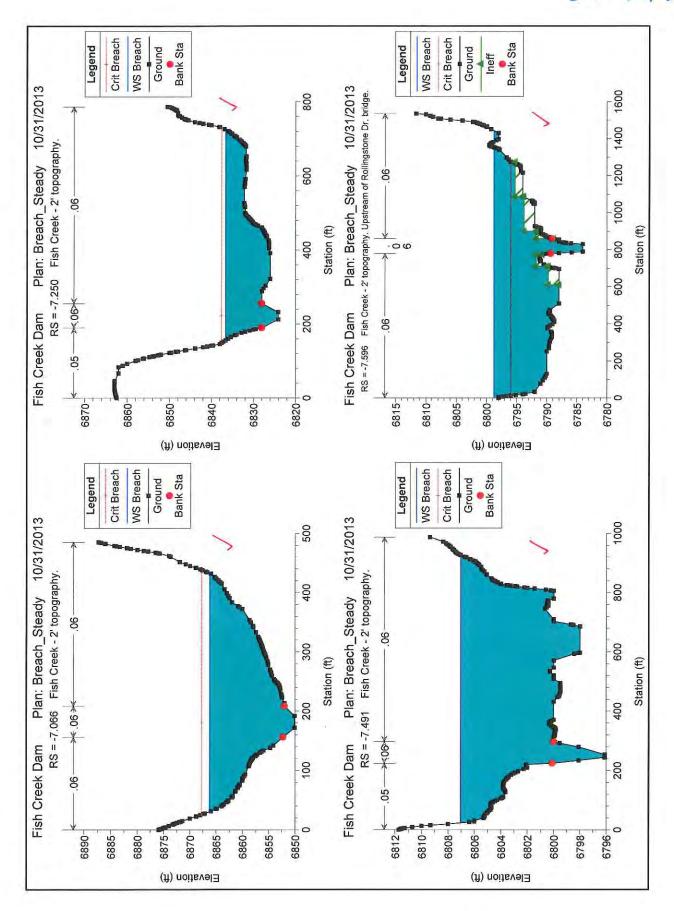


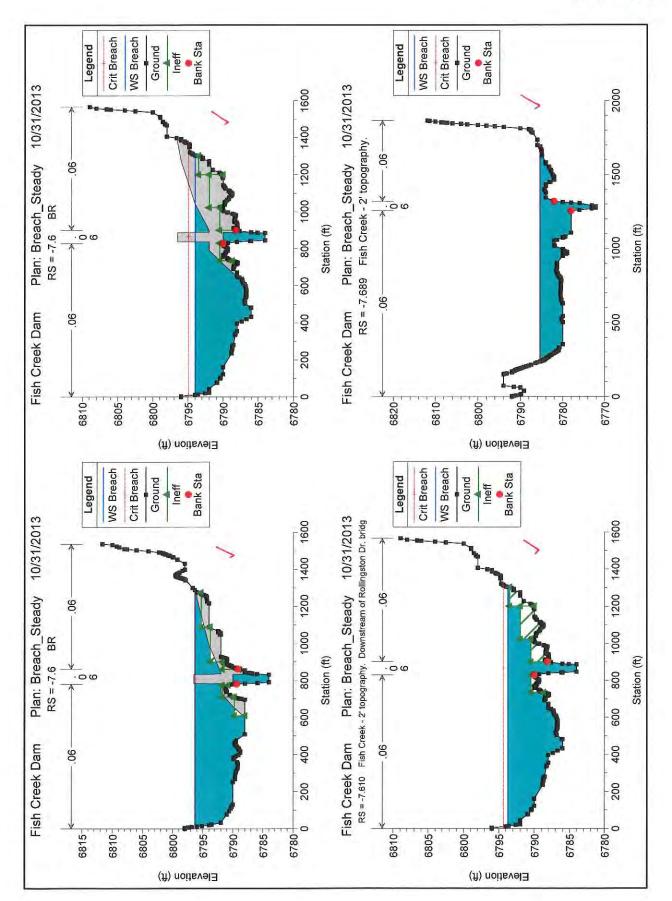


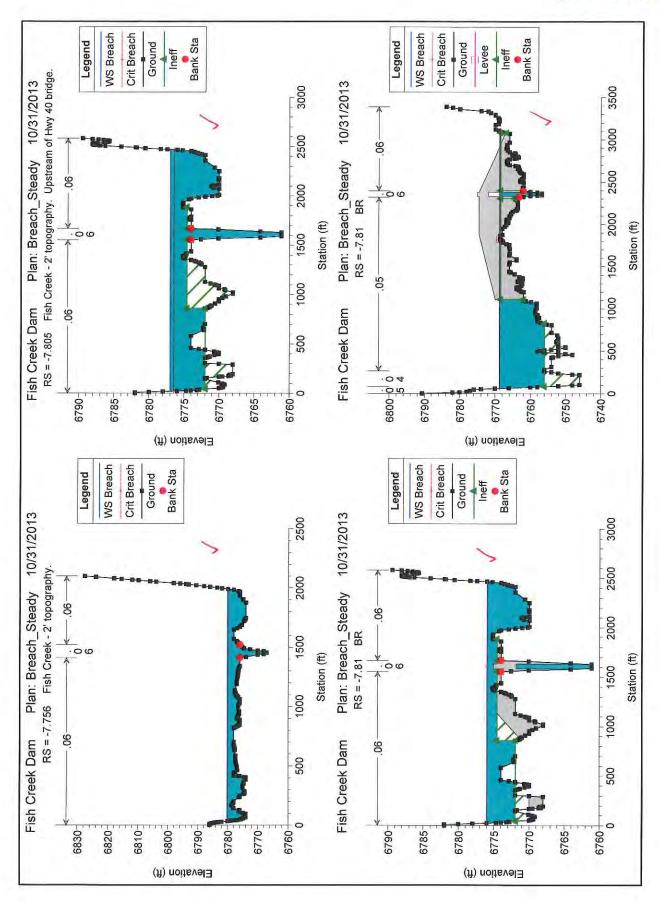


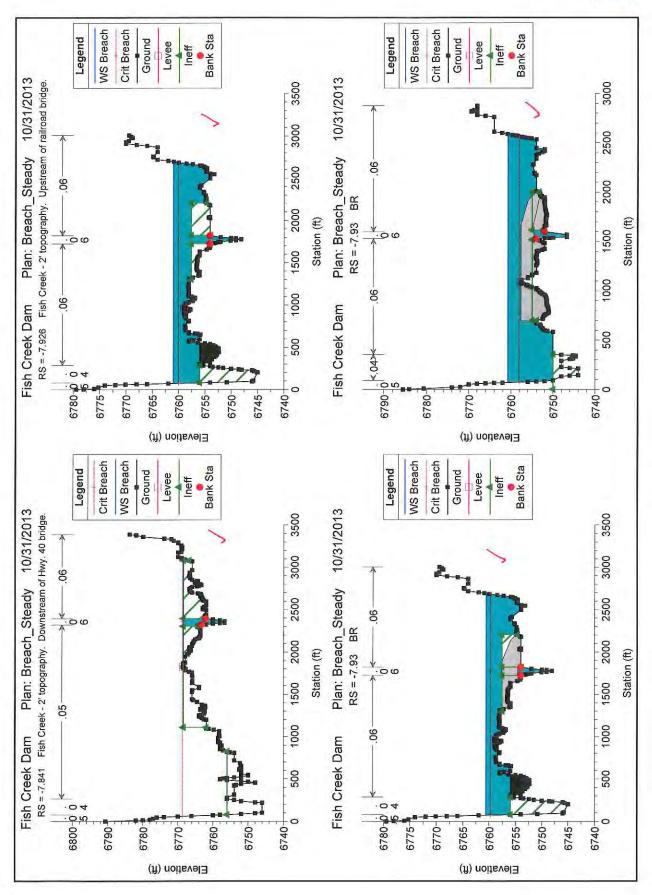


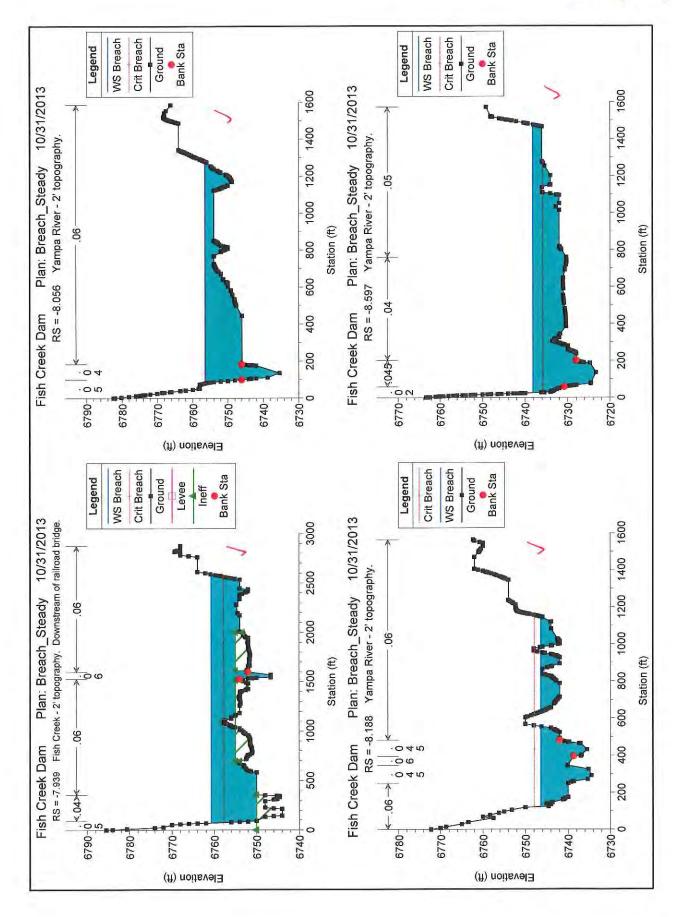


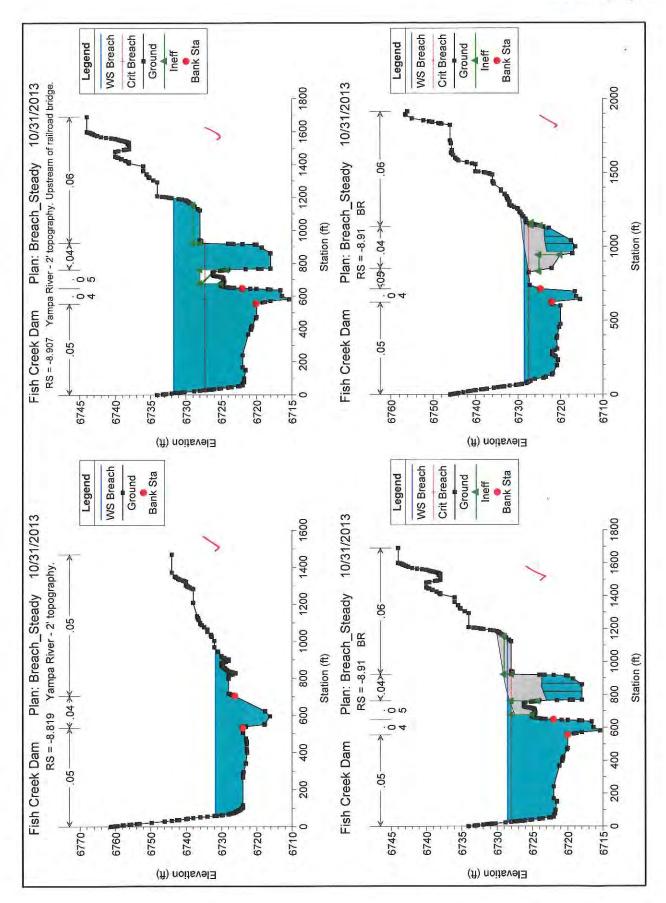


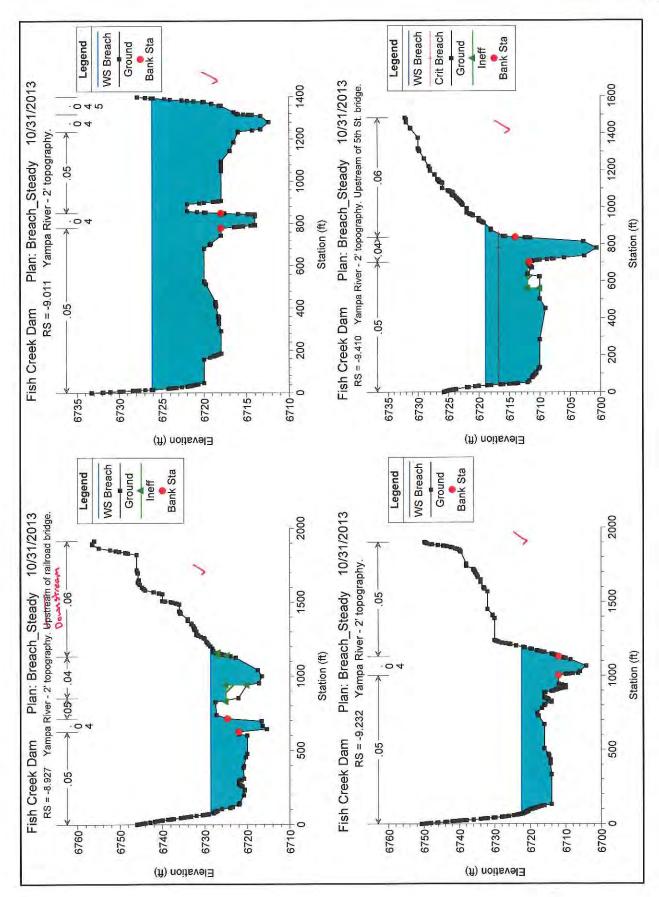


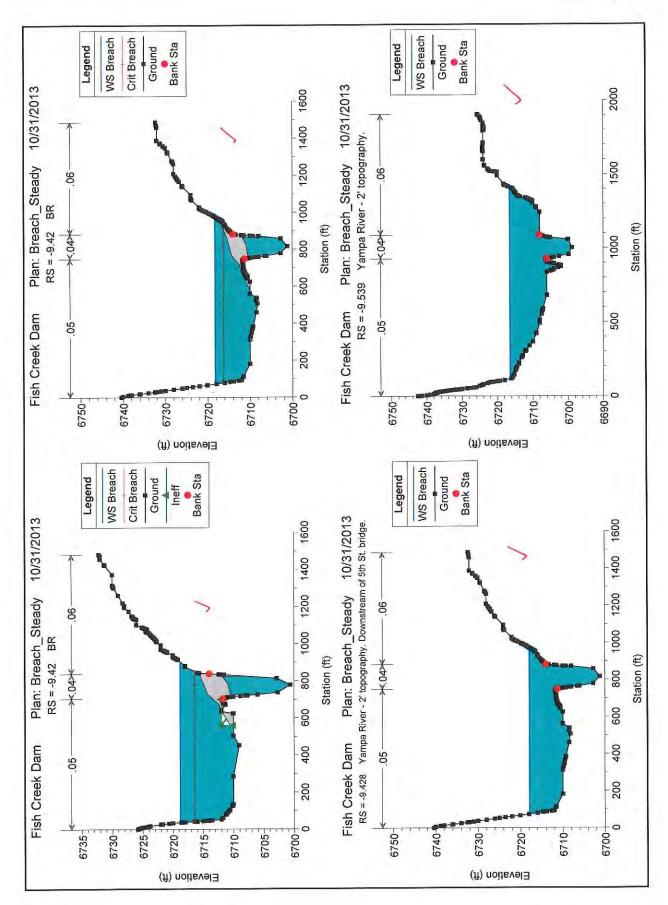


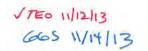


