Stream: Como Creek

Executive Summary

Water Division: 1 Water District: 6 CDOW#: 13184 CWCB ID: 08/1/A-001

Segment: Headwaters to USFS Boundary **Upper Terminus:** HEADWATERS IN THE VICINITY OF (Latitude: 40° 02' 22.88"N) (Longitude: 105° 34' 0.79"W)

Lower Terminus: USFS BOUNDARY AT

(Latitude: 40° 00' 51.0"N) (Longitude: 105° 30' 52.89"W)

Watershed: St. Vrain (HUC #: 10190005)

Counties: Boulder Length: 4.2 miles USGS Quad(s): Ward

Flow Recommendation: 2.90 cfs (May 1– July 31)

1.10 cfs (August 1 – October 15) 0.45 cfs (October 16 – March 31) 1.10 cfs (April 1 – April 30)

Staff Analysis and Recommendation

Summary

The information contained in this report and the associated instream flow appendices (see CD entitled 2008 Instream Flow Recommendations) forms the basis for staff's instream flow recommendation to be considered by the Board. It is staff's opinion that the information contained in this report is sufficient to support the findings required in Rule 5.40.

The State of Colorado's Instream Flow Program (ISFP) was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (See §37-92-102 (3) C.R.S.). The statute vests the Board with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's ISFP, the statute directs the Board to request instream flow recommendations from other state and federal agencies. Trout Unlimited (TU) and the Colorado Division of Wildlife (CDOW) are recommending this segment of Como Creek to the Board for inclusion into the ISFP. Como Creek should be considered for inclusion into the ISFP because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right.

Como Creek is approximately 5.6 miles long. It begins on the east side of Mount Albion at an elevation of approximately 10,500 feet and terminates at the USFS Boundary at an elevation of approximately 8600 feet. Of the 4.2 mile segment addressed by this report, approximately 95% of the segment, or 4.6 miles, is located on public lands. Como Creek is located within Boulder County. The total drainage area of the creek is approximately 4.02 square miles. Como Creek generally flows in a southeasterly direction.

The subject of this report is a segment of the Como Creek beginning at its headwaters and extending downstream to the USFS Boundary. The proposed segment is located north of the town of Nederland. The recommendation for this segment is discussed below.

Instream Flow Recommendation(s)

TU and CDOW are recommending 2.90 cfs, summer, and 0.80 cfs, winter, based on their data collection efforts. This recommendation is based on the physical and biological data collected to date and does not incorporate any water availability constraints.

- 2.90 cubic feet per second recommended is required to maintain the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter;
- 0.80 cubic feet per second is required to maintain two of the three principal hydraulic criteria.

The modeling results from this survey effort are within the confidence interval produced by the R2CROSS model (see Table 1).

Land Status Review

		Total	Land Ow	nership
Upper Terminus	Lower Terminus	Length	% Private	% Public
		(miles)		
Headwaters	USFS Boundary	4.2	5%	95%

95% of the public lands are managed by the USFS.

Biological Data

The CDOW and TU, in September 1988, June and July of 2006, collected stream cross section information, natural environment data, and other data needed to quantify the instream flow needs for this reach of Como Creek. Como Creek is classified as a minor stream (between 4 to 9 feet wide) and fishery surveys indicate the stream environment of Como Creek supports Greenback cutthroat trout (*Oncorhynchus clarkii stomias*). Greenback cutthroat trout have been identified by the CDOW and federal agencies as "species of greatest conservation need". CDOW has been involved in developing a Conservation and Management Plan for this species (Greenback Cutthroat Trout Recovery Plan). The intention of this plan is to increase populations and distributions of identified species, thereby assisting in the long-term persistence of each species. The success of this plan could potentially curtail the need for federal listing of these species under the Endangered Species Act (ESA). This species is currently state and federally listed as "Threatened".

Field Survey Data & Biological Flow Quantification

CDOW staff used the R2CROSS methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. The R2CROSS method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should Streamflow cease. This type of hydraulic data collection consists of setting up a transect, surveying the stream channel geometry, and measuring the stream discharge.

The Board staff relies upon the biological expertise of the cooperating agencies to interpret output from the R2CROSS data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

For this segment of stream, seven data sets were collected with the results shown in Table 1 below. Table 1 shows who collected the data (Party), the date the data was collected, the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's Equation (240% and 40% of Q), the summer flow recommendation

based on meeting 3 of 3 hydraulic criteria and the winter flow recommendation based upon 2 of 3 hydraulic criteria.

Table 1: Como Creek R2Cross Summary

			Confidence Intervals	Recommended I	Flows (cfs)
Party	Date	Q (cfs)	250%-40%	Summer 3/3	Winter 2/3
DOW	9/10/1988	0.45	1.102	1.95 ^(OR)	0.85
DOW	9/10/1988	0.26	0.7 - 0.1	?	0.3
DOW	9/10/1988	0.26	0.7 - 0.1	?	0.2
DOW & TU	6/7/2006	10	25.1 - 4.0	2.2 ^(OR)	0.9 ^(OR)
DOW & TU	6/7/2006	9.8	24.5 - 3.9	4.1	2.0 ^(OR)
TU	7/5/2006	1.35	3.4 - 0.5	1.7	0.6
TU	7/5/2006	1.35	3.4 - 0.5	3.0	2.0

DOW = Division of Wildlife TU = Trout Unlimited OR = Outside of R2X Confidence Rang

The summer flow recommendations, which met 3 of 3 criteria and were within the accuracy range of the R2CROSS model, ranged from 4.1 cfs to 1.7 cfs. Averaging the summer values within range, results in a 2.9 cfs summer recommendation (See Table 1). The winter flow recommendations, which met 2 of 3 criteria and were within the accuracy range of the R2CROSS model, range, ranged from 2.0 cfs to 0.2 cfs. (See Table 1).

Hydrologic Data and Analysis

After receiving the cooperating agency's biologic recommendation, the CWCB staff conducted an evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation. This evaluation was done through a computation that is, in essence, a "water balance". In concept a "water balance" computation can be viewed as an accounting exercise. When done in its most rigorous form, the water balance parses precipitation into all the avenues water pursues after it is deposited as rain, snow, or ice. In other words, given a specified amount of water deposition (input), the balance tries to account for all water depletions (losses) until a selected end point is reached. Water losses include depletions due to evaporation and transpiration, deliveries into ground water storage, temporary surface storage, incorporations into plant and animal tissue and so forth. These losses are individually or collectively subtracted from the input to reveal the net amount of stream runoff as represented by the discharge measured by stream gages. Of course, the measured stream flow need not be the end point of interest; indeed, when looking at issues of water use to extinction stream flow measurements may only describe intermediate steps in the complex accounting process that is a water balance carried out to a net value of zero.

