

IBCC Meeting

Meeting Agenda

- 8:30 8:45 Welcome and Introductions
- 8:45 10:30 Framing the Roadmap Forward
- 10:30 10:45 Break
- 10:45 Noon Applications of Scenario Planning
- Noon 12:45 Lunch
- 12:45 2:45 Identify a Set of Portfolios to Evaluate for a Range of Scenarios
- 2:45 3:00 Break
- 3:00 4:30 Evaluation Metrics
- 4:30 5:00 Future Meeting Plan and Wrap-up

Meeting Objectives

- Understand roadmap/path forward
- Understand scenario planning and adaptive management concepts
- Identify scenarios
- Identify a range of portfolios to evaluate across scenarios
- Explore the development of metrics
- Present meeting schedule and 2012 milestones

Framing the Roadmap Forward

April 2012 Roadmap Overview

- Scenario Planning and Adaptive Management
- Projects and Methods
- SWSI 2016

IBCC's Approach to Scenario Planning and Adaptive Management

IBCC Meeting Schedule

May 2012

- Identify scenarios
- Identify a range of portfolios
- Introduce metrics
- Introduce Adaptive Management Framework

Sep 2012

- Define/develop metrics
- Begin to evaluate portfolios for scenarios
- Begin to identify No Regrets

Nov)2012

- Finalize metrics and portfolio evaluation
- Discuss implementation of No Regrets
- Joint IBCC/CWCB Meeting

2013

- Adaptive Management Implementation
- Develop Outcomes
- Refine projects and methods

Scenario Planning and Adaptive Management Definitions

Scenario Planning		A process to formulate and evaluate future uncertainties regarding demand and supply			
	Scenarios	Alternative futures (water demand and supply) that portfolios will be tested against			
	Portfolios	Different combinations of strategies to address future M&I demands			
	Strategies	Groupings of similar projects and methods (e.g., "four legs of the stool," IPPs, Conservation, Ag Transfers, and New Supply)			
	Projects and Methods	Specific actions that help implement a strategy (e.g., IPPs, roundtable projects and methods, long-term conceptual projects)			
	Metrics	Evaluation indicators that assess how the portfolios relate to meeting M&I demands, nonconsumptive needs, and agricultural needs			
	No Regrets Actions	Near-term strategies or projects and methods that produce benefits under most future scenarios			
Adaptive Management		The process of using triggers and outcomes to develop phased implementation of future projects and methods			
	Triggers	Decision points based on scenarios used to identify possible outcomes			
	Outcomes	Varied future paths based on triggers and used to establish phasing of future projects and methods			

ŀ

Scenarios – Different future conditions. Each scenario represents a different, but plausible, representation of circumstances that would result in differing statewide M&I demands and water supply.

Strategies – Groupings of similar projects and methods that are broad categories of solutions for meeting Colorado's M&I demands.

Portfolios – Combinations of strategies that meet M&I demands. Portfolios will be evaluated for future scenarios.

Projects and Methods – Specific actions that help implement each strategy. Each Basin Roundtable is responsible for proposing projects and methods to meet their consumptive and nonconsumptive needs. Examples include:

- A water project helps implement a new water supply development strategy
- A rotational fallowing program helps implement an agricultural transfer strategy
- A block rate pricing program helps implement a conservation strategy

Metrics will be developed to evaluate benefits and impacts of the portfolios, such as:

- Cost
- Environmental and recreational metrics
- Reduction in irrigated acres
- Reliability
- Regional cooperation
- Rotational fallowing program size

The IBCC will identify "No Regrets" portfolio elements

Examples of

Adaptive management will lead to phased implementation of projects and methods

Evaluate Portfolios for Future Scenarios Identify No Regrets Actions and Projects and Methods

Develop Adaptive Management Plan

Adaptive Management Plan Example from San Diego

Anticipated decision points, but will be re-assessed every 5 years

"I just figured out why we've never had girlfriends."

Applications of Scenario Planning

Identify a Set of Portfolios to Evaluate for a Range of Scenarios

Scenario development is underway

Demand Factors:

- M&I growth
- Energy demands
- GW Replacement

CO River Supply Factors:

- Colorado River hydrologic variability
- Climate change
- Compact considerations

Scenarios have been identified as a result of the roundtable exercise

Demand Factors:

- M&I growth
- Energy demands
- GW Replacement

CO River Supply Factors:

- Colorado River hydrologic variability
- Climate change
- Compact considerations

Portfolios will be evaluated using nine future scenarios

I Lo (Riv	High Demands ow to None Colorado ver System Supply	High Demands Medium Colorado River System Supply	High Demands High Colorado River System Supply Medium Demands High Colorado River System Supply		
] Lo (Riv	Medium Demands ow to None Colorado ver System Supply	Medium Demands Medium Colorado River System Supply			
I Lo (Riv	Low Demands ow to None Colorado ver System Supply	Low Demands Medium Colorado River System Supply	Low Demands High Colorado River System Supply		