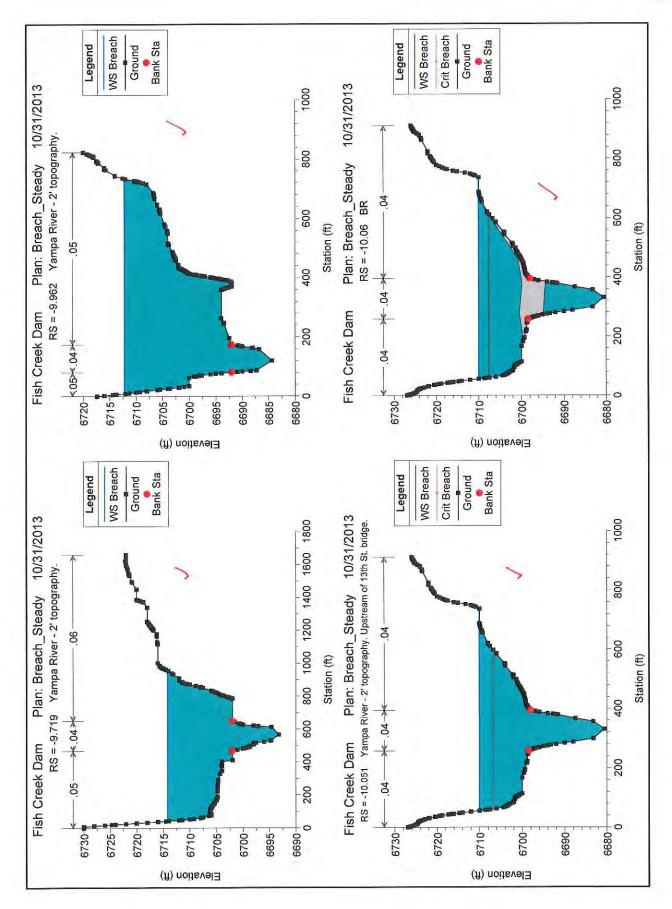


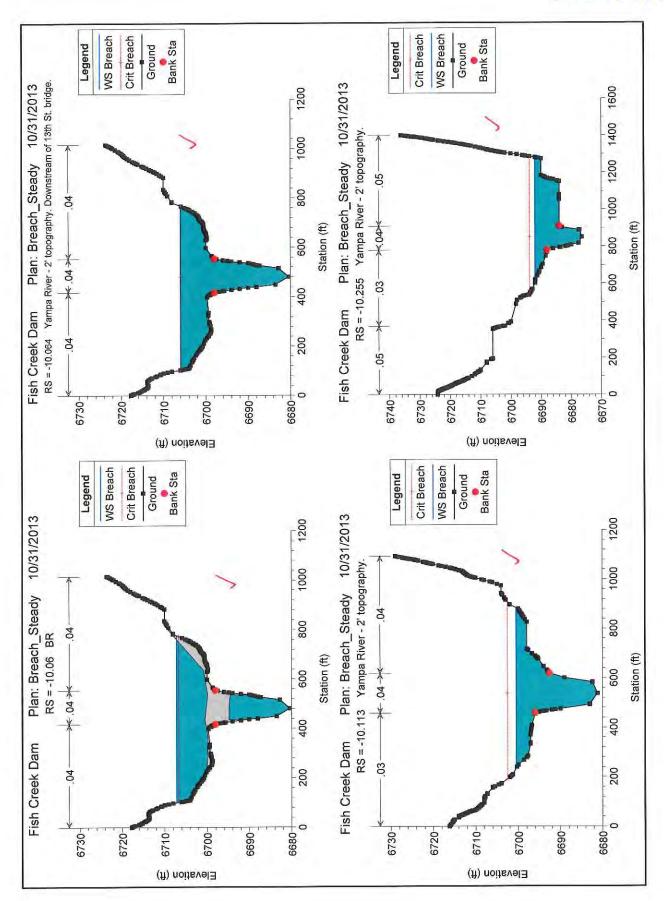


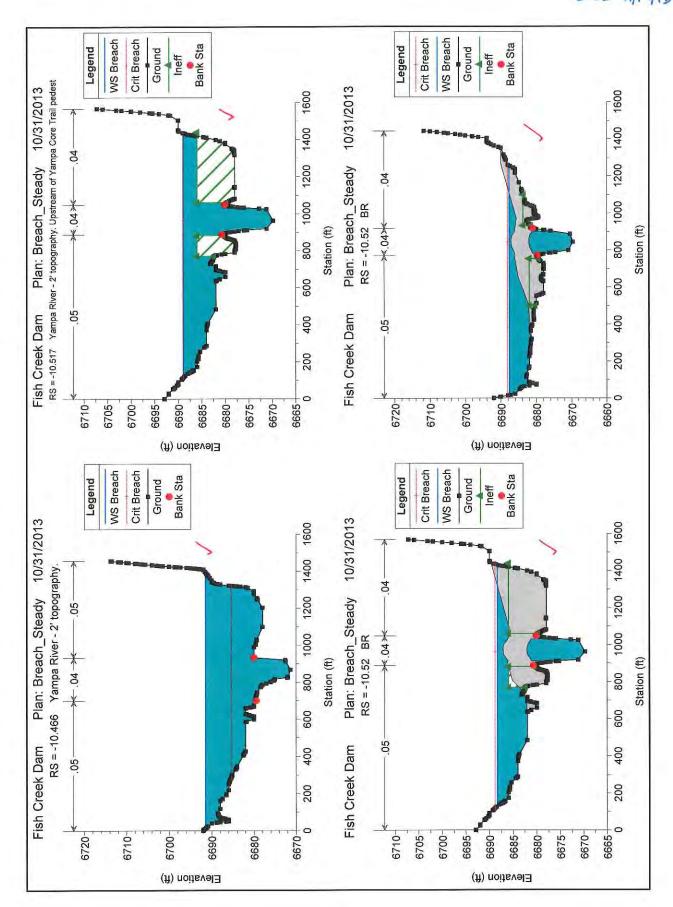


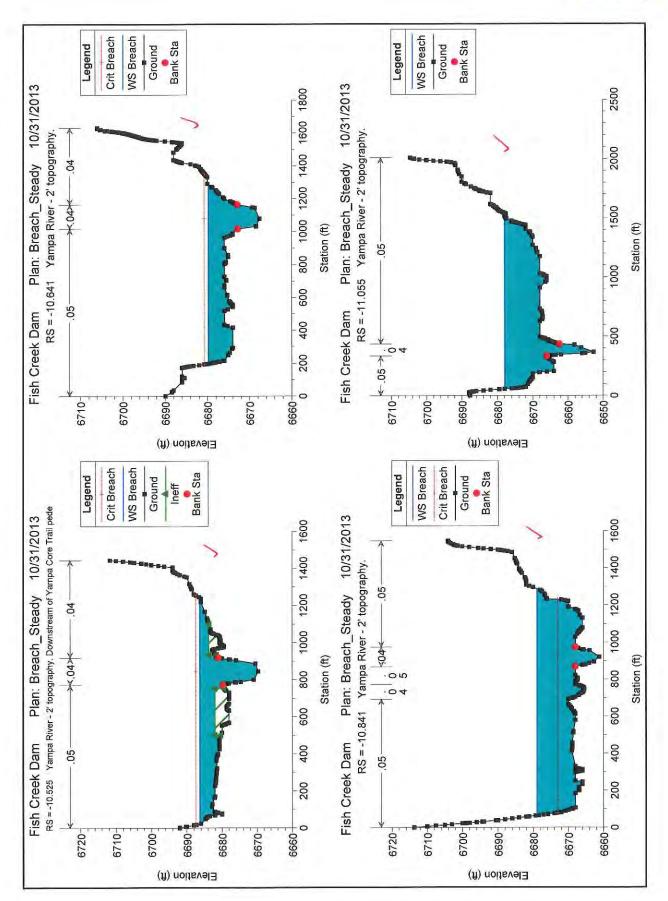


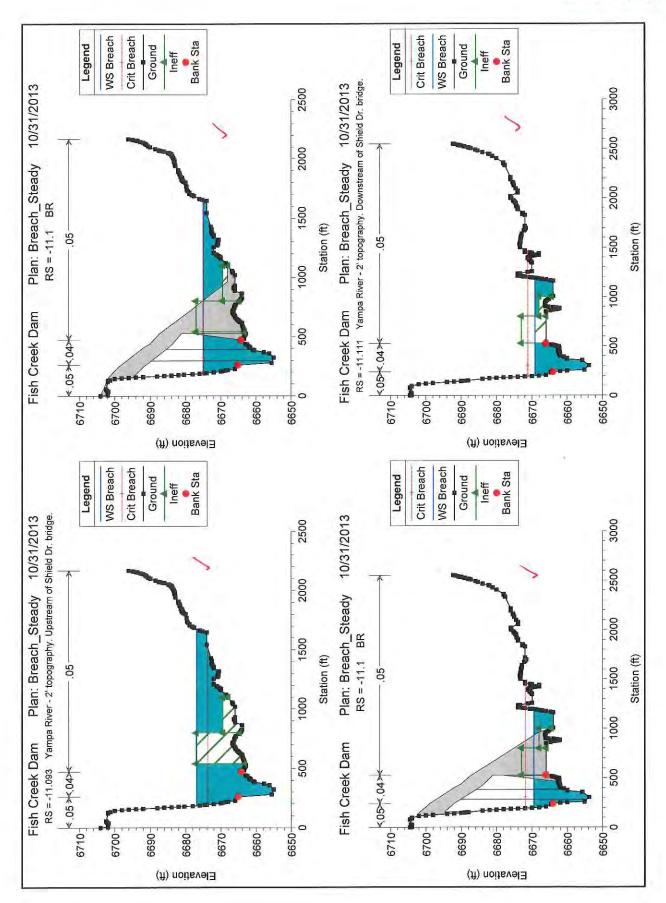


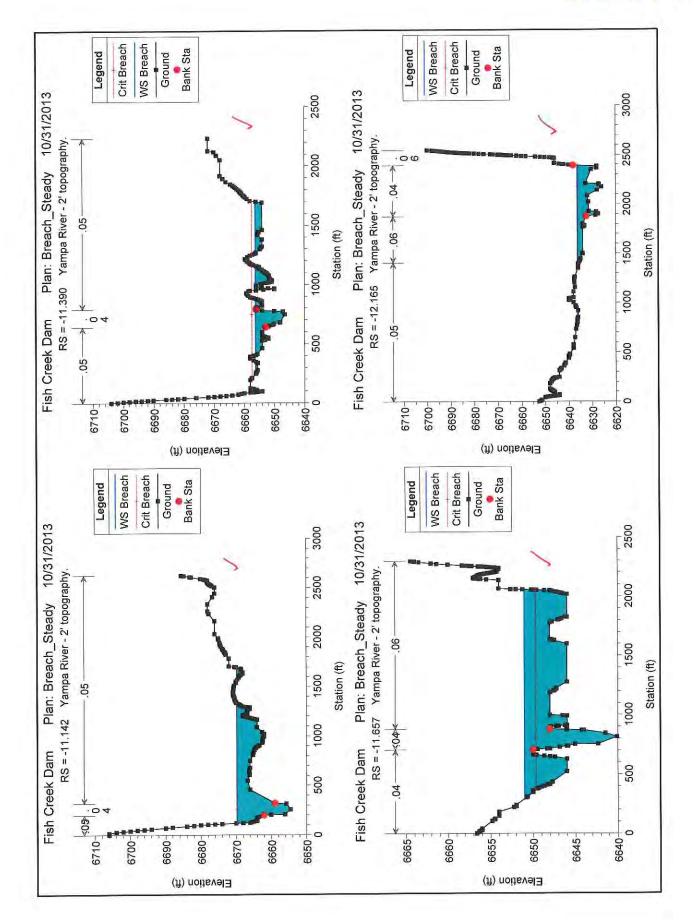


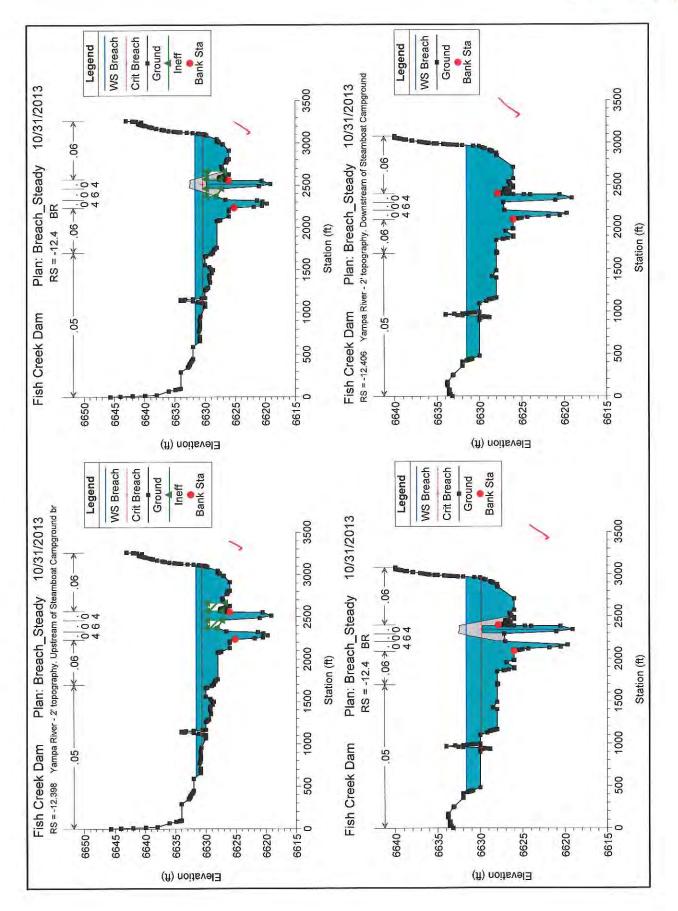


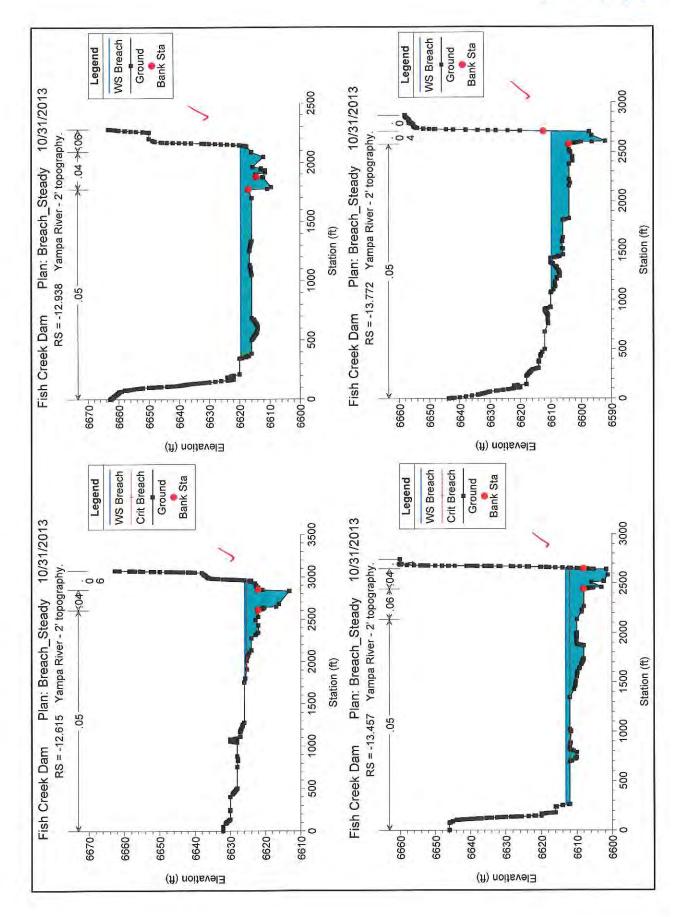


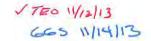