In its analysis, CWCB staff has attempted to use this idea of balancing inputs and losses to determine if water is available for the recommended Instream Flow Appropriation. Of course, this analysis must be a practical exercise rather than a lengthy, and costly, scientific investigation. As a result, staff has simplified the process by lumping some variables and employing certain rational and scientifically supportable assumptions. The process may be described through the following description of the steps used to complete the evaluation for this particular stream.

The first step required in determining water availability is a determination of the hydrologic regime at the Lower Terminus (LT) of the recommended ISF reach. In the best case this means looking at the data from a gage at the LT. Further, this data, in the best case, has been collected for a long period of time (the longer the better) including wet and dry periods. In the case of **Como Creek** no such gage is available at the LT. In fact, there is no gage on Como Creek. It is thus necessary to describe the normal flow regime at the Como Creek LT through a "representative" gage station. The gage station selected for this was SOUTH ST. VRAIN CREEK NEAR WARD, CO (USGS 06722500), a gage with a 25 year period of record (POR) collected between 1925 and 1973. The gage is at an elevation of 9372 ft above mean sea level (amsl) and has a drainage area of 14.4 mi². The hydrograph (plot of discharge over time) produced by this gage was used on Como Creek by multiplying the South St. Vrain discharge values by the ratio of Como Creek basin area (4.02 mi² above the LT) to South St Vrain Cr. near Ward basin area (14.4 mi²). No adjustments for losses to diversions were needed in either basin in this case allowing for a direct computation of the hydrograph.

The following hydrograph depicts the mean monthly discharge of Como Creek (proportioned off South St. Vrain Cr. near Ward). Included in the hydrograph are the recommended ISF values. The data used in the creation of this hydrograph are displayed in Table #2.

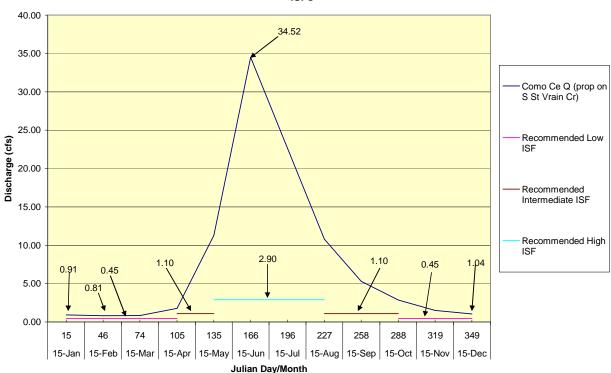


Fig 1 - Como Creek Average Monthly Discharge (proportioned on S St Vrain Cr near Ward) & ISFs

Table 2 – Mean Monthly Discharge and Recommended Instream Flows – Como Cr.

		Como	Recom.
	Julian Day	Cr(cfs)	ISFs(cfs)
15-Jan	15	0.91	0.45
15-Feb	46	0.81	0.45
15-Mar	74	0.83	0.45
31-Mar	90	0.83	0.45
1-Apr	91	1.76	1.10
15-Apr	105	1.76	1.10
30-Apr	120	1.76	1.10
1-May	121	11.27	2.90
15-May	135	11.27	2.90
15-Jun	166	34.52	2.90
15-Jul	196	22.60	2.90
31-Jul	212	22.60	2.90
1-Aug	213	10.77	1.10
15-Aug	227	10.77	1.10
15-Sep	258	5.30	1.10
15-Oct	288	2.86	1.10
16-Oct	289	2.86	0.45
15-Nov	319	1.50	0.45
15-Dec	349	1.04	0.45

Existing Water Right Information

Staff has analyzed the water rights tabulation to identify any potential water availability problems. Records indicate that there are no surface water diversions that are located within this reach of Como Creek. However, CDOW staff did see an abandoned diversion site within the reach and there are existing water rights downstream of the proposed instream flow reach. Based on this analysis staff has determined that water is available for appropriation on Como Creek, from the Headwaters to the USFS Boundary, to preserve the natural environment to a reasonable degree without limiting or foreclosing the exercise of valid existing water rights.

CWCB Staff's Instream Flow Recommendation

Staff recommends the Board form its intent to appropriate on the following stream reach:

Segment: Headwaters to USFS Boundary

Upper Terminus: HEADWATERS IN THE VICINITY OF (Latitude: 40° 02' 22.88"N) (Longitude: 105° 34' 0.79"W)

UTM North: 4432316.2 UTM East: 451638.7

S21 T1N R73W 6PM

1190' North of the South Section Line; 1405' West of the East Section Line

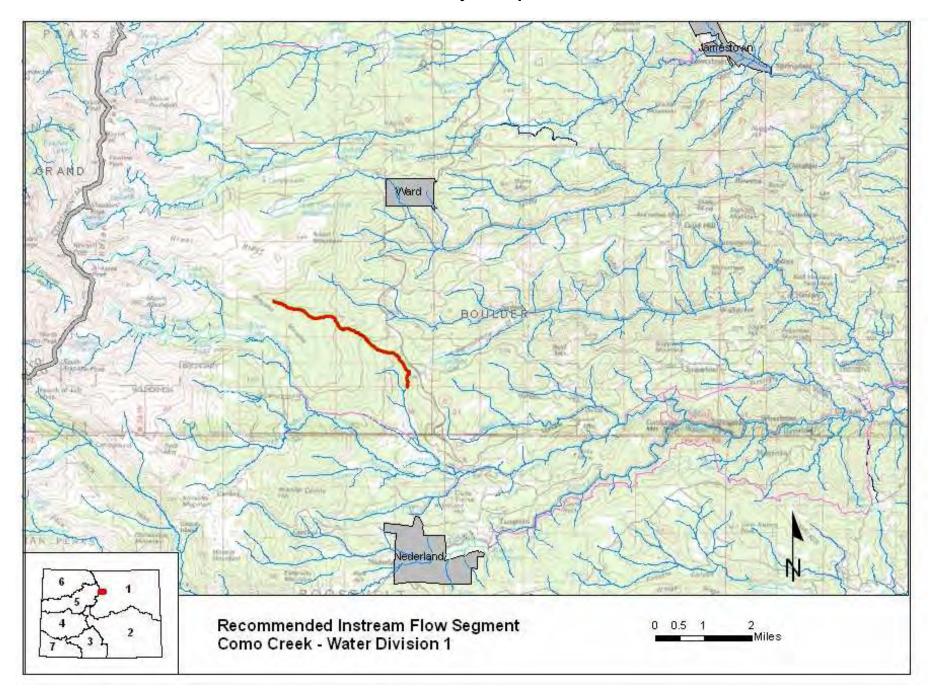
Lower Terminus: USFS BOUNDARY AT

(Latitude: 40° 00' 51.0"N) (Longitude: 105° 30' 52.89"W)