Demand

Scenario Definitions

High Demands High Supply	Booming economy and full oil shale development on the West Slope result in high M&I demands. Climate variability and regulatory/institutional drivers do not impact Colorado River system supply.				
Mid Demands High Supply	Population growth follows historic trends and moderate oil shale development on the West Slope result in medium M&I demands. Climate variability and regulatory/institutional drivers do not impact Colorado River system supply.				
Low Demands High Supply	There is minimal economic recovery resulting in low M&I demands. Climate variability and regulatory/institutional drivers do not impact Colorado River system supply.				
High Demands Mid Supply	Booming economy and full oil shale development on the West Slope result in high M&I demands. Climate variability and regulatory/institutional drivers result in medium Colorado River system supply.				
Mid Demands Mid Supply	Population growth follows historic trends and moderate oil shale development on the West Slope result in medium M&I demands. Climate variability and regulatory/institutional drivers result in medium Colorado River system supply.				
Low Demands Mid Supply	There is minimal economic recovery resulting in low M&I demands. Climate variability and regulatory/institutional drivers result in medium Colorado River system supply.				
High Demands Low Supply	Booming economy, full oil shale development on the West Slope and climate variability result in high M&I demands. Climate variability and regulatory/institutional drivers result in low Colorado River system supply.				
Mid Demands Low Supply	Population growth follows historic trends, moderate oil shale development on the West Slope, and climate variability result in medium M&I demands. Climate variability and regulatory/institutional drivers result in low Colorado River system supply.				
Low Demands Low Supply	There is minimal economic recovery and climate variability result in low M&I demands. Climate variability and regulatory/institutional drivers result in low Colorado River system supply.				

"It may be wrong, but it's how I feel."

Summary Set of Portfolios

Based on SWSI 2010, the Basin Roundtables' work, and recent completed studies, a spectrum of low, medium, and high M&I demands will be developed for summary set of portfolios

- Need to factor in climate variability for the demand side based on:
 - CRWAS
 - Colorado River Basin Study
 - Front Range Vulnerability Study
- High demands for today's discussion based on roundtable work increased demands 15% statewide

Summary of IPP amounts based on Basin Roundtable Portfolios

IPP Success Rate by Basin and IPP Type

Basin	Agricultural Transfer	Reuse	Existing Supplies	In-Basin Project	Transbasin	In-Basin Firming	Total Success Rate
Arkansas	75%	75%	100%	100%	75%	80%	86%
Colorado	90%	90%	100%	85%	90%	85%	91%
Gunnison	90%	90%	100%	90%	90%	90%	88%
Metro	75%	75%	100%	75%	75%	75%	88%
North Platte	0%	90%	100%	90%	90%	90%	100%
Rio Grande	90%	90%	100%	90%	90%	85%	93%
South Platte	50%	80%	100%	50%	85%	50%	65%
Southwest	100%	100%	100%	80%	100%	100%	88%
Yampa- White	100%	100%	100%	50%	100%	100%	67%

IPP Yields at 80 Percent Based on SWSI 2010 500,000 450,000 400,000 350,000 Acre-Feet/Year 300,000 250,000 200,000 150,000 100,000 50,000 0

Low Demand Scenario

I West Slope

Medium Demand Scenario

East Slope

High Demand Scenario

Low Demand Scenario Portfolios from Basin Roundtables

- INew Supply Development East Slope Reuse III Agricultural Transfer West Slope
- Agricultural Transfer East Slope

III New Supply Development West Slope

Agricultural Transfer East Slope Reuse

New Supply Development East Slope

Low Demand Summary Portfolios

Medium Demand Scenario Portfolios from Basin Roundtables

🔤 New Supply Development East Slope Reuse 🖽 Agricultural Transfer West Slope

Agricultural Transfer East Slope

III New Supply Development West Slope

Agricultural Transfer East Slope Reuse

New Supply Development East Slope

Medium Demand Scenario Portfolios from Basin Roundtables

INew Supply Development East Slope Reuse III Agricultural Transfer West Slope

Agricultural Transfer East Slope

Medium Demand Summary Portfolios

- INew Supply Development East Slope Reuse III Agricultural Transfer West Slope
- Agricultural Transfer East Slope

High Demand Scenario Portfolios from Basin Roundtable

Conservation West Slope

- New Supply Development West Slope
- Conservation East Slope

New Supply Development East Slope

- III New Supply Development East Slope Reuse III Agricultural Transfer West Slope
- Agricultural Transfer East Slope

High Demand Scenario Portfolios from Basin Roundtable

Conservation West Slope

- New Supply Development West Slope
- Conservation East Slope
 - New Supply Development East Slope
- INew Supply Development East Slope Reuse III Agricultural Transfer West Slope
- Agricultural Transfer East Slope

High Demand Summary Portfolios

Summary Portfolios to Evaluate for a Range of Scenarios

Conservation West Slope

- New Supply Development West Slope
- Conservation East Slope
- New Supply Development East Slope
- New Supply Development East Slope Reuse # Agricultural Transfer West Slope
- Agricultural Transfer East Slope

Evaluation Metrics

"Hey, no problem!"

Portfolio Evaluation Process

Initial metrics have been developed as part of the Basin Roundtable Portfolio Tool Effort

- Ag Transfer
- Cost
- South Platte Depletion
- Nonconsumptive

Recommended Metrics from Nonconsumptive Subcommittee

- Endangered species
- Gold Medal Trout
- Recreational boating
- Riparian
- Potential consideration of instream flows and flat-water boating

Potential Additional Metrics

- Agricultural economics
- Agricultural reliability
- Lifecycle costs
- M&I reliability
- Regional cooperation

Example Metric Evaluation Results from San Diego

Portfolios will be evaluated using more specific information

Future Meeting Plan and Wrap-up

IBCC Meeting Schedule

May 2012

- Identify scenarios
- Identify a range of portfolios
- Introduce metrics
- Introduce Adaptive Management Framework

Sep 2012

- Define/develop metrics
- Begin to evaluate portfolios for scenarios
- Begin to identify No Regrets

Nov)2012

- Finalize metrics and portfolio evaluation
- Discuss implementation of No Regrets
- Joint IBCC/CWCB Meeting

2013

- Adaptive Management Implementation
- Develop Outcomes
- Refine projects and methods