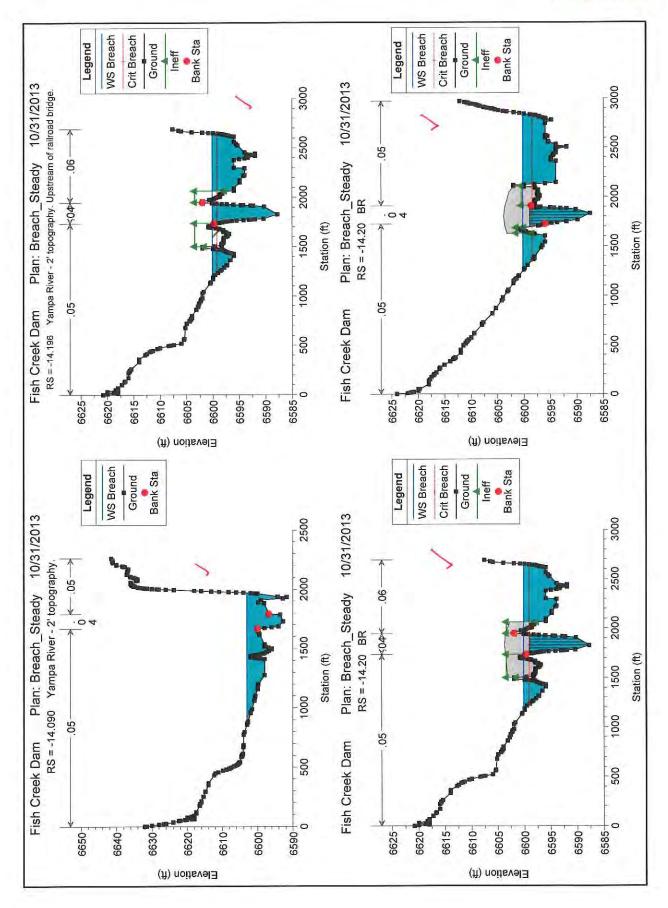


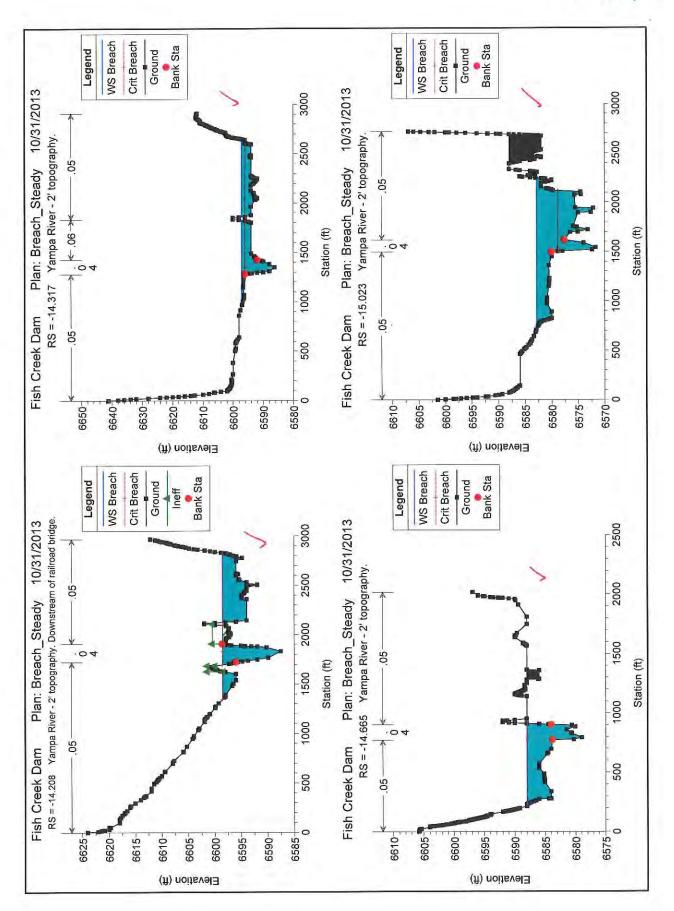


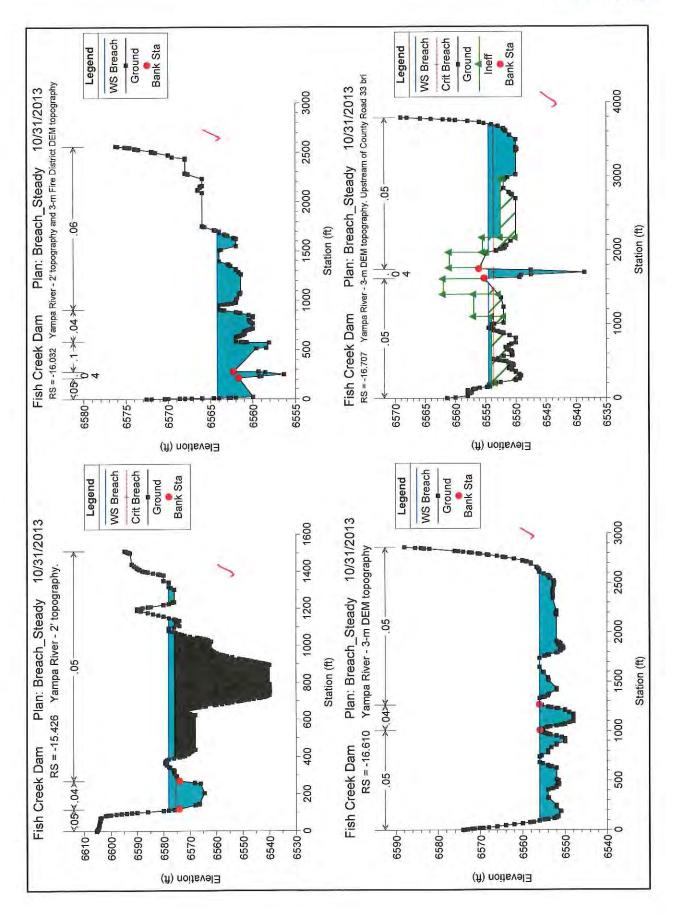


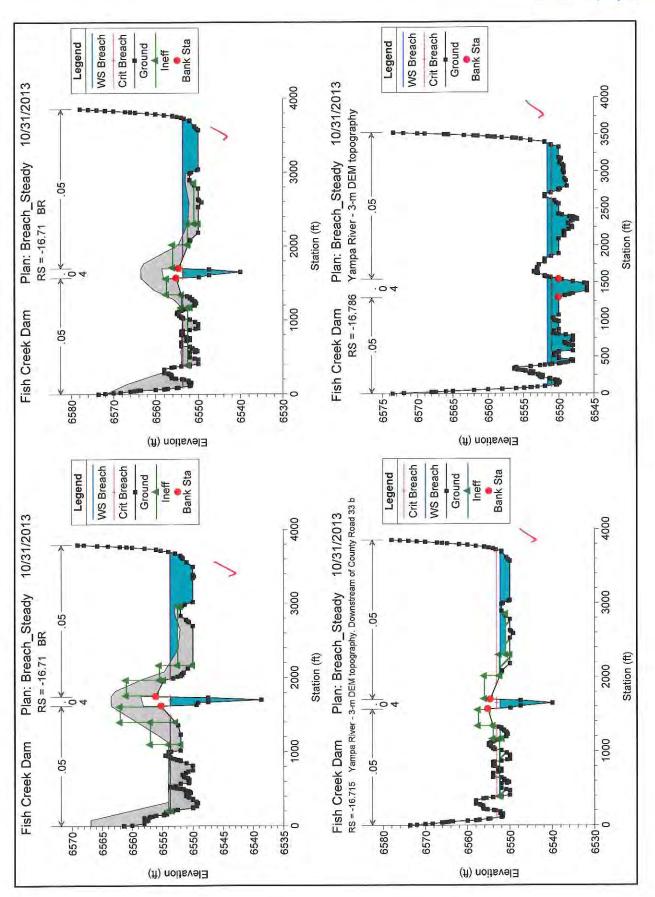


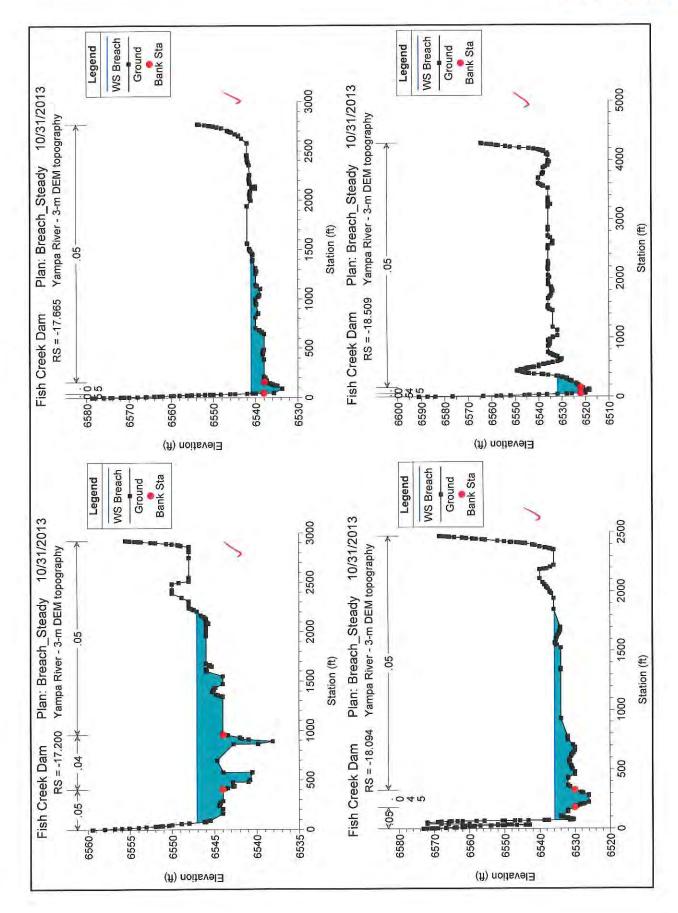


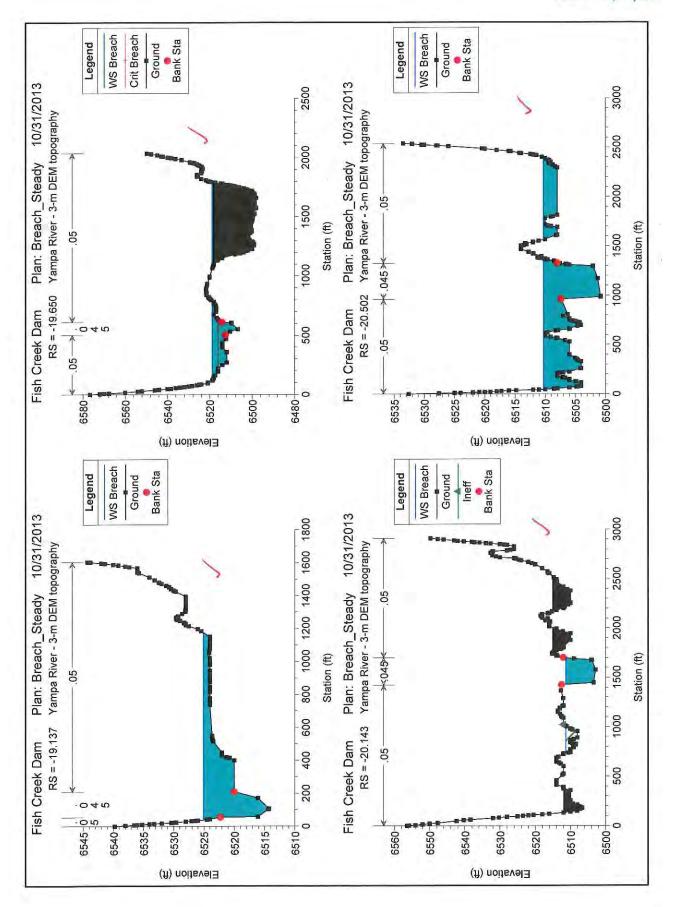


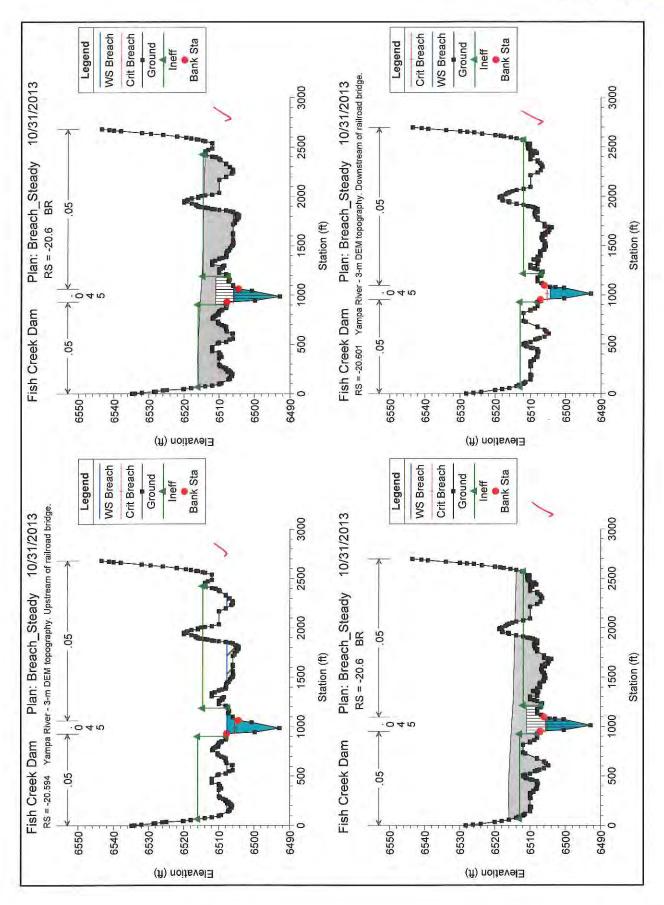


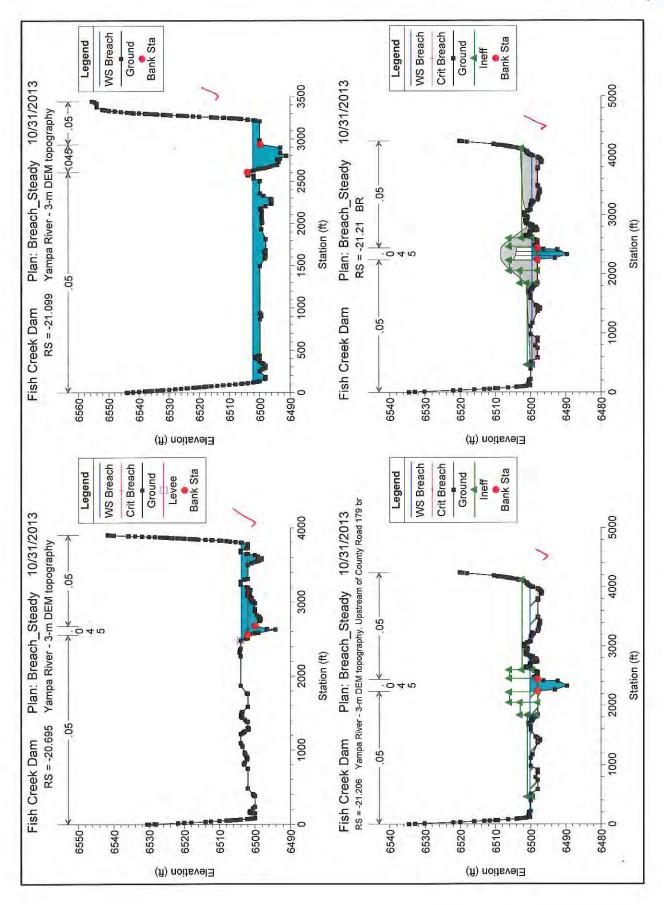


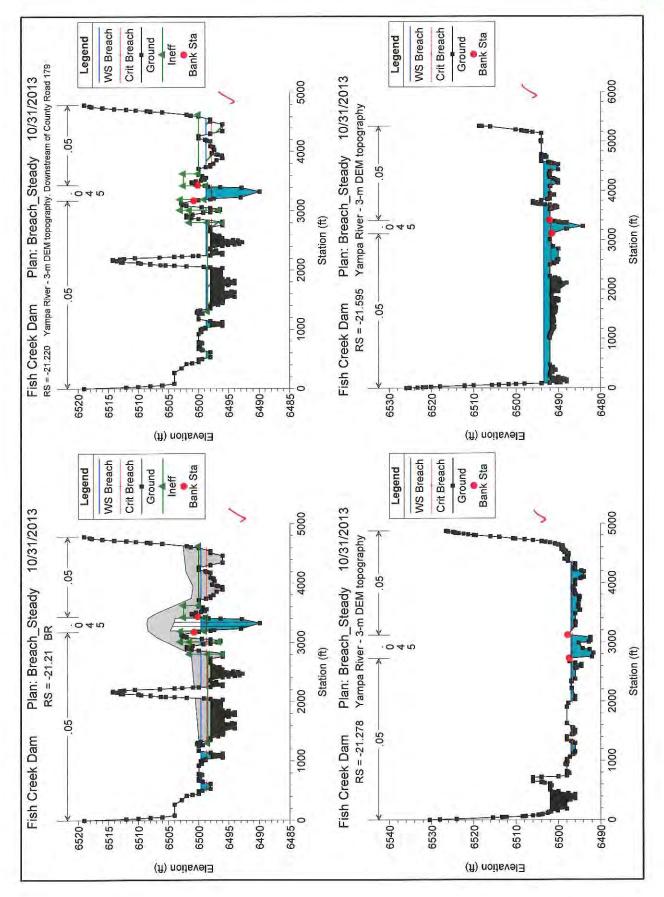


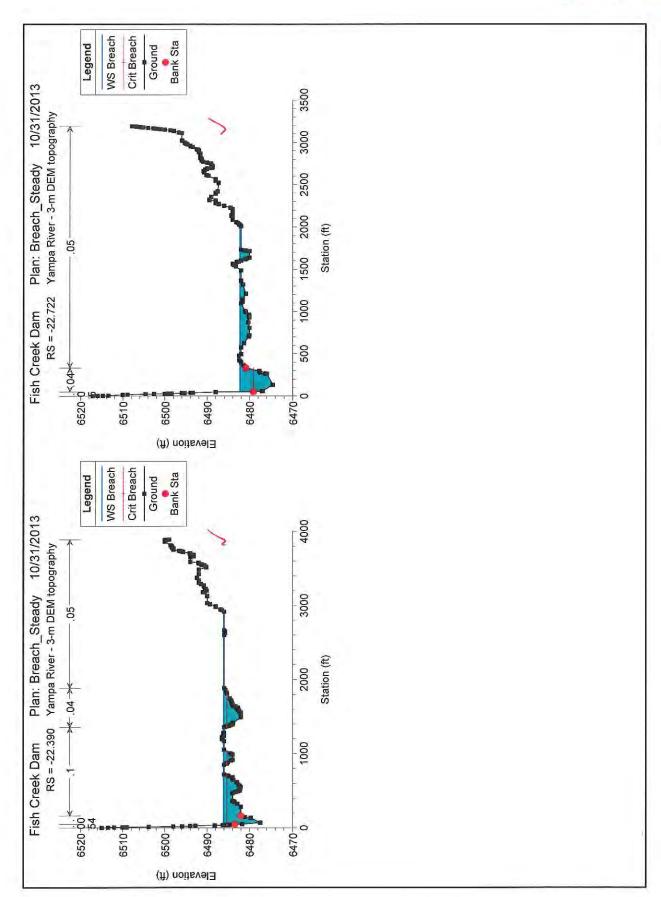