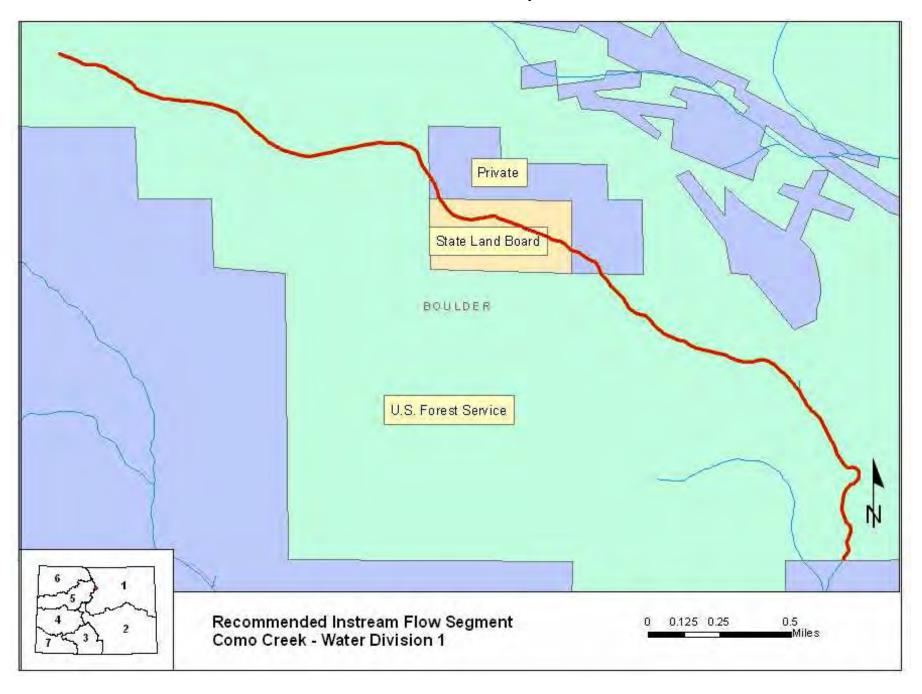
UTM North: 4429456.4 UTM East: 456075.1

S25 T1N R73W 6PM

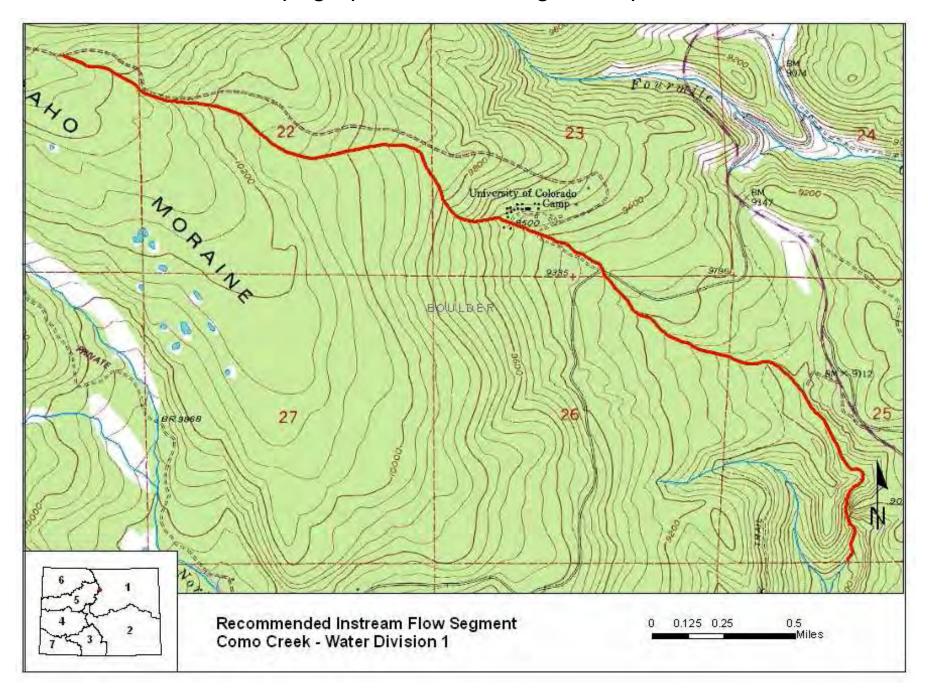
10' North of the South Section Line; 2475 East of the West Section Line


Watershed: St. Vrain (HUC #: 10190005)

Counties: Boulder Length: 4.2 miles USGS Quad(s): Ward


Flow Recommendation 2.90 cfs (May 1– July 31)

1.10 cfs (August 1 – October 15) 0.45 cfs (October 16 – March 31) 1.10 cfs (April 1 – April 30)


Vicinity Map

Land Use Map

Topographic & Water Rights Map

STATE OF COLORADO

Bill Ritter, Jr., Governor DEPARTMENT OF NATURAL RESOURCES

DIVISION OF WILDLIFE

AN EQUAL OPPORTUNITY EMPLOYER

Bruce McCloskey, Director 6060 Broadway Denver, Colorado 80216. Telephone: (303) 297-1192 wildlife.state.co.us

February 20, 2007

Mr. Jeff Baessler and Mr. Todd Doherty Colorado Water Conservation Board Stream and Lake Protection Section 1313 Sherman Street, Room 723 Denver, Colorado 80203

Re: Colorado Division of Wildlife Instream Flow Recommendations for Como Creek.

Dear Jeff and Todd,

The purpose of this letter and attached report is to formally transmit Trout Unlimited (TU) and the Colorado Division of Wildlife's (CDOW) Instream Flow Recommendations for Como Creek. The CDOW and TU have collected data, including stream cross section information and natural environment data, needed to quantify the instream flow requirements for the reach of Como Creek identified in the report to preserve the natural environment to a reasonable degree. In addition, TU and CDOW staff conducted a preliminary evaluation of the stream hydrology to determine if water is physically available for an instream flow appropriation. Como Creek should be considered for inclusion into the Instream Flow Program (ISFP) because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right.

The State of Colorado's ISFP was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment." (See §37-92-102 (3) C.R.S.). The statute vests the Colorado Water Conservation Board (Board) with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in the ISFP, the statute directs the Board to request instream flow recommendations from other state and federal agencies. TU and the CDOW are recommending this segment of Como Creek to the Board for inclusion into the ISFP.

TU and the CDOW are forwarding this instream stream flow recommendation to the Board to meet Colorado's policy "that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities." (See §33-1-101 (1)

C.R.S.). The CDOW Strategic Plan states: "[h]ealthy aquatic environments are essential to maintain healthy and viable fisheries, and critical for self-sustaining populations. The [CDOW] desires to protect and enhance the quality and quantity of aquatic habitats."

This stream reach is important to TU, the CDOW and Colorado because it supports a naturally reproducing population of Greenback cutthroat trout (*Oncorhynchus clarkii stomias*). Greenback cutthroat trout are currently considered a state and federal "Threatened" species. This species inhabits cold water streams and lakes with adequate stream spawning habitat present in the spring of the year. A Greenback Cutthroat Trout Recovery Plan has been developed by an interagency group of scientists operating under the sponsorship of the U.S. Fish and Wildlife Service. Instream flow maintenance has been identified in the Recovery Plan as an important tool in the recovery of the species. This stream segment was identified at the 2006 instream flow workshop as a possible candidate for instream flow consideration even though it lies outside of the two recommended water divisions (2 & 5). TU and the CDOW believe this recommendation should be considered at this time because:

- The recommendation has broad public support;
- The proposed appropriation will aid in the immediate protection of threatened species;
- The recommended stream is of historical and natural significance;
- The recommendation is part of a water acquisition strategy; and
- The recommendation is part of a collaborative solution to a unique natural resource issue with federal, state and local partners.

The information contained in the attached report forms the basis for the instream flow recommendation to be considered by the Board. It is TU and CDOW staff's opinion that the information provided is sufficient for the Board's staff to begin the investigations required to support the findings required in Rule 5(i) of the Instream Flow Rules.

If you have any questions regarding the attached report or the instream flow recommendations, please contact me at (303)-291-7267.

Sincerely,

Mark Uppendahl

Colorado Division of Wildlife

Instream Flow Program Coordinator

Cc: Grady McNeill, CDOW Resource Support Section Manager – w/o attachments
Jay Skinner, CDOW Water Unit Program Manager – w/o attachments
Greg Gerlich, CDOW Senior Fish Biologist – Northeast Regions – w/o attachments
Harry Crockett, CDOW Aquatic Biologist – w/o attachments
Mark Leslie, CDOW AWM Area 2 – w/o attachments
Claire Solohub, CDOW DWM District 127 – w/o attachments

Appendix - B

Field Data

TANTE -		20*09	
PATE	0	25*0.4	
	0.46		
			0.80

	Nederland Caribou			105		6	105 30	
	5, lver	Lake		NE SZI			58L C. 4429 45P 5456078	
% 25 50 75	APR 0.47 0.21 0.09	MA7 6.74 3.55	JUN 7.17 4.48 3.21	JUL 1,06 0,57 0,32	AU6 0.30 0.23 0.13	935 0.25 0.02 0.06	OCT 0,42 0,31 0,29	0000
Count	44	93	85	62	62	60	31	

4.2	le
	East of Mount Albion
	Area S. Gy
	Mere 9780 1925-1927 1928-1931
	1954 1973
	2.9 (5/1 - 2/3) $0.8 (8/1 - 10/3)$ $0.45 (11/1 - 8/3)$
	0.8 (4/1-4/20)

Q = 0.45 5/3 = 1.950 2/3 = 0.85

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: COMO CREEK #1 XS LOCATION: XS NUMBER: DATE: 0-Jan-00 OBSERVERS: SKINNER & WOLFE 1/4 SEC: SECTION: 0 TWP: 0 RANGE: -0 PM: COUNTY: WATERSHED: 0 DIVISION: DOW CODE: USGS MAP: 0 USFS MAP: 0

SUPPLEMENTAL DATA

*** NOTE ***

Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod

TAPE WT: TENSION: 0.0106 99999

6

CHANNEL PROFILE DATA

SLOPE:

0.02044444

INPUT DATA CHECKED BY:	DATE,
ASSIGNED TO:	DATE

COMO CREEK #1

XS LOCATION: XS NUMBER:

0

DATA POINTS=

20

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	WETTED PERIM.	WATER DEPTH	AREA (Am)	Q (Qm)	% Q CELL
							(7 11.17	(CEITI)	OLLL
S	0.00	4.65			0.00		0.00	0.00	0.0%
	1.00	5.05			0.00		0.00	0.00	0.0%
1 BF	2.00	5.35			0.00		0.00	0.00	0.0%
	2.70	6.00			0.00		0.00	0.00	0.0%
	3.60	6.15			0.00		0.00	0.00	0.0%
WL	4.60	6.11	0.00	0.00	0.00		0.00	0.00	0.0%
	4.90	6.20	0.10	0.02	0.31	0.10	0.03	0.00	0.1%
	5.20	6.25	0.10	0.19	0.30	0.10	0.03	0.01	1.3%
	5.50	6,30	0.10	0.30	0.30	0.10	0.03	0.01	2.0%
	5.80	6.30	0.20	0.66	0.30	0.20	0.06	0.04	8.7%
	6.10	6.40	0.30	1.03	0.32	0.30	0.09	0.09	20.4%
	6.40	6.40	0.30	1.10	0.30	0.30	0.09	0.10	21.8%
	6.70	6.40	0.30	0.71	0.30	0.30	0.09	0.06	14.1%
	7.00	6.45	0.30	0.72	0.30	0.30	0.09	0.06	14.3%
	7.30	6.50	0.35	0.75	0.30	0.35	0.11	0.08	17.3%
WL	7.60	6,12	0.00	0.00	0.48		0.00	0.00	0.0%
	8.20	6.20			0.00		0.00	0.00	0.0%
	8.90	5.75			0.00		0.00	0.00	0.0%
BF	10.50	5.40			0.00		0.00	0.00	0.0%
TOP PIN	10.51	5.08			0.00		0.00	0.00	0.0%
TO)TALS				3.23	0.35	0.62	0.45	100.0%
					5.25	(Max.)	0.02	0.43	100.076

Manning's n =

Manning's n = Hydraulic Radius= 0.0952 0.19039433

COMO CREEK #1

XS LOCATION:

0

XS NUMBER:

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	200	9-7	
10.720	0.62	0.70	14.0%
5.87	0.62	2.13	246.0%
5.89	0.62	2.00	226.0%
5.91	0.62	1.88	206.2%
5.93	0.62	1.76	186.6%
5.95	0.62	1.64	167.1%
5.97	0.62	1.52	147.8%
5.99	0.62	1.41	128.7%
6.01	0.62	1.29	109.8%
6.03	0.62	1.18	91.3%
6.05	0.62	1.07	73.2%
6.07	0.62	0.96	55.7%
6.08	0.62	0.90	47.1%
6.09	0.62	0.85	38.6%
6.10	0.62	0.80	30.3%
6.11	0.62	0.75	22.0%
6.12	0.62	0.70	14.0%
6.13	0.62	0.66	6.5%
6.14	0.62	0.61	-0.3%
6.15	0.62	0.58	-6.4%
6.16	0.62	0.54	-11.8%
6.17	0.62	0.51	-16.9%
6.19	0.62	0.45	-26.6%
6.21	0.62	0.40	-35.4%
6.23	0.62	0.35	-43.6%
6.25	0.62	0.30	-51.4%
6.27	0.62	0.25	-58.8%
6.29	0.62	0.21	-65.7%
6.31	0.62	0.17	-71.9%
6.33	0.62	0.14	-77.2%
6.35	0.62	0.11	-82.1%
6.37	0.62	0.08	-86.8%