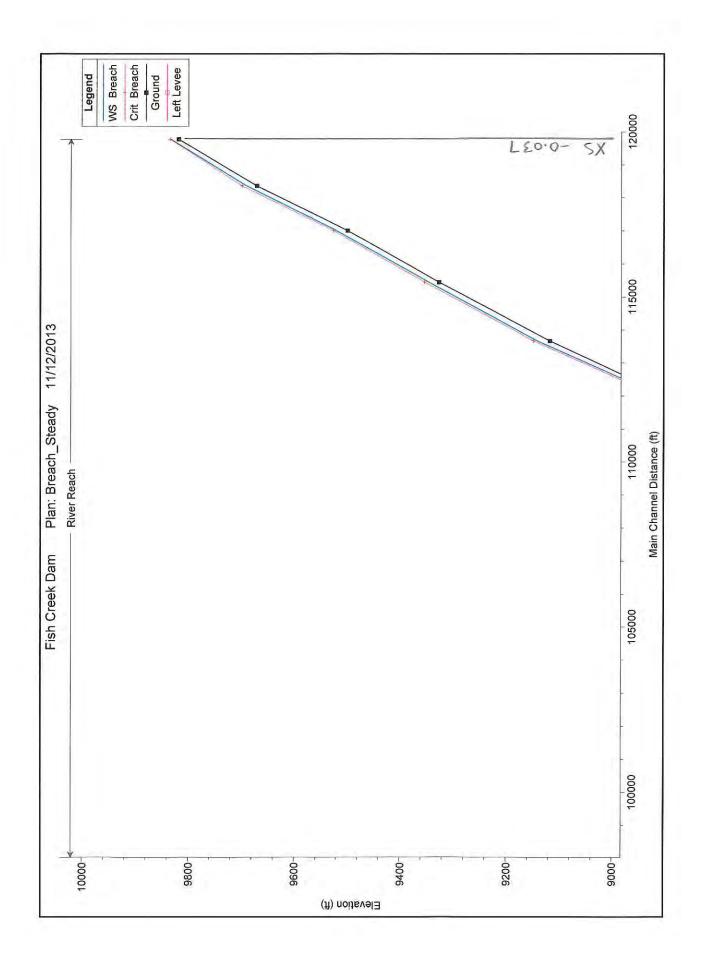


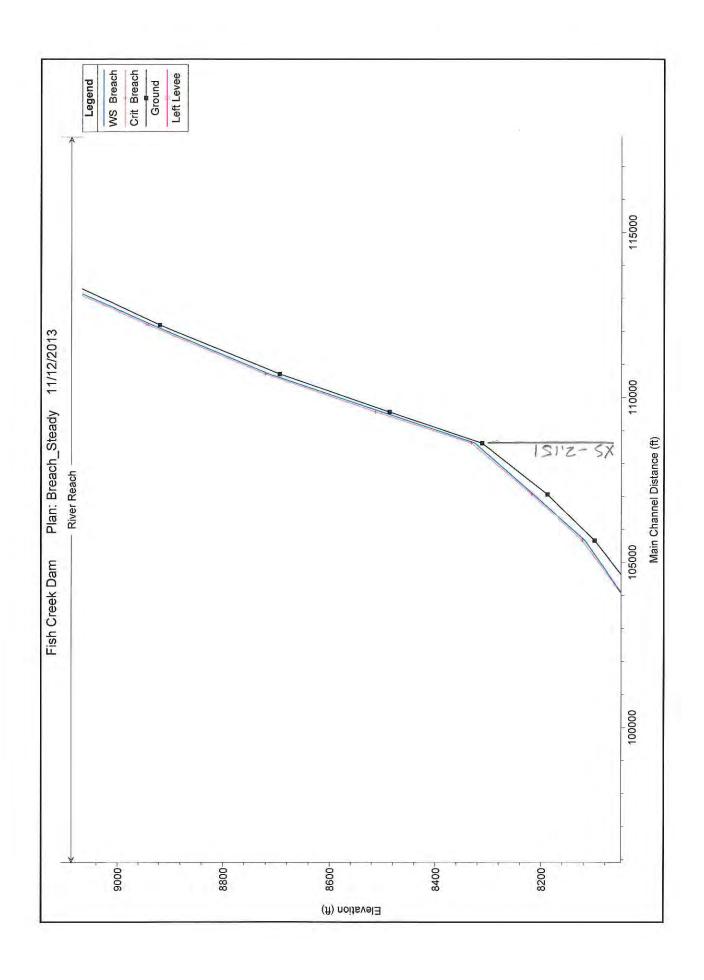


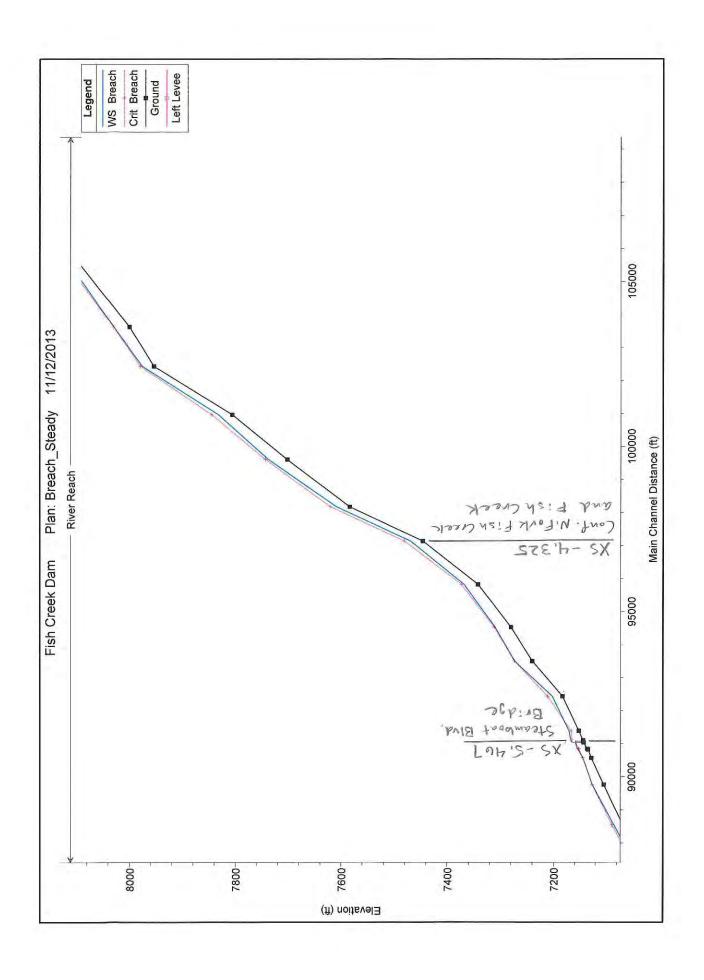


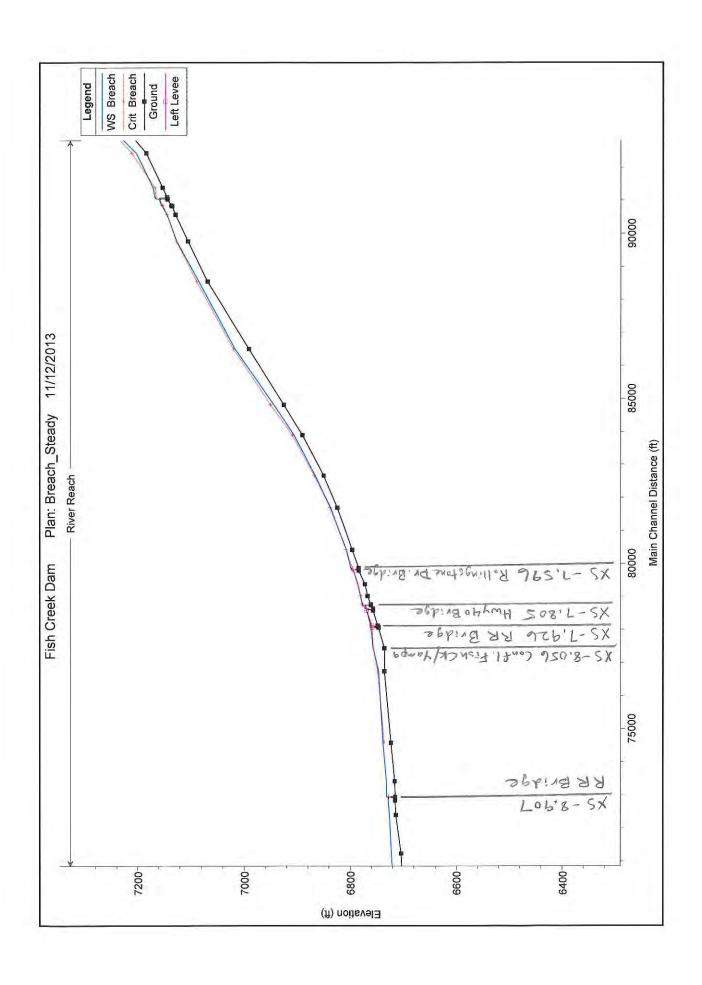


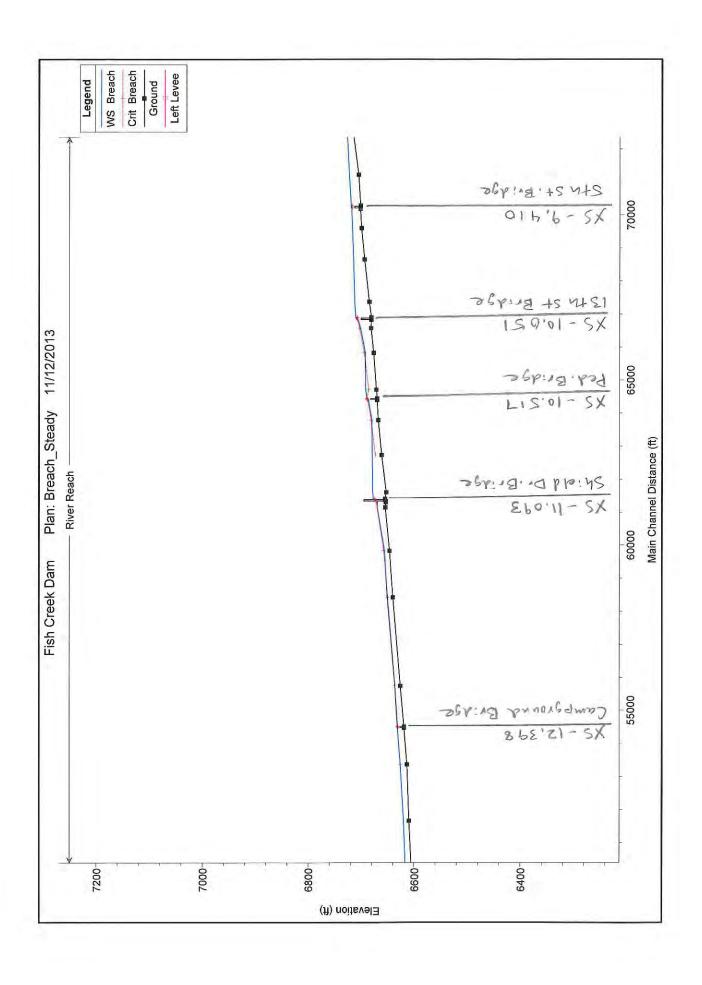







		Date	Ву	
0.10116	Steamboat Springs	Checked	Ву	
Subject	Fish Creek Dam	Approved	Ву	


Project 13133 Page ____


					11.70							_										10.10						0.				