WATERLINE AT ZERO AREA ERROR =

6.135

COMO CREEK #1

XS LOCATION: XS NUMBER:

0

Constant Manning's n

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

"WL" = Waterline corrected for variations in field measured water surface elevations and sag


	DIST TO WATER	TOP	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
'GL"	5.40	8.45	0.65	1.10	5.46	9.10	100.0%	0.60	8.68	1.59
	5.43	8.25	0.63	1.07	5.18	8.89	97.7%	0.58	8:05	1,56
	5.48	7.97	0.60	1.02	4.77	8.58	94,3%	0.56	7.19	1.51
	5.53	7.69	0.57	0.97	4.38	8.27	90.9%	0.53	6.39	1 46
	5.58	7.40	0.54	0.92	4.00	7.97	87.5%	0.50	5.64	1.41
	5,63	7.12	0.51	0.87	3.64	7.66	84.1%	0.48	4.94	1.36
	5.68	6.84	0.48	0.82	3.29	7.35	80.8%	0.45	4.29	1.31
	5.73	6.56	0.45	0.77	2.95	7.04	77.4%	0.42	3.69	1.25
	5.78	6.38	0.41	0.72	2.63	6.83	75.1%	0.39	3.11	1.18
	5.83	6.25	0.37	0.67	2.32	6.67	73.3%	0.35	2.55	1.10
	5.88	6.11	0.33	0.62	2.01	6.50	71.4%	0.31	2.05	1.02
	5.93	5.98	0.28	0.57	1.70	6.34	69.6%	0.27	1,59	0.93
	5.98	5.85	0.24	0.52	1.41	6.17	67.8%	0.23	1.17	0.83
	6.03	5.55	0.20	0.47	1.12	5.84	64.2%	0.19	→ 0.83	0.74
	6.08	5,17	0.17	0.42	0.85	5.45	59.9%	0.16	0.55	0.65
WL*	6.13	3,98	0.15	0.37	0.61	4.22	46.4%	0.15	0.38	0.62
	6.18	2.84	0.16	0.32	0.45	3.03	33,3%	0.15	0.28	0.63
	6.23	2.40	0.13	0.27	0.32	2.56	28.1%	0.13	0.18	0.56
	6.28	2.06	0.10	0.22	0.21	2.19	24.1%	0.10	0.10	0.47
	6.33	1,53	0.08	0.17	0.13	1.63	17.9%	0.08	0.05	0.40
	6.38	1.34	0.04	0.12	0.05	1.40	15.4%	0.04	0.01	0.25
	6.43	0.44	0.03	0.07	0.01	0.48	5.3%	0.03	0.00	0.22
	6.48	0.10	0.01	0.02	0.00	0.11	1.2%	0.01	0.00	0.08

 $3/3 = 1.95^{\circ}$ 2/3 = 0.85

STREAM NAME: XS LOCATION: XS NUMBER: COMO CREEK #1 0 1

SUMMARY SHEET

MEASURED FLOW (Qm)=	0.45	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	0.38	cfs		
(Qm-Qc)/Qm * 100 =	16.4	%		
HE LOUISES HAVE AND			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	6.12			
CALCULATED WATERLINE (WLc)=	6.13			
(WLm-WLc)/WLm * 100 =	-0.3	%		
MAX MEASURED DEPTH (Dm)=	0.35	ft		
MAX CALCULATED DEPTH (Dc)=	0.37	ft		
(Dm-Dc)/Dm * 100	-4.4			
MEAN VELOCITY=	0.62	ft/sec		
MANNING'S N=	0.095	1000		
SLOPE=	0.02044444	ft/ft		
.4 * Qm =	0.2	ofe		
2.5 * Qm=		cfs		
RECOMMENDATION BY:	······························////////	AGENCY		DATE
CWCB REVIEW BY:				DATE:

	Data Input & Proofing		GL=1	FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	Α	Q	Tape to Water
STREAM NAME-	COMO CREEK#1	1		S	0 1	Total Da	ta Points = 2	20	0.00	0.00	0.00
XS LOCATION:	COMO GILLLIA	1		3	1	5.05			0.00	0.00	0.00
XS NUMBER:	1	1	1	BF	2	5.35	_		0.00	0.00	0.00
DATE:	The state of the s	1		Di	2.7	6			0.00	0.00	0.00
OBSERVERS:	SKINNER & WOLFE	1			3.6	6.15			0.00	0.00	0.00
		1		WL	4.6	6.11	0	0	0.00	0.00	0.00
1/4 SEC:		ĵ			4.9	6.2	0.1	0.02	0.03	0.00	6.10
SECTION:		1	- 1		5.2	6.25	0.1	0.19	0.03	0.01	6.15
TWP:		1	- 3		5.5	6.3	0.1	0.3	0.03	0.01	6.20
RANGE:		1			5.8	6.3	0.2	0.66	0.06	0.04	6.10
PM:					6.1	6.4	0.3	1.03	0.09	0.09	6.10
			- 51		6.4	6.4	0.3	1.1	0.09	0.10	6.10
COUNTY:			- 1		6.7	6.4	0.3	0.71	0.09	0.06	6.10
WATERSHED:					7	6.45	0.3	0.72	0.09	0.06	6.15
DIVISION:			10		7.3	6.5	0.35	0.75	0.11	0.08	6.15
DOW CODE:				WL	7.6	6.12	0	0	0.00	0.00	0.00
USGS MAP:					8.2	6.2			0.00	0.00	0.00
USFS MAP:					8.9	5.75			0.00	0.00	0.00
TARELLE	Level and Rod Survey	W - 12	1	BF	10.5	5.4			0.00	0.00	0.00
TAPE WT:		lbs / ft		TOP PIN	10.51	5,08			0.00	0.00	0.00
TENSION:	99999	lbs					-	-			
SLOPE:	0.020444444	ft / ft									
CHECKED BY:	DATE										
ASSIGNED TO):DATE										

Totals 0.62 0.45

COMO CREEK #1

XS LOCATION: XS NUMBER:

0

Thorne-Zevenbergen D84 Correction Applied

Estimated D84 =

0.28

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER (FT)	WIDTH (FT)	DEPTH (FT)	DEPTH (FT)	AREA (SQ FT)	PERIM. (FT)	WET PERIM (%)	RADIUS (FT)	FLOW (CFS)	VELOCITY (FT/SEC)
GL	5.40	8.45	0.65	1.10	5.46	9.10	100.0%	0.60	15.99	2.02
	5.43	8.25	0.63	1.07	5.18	8.89	97.7%	0.58	14.69	2,93
	5.48	7.97	0.60	1.02	4.77	8.58	94.3%	0.56	12.93	2.84
	5.53	7.69	0.57	0.97	4.38	8.27	90.9%	0.53	11.30	
	5.58	7.40	0.54	0.92	4.00	7.97	87.5%	0.50	9.79	2.58
	5.63	7.12	0.51	0.87	3.64	7.66	84.1%	0.48	8.40	2.45 2.31
	5.68	6.84	0.48	0.82	3.29	7.35	80.8%	0.45	7.14	2.17
	5.73	6.56	0.45	0.77	2.95	7.04	77.4%	0.42	5.99	2.03
	5.78	6.38	0.41	0.72	2.63	6.83	75.1%	0.39	4,88	1.85
	5.83	6.25	0.37	0.67	2.32	6.67	73.3%	0.35	3.85	1.66
	5.88	6.11	0.33	0.62	2.01	6.50	71.4%	0.31	2.93	1.46
	5.93	5.98	0.28	0.57	1.70	6.34	69.6%	0.27	2.74	1,61
	5.98	5.85	0.24	0.52	1.41	6.17	67.8%	0.23	1.70	1,21
	6.03	5,55	0.20	0.47	1.12	5.84	64.2%	0.19	1.03	0.92
	6.08	5.17	0.17	0.42	0.85	5.45	59.9%	0.16	0.58	0.68
WL	6.13	3.98	0.15	0.37	0.61	4.22	46.4%	0.15	0.38	0.62
	6.18	2.84	0.16	0.32	0.45	3.03	33.3%	0.15	0.29	0.64
	6.23	2.40	0.13	0.27	0.32	2.56	28.1%	0.13	0.16	0.49
	6.28	2.06	0.10	0.22	0.21	2.19	24.1%	0.10	0.07	0.32
	6.33	1.53	0.08	0.17	0.13	1.63	17.9%	0.08	0.03	0.22
	6.38	1.34	0.04	0.12	0.05	1.40	15.4%	0.04	0.01	0.10
	6.43	0.44	0.03	0.07	0.01	0.48	5.3%	0.03	0.00	0.04
	6.48	0.10	0.01	0.02	0.00	0.11	1.2%	0.01	0.00	0.00

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:	COMO CR	EEK #2
XS LOCATION:	0	
XS NUMBER:	2	
DATE:	0-Jan-00	
OBSERVERS:	SKINNER	& WOLFE
1/4 SEC:	0	
SECTION:	0	
TWP:	0	
RANGE:	0	
PM:	0	
COUNTY:	0	
WATERSHED:	0	
DIVISION:	O	
DOW CODE:	0	
USGS MAP:	0	
USFS MAP:	0	
SUPPLEMENTAL DATA		*** NOTE ***
	-	Leave TAPE WT and TENSION
TARE WE	2 2 2 2 2	at defaults for data collected
TAPE WT:	0.0106	with a survey level and rod
TENSION:	99999	
CHANNEL PROFILE DATA	1	
SLOPE:	0.011875	
		5
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:		DATE

COMO CREEK #2

XS LOCATION: XS NUMBER:

2

DATA POINTS=

27 VALUES COMPUTED FROM RAW FIELD DATA

FEATURE	6184	VERT	WATER	No.	WETTED	WATER	AREA	Q	% C
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
S	0.00	6.20			0.00		0.00	0.00	0.0%
	1.40	6.95			0.00		0.00	0.00	0.0%
	2.40	7.55			0.00		0.00	0.00	0.0%
BF	2.90	7.95			0.00		0.00	0.00	0.0%
	3.40	8.45			0.00		0.00	0.00	0.0%
	4.00	8.75			0.00		0.00	0.00	0.0%
	4.60	9.00			0.00		0.00	0.00	0.0%
	4.80	9.65			0.00		0.00	0.00	0.0%
WL	5.50	9.88	0.00	0.00	0.00		0.00	0.00	0.0%
	5.80	9.95	0.05	0.14	0.31	0.05	0.02	0.00	0.8%
	6.10	10.05	0.10	0.02	0.32	0.10	0.03	0.00	0.2%
	6.40	10.15	0.20	0.22	0.32	0.20	0.06	0.01	5.0%
	6.70	10.20	0.25	0.43	0.30	0.25	0.08	0.03	12.2%
	7.00	10.20	0.25	0.45	0.30	0.25	0.08	0.03	12.8%
	7.30	10.25	0.30	0.50	0.30	0.30	0.09	0.05	17.1%
	7.60	10.25	0.30	0.60	0.30	0.30	0.09	0.05	20.5%
	7.90	10.30	0.40	0.57	0.30	0.40	0.12	0.07	25.9%
	8.20	10.20	0.25	0.11	0.32	0.25	0.08	0.01	3.1%
	8.50	10.15	0.20	0.09	0.30	0.20	0.06	0.01	2.0%
WL	8.80	10.10	0.15	0.03	0.30	0.15	0.02	0.00	0.3%
	8.81	9.90	0.00	0.00	0,20		0.00	0.00	0.0%
	9.00	8.95			0.00		0.00	0.00	0.0%
BF	9.40	8.90			0.00		0.00	0.00	0.0%
	9.90	8.60			0.00		0.00	0.00	0.0%
	11.30	8.40			0.00		0.00	0.00	0.0%
BASE	18.80	8.70			0.00		0.00	0.00	0.0%
TOP PIN	18.81	8.36			0.00		0.00	0.00	0.0%

TOTALS ----

(Max.)

Manning's n = Hydraulic Radius=

0.4

3.58

0.1495 0.199360915

0.71

0.26

100.0%

COMO CREEK #2

XS LOCATION:

0 2

XS NUMBER:

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
		4.7.2	7 - 60
1304	0.71	0.87	22.2%
9.64	0.71	1.79	151.4%
9.66	0.71	1.71	140.0%
9.68	0.71	1.63	128.8%
9.70	0.71	1.55	117.8%
9.72	0.71	1.48	106.9%
9.74	0.71	1.40	96.3%
9.76	0.71	1.33	85.8%
9.78	0.71	1.25	75.5%
9.80	0.71	1.18	65.4%
9.82	0.71	1.11	55.5%
9.84	0.71	1.04	45.7%
9.85	0.71	1.01	40.9%
9.86	0.71	0.97	36.2%
9.87	0.71	0.94	31.4%
9.88	0.71	0.90	26.8%
9.89	0.71	0.87	22.2%
9.90	0.71	0.84	17.6%
9.91	0.71	0.81	13.1%
9.92	0.71	0.78	8.7%
9.93	0.71	0.74	4.3%
9,94	0.71	0.71	0.0%
9 96	0.71	0.65	-8.4%
9.98	0.71	0.59	-16.7%
10.00	0.71	0.54	-24.8%
10.02	0.71	0.48	-32.7%
10.04	0.71	0.42	-40.4%
10.06	0.71	0.37	-48.0%
10.08	0.71	0.32	-55.4%
10.10	0.71	0.27	-62.7%
10.12	0.71	0.22	-69.6%
10.14	0.71	0.17	-76.0%

WATERLINE AT ZERO AREA ERROR =

9.940

STREAM NAME: XS LOCATION: XS NUMBER:

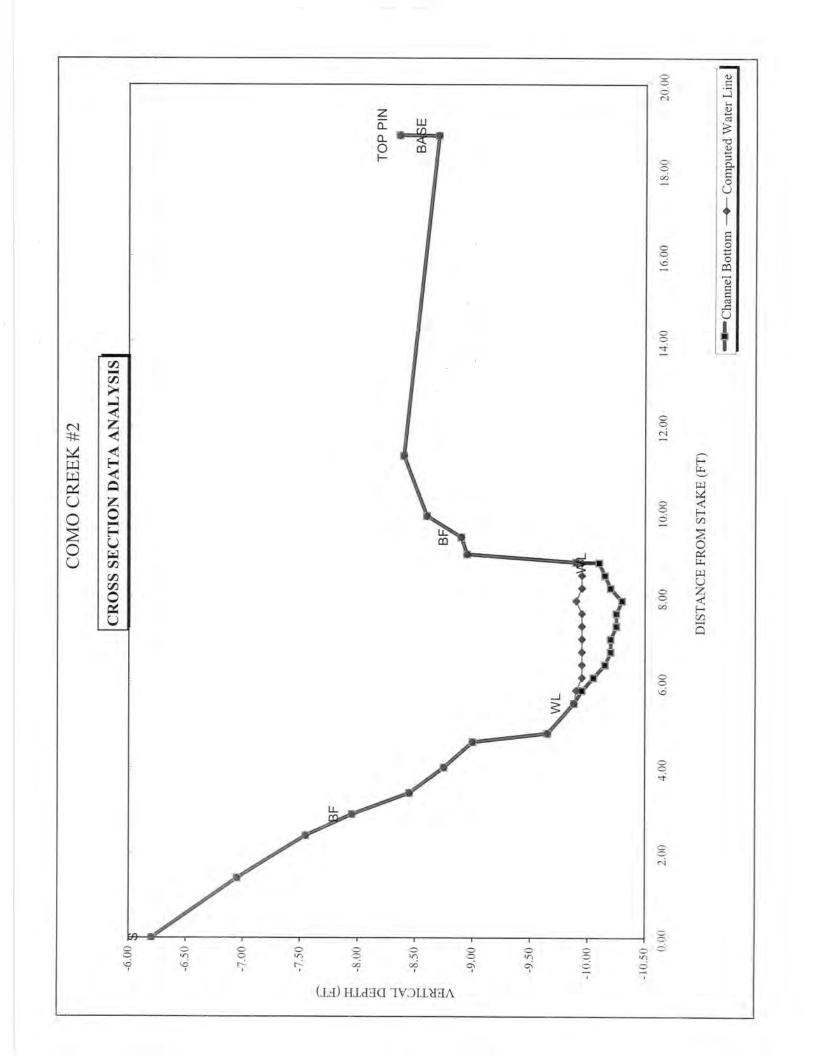
COMO CREEK #2

0

Constant Manning's n

GL = lowest Grassline elevation corrected for sag
WL = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

	DIST TO WATER	TOP WIDTH	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC
aL.	8.90	5.04	0.98	1.40	4.96	6.63	100.0%	0.75	4.43	0.89
	8.94	4.62	1 03	1.36	4.77	6.20	93.6%	0.77	4.33	0.91
	8.99	4.42	1.03	1,31	4.54	5.95	89.8%	0.76	4.11	0.90
	9.04	4.37	0.99	1.26	4.32	5.83	88.0%	0.74	3.84	0.89
	9 09	4.34	0.94	1.21	4.11	5.73	86.4%	0.72	3.56	0.87
	9.14	4.32	0.90	1,16	3.89	5.62	84.9%	0.69	3.29	0.85
	9.19	4.29	0.86	1.11	3.67	5,52	83.3%	0.67	3.03	0.83
	9.24	4.27	0.81	1.06	3.46	5.42	81.7%	0.64	2.78	0.80
	9.29	4.24	0.77	1.01	3.25	5.31	80.2%	0.61	2.53	0.78
	9.34	4.22	0.72	0.96	3.04	5.21	78.6%	0.58	2.29	0.76
	9.39	4.19	0.67	0.91	2.82	5,11	77.1%	0.55	2.06	0.73
	9.44	4.17	0.63	0.86	2.62	5.00	75.5%	0.52	1.84	0.70
	9.49	4.14	0.58	0.81	2.41	4.90	73.9%	0.49	1.62	0.67
	9.54	4.12	0.53	0.76	2.20	4.80	72.4%	0.46	1.42	0.64
	9.59	4.09	0.49	0.71	2.00	4.69	70.8%	0.43	1.22	0.61
	9.64	4.07	0.44	0.66	1.79	4.59	69.3%	0.39	1.04	0.58
	9.69	3.93	0.41	0.61	1.59	4.40	66.4%	0.36	0.88	0.55
	9.74	3.77	0.37	0.56	1.40	4.19	63.2%	0.33	0.73	0.52
	9.79	3.61	0.34	0.51	1.22	3,98	60.0%	0.31	0.60	0.49
	9.84	3.44	0.30	0.46	1.04	3.77	56.8%	0.28	0.48	0.46
	9.89	3.27	0.27	0.41	0.87	3.54	53.5% AL	0.25	0.37	0.43
VL4	9.94	3.05	0.23	0.36	0.71	3.27	49.4%	0.22	0.28	0.35
	9.99	2.89	0.20	0,31	0.57	3.05	46.1%	0.19	-> 0.20	0.35
	10.04	2.73	0.16	0.26	0.42	2.84	42.9%	0.15	0.13	0.30
	10.09	2.58	0.11	0.21	0.29	2.64	39.8%	0.11	0.07	0.25
	10.14	2.19	80.0	0.16	0.17	2.22	33,6%	0.08	0.03	0.20
	10.19	1.62	0.05	0.11	0.08	1.65	24.8%	0.05	0.01	0.14
	10.24	0.84	0.02	0.06	0.02	0.85	12.9%	0.02	0.00	0.09
	10.29	0.09	0.00	0.01	0.00	0.09	1.4%	0.00	0.00	0.03