																																7
	1						-							T																		
		-										-	-	-	-													 				
		1				-							-																		-	
	-	-					 						-																			
	T	Ť									*********																					
	+	-					 	-				-								-					-				-			
		4					 					ļ			ļ																	
				manue																												
										A	++	(n)	ho	10 0	14		1													-		
	1								-		, ,	5.0	V 1 0				-			-										7		
	-	-			-		-	_	,		1	24	1 /		<u></u>			Min		0	1				-					-		********
	1							1)	et	a:	le	d	H	E	C-	R	A.	F	Vo	+ 1	le				-					_		
																									7							
	-	-													-										-		-			-	-	_
																															_	
1																									1					-		
												-												-						-	-	_
		-												-										-					 -	-	-	
																								1	1							
111	1																								T							
	-	-												-																		
		1																										 	 			_
																							T		7							
-	-									-														-					-	-	+	
		-					 																	-	-						-	
																							1									
																								1								-
		-											-	1	-								-	-						+	-	
	1	-																						4	-					-	4	
		Ť																														
		-									-														+	-1				-+	-	-
			-																					_4		_					_	
							 																	7				 		7	7	
	-					-																				-	-			+	-	-
																									-			 	 	_		
					1																											
		-					 					-	-											-	1					-	1	
	-	-									-				-													 	 -	-+		
				1	- 1													10			1 /											- 1