COMO CREEK #2

0 2

XS LOCATION: XS NUMBER:

SUMMARY SHEET

MEASURED FLOW (Qm)=	0.26	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	0.28	cfs	**********	
(Qm-Qc)/Qm * 100 =	-6.1	%		
			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	9.89	ft	==========	******
CALCULATED WATERLINE (WLc)=	9.94	ft		
(WLm-WLc)/WLm * 100 =	-0.5	%	-	_
MAX MEASURED DEPTH (Dm)=	0.40	ft		
MAX CALCULATED DEPTH (Dc)=	0.36	ft		
(Dm-Dc)/Dm * 100	10.0	%		
MEAN VELOCITY=	0.39	ft/sec		
MANNING'S N=	0.149			
SLOPE=	0.011875	ft/ft		
.4 * Qm =	0.1	cfs		
2.5 * Qm=	0.7			
RATIONALE FOR RECOMMENDATION:				
		AGENCY		DATE

	Data Input & Proofing		GL=1	FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	А	Q	Tape to Water
STREAM NAME: CO	OMO CREEK #2	1		0	0 1		ita Points = 2	27	0.10	302	
XS LOCATION:	JIVIO CREEK #2			S	0	6.2			0.00	0.00	0.00
XS NUMBER: 2		4			1.4	6.95			0.00	0.00	0.00
DATE:			5	000	2.4	7.55			0.00	0.00	0.00
	UNNER & WOLFE		1	BF	2.9	7.95			0.00	0.00	0.00
OBSERVERS. ISP	MININER & WOLFE				3.4	8.45			0.00	0.00	0.00
1/4 SEC:		i .			4	8.75			0.00	0.00	0.00
SECTION:			- 4		4.6	9			0.00	0.00	0.00
TWP:			- 1	7111	4.8	9.65			0.00	0.00	0.00
			- 1	WL	5.5	9.88	0	0	0.00	0.00	0.00
RANGE:			4		5.8	9.95	0.05	0.14	0.02	0.00	9.90
PM:			- 1		6.1	10.05	0.1	0.02	0.03	0.00	9.95
COLUMN T				1	6.4	10.15	0.2	0.22	0.06	0.01	9.95
COUNTY:			- 1		6.7	10.2	0.25	0.43	0.08	0.03	9.95
WATERSHED:			1		7	10.2	0.25	0.45	0.08	0.03	9.95
DIVISION:					7.3	10.25	0.3	0.5	0.09	0.05	9.95
DOW CODE:			1		7.6	10.25	0.3	0.6	0.09	0.05	9.95
USGS MAP:			1		7.9	10.3	0.4	0.57	0.12	0.07	9.90
USFS MAP:			1		8.2	10.2	0.25	0.11	0.08	0.01	9.95
	Level and Rod Survey		- 1		8.5	10.15	0.2	0.09	0.06	0.01	9.95
TAPE WT: 0.0	0106	lbs / ft	1	WL	8.8	10.1	0.15	0.03	0.02	0.00	9.95
TENSION: 99	999	lbs	1		8.81	9.9	0	0	0.00	0.00	0.00
			- 1		9	8.95			0.00	0.00	0.00
SLOPE:	0.011875	ft / ft	1	BF	9.4	8.9			0.00	0.00	0.00
_			1		9.9	8.6			0.00	0.00	0.00
			1		11.3	8.4			0.00	0.00	0.00
CHECKED BY:	DATE	Constitution		BASE	18.8	8.7			0.00	0.00	0.00
		***************************************	1	TOP PIN	18.81	8.36			0.00	0.00	0.00
ASSIGNED TO:	DATE	Terres	. 1		.0.01	2.00			0.00	0.00	0.00

Totals 0.71 0.26

COMO CREEK #2

XS LOCATION:

0

XS NUMBER:

2

Thorne-Zevenbergen D84 Correction Applied

Estimated D84 =

0.66

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIOTTO	TOD	1110			1 a The beautiful to			city based on	test of R/D84>
	DIST TO WATER	TOP WIDTH	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG. VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	8.90	5.04	0.98	1.40	4.96	6.63	100.0%	0.75	10.31	2.08
	8.94	4.62	1.03	1.36	4.77	6.20	93.6%	0.77	10.11	2.12
	8.99	4.42	1.03	1.31	4.54	5.95	89.8%	0.76	9.49	2.09
	9.04	4.37	0.99	1.26	4.32	5.83	88.0%	0.74	8.71	2.01
	9.09	4.34	0.94	1.21	4.11	5.73	86.4%	0.72	7.93	1.93
	9.14	4.32	0.90	1.16	3.89	5.62	84.9%	0.69	7.18	1.85
	9.19	4.29	0.86	1.11	3.67	5.52	83.3%	0.67	6.45	1.76
	9.24	4.27	0.81	1.06	3.46	5.42	81.7%	0.64	11,48	3.32
	9.29	4.24	0.77	1.01	3.25	5.31	80.2%	0.61	9.67	2.98
	9.34	4.22	0.72	0.96	3.04	5.21	78.6%	0.58	8.07	2.66
	9.39	4.19	0.67	0.91	2.82	5,11	77.1%	0.55	6.65	2.35
	9.44	4.17	0.63	0.86	2.62	5.00	75.5%	0.52	5.42	2.07
	9.49	4.14	0.58	0.81	2.41	4.90	73.9%	0.49	4.34	1.80
	9.54	4.12	0.53	0.76	2.20	4.80	72.4%	0.46	3.43	1.56
	9.59	4.09	0.49	0.71	2.00	4.69	70.8%	0.43	2.65	1.33
	9.64	4.07	0.44	0.66	1.79	4.59	69.3%	0.39	2.00	1,12
	9.69	3.93	0.41	0.61	1.59	4.40	66.4%	0.36	1.54	0.96
	9.74	3.77	0.37	0.56	1.40	4.19	63.2%	0.33	1.16	0.83
	9.79	3.61	0.34	0.51	1,22	3.98	60.0%	0.31	0.86	0.70
	9.84	3,44	0.30	0.46	1.04	3.77	56.8%	0.28	0.61	0.59
	9.89	3.27	0.27	0.41	0.87	3.54	53.5%	0.25	0.42	0.48
WL	9.94	3.05	0.23	0.36	0.71	3.27	49.4%	0.22	0.28	0.39
	9.99	2.89	0.20	0.31	0.57	3.05	46.1%	0.19	0.17	0.30
	10.04	2.73	0.16	0.26	0.42	2.84	42.9%	0.15	0.09	0.22
	10.09	2.58	0.11	0.21	0.29	2.64	39.8%	0.11	0.05	0.16
	10.14	2.19	0.08	0.16	0.17	2.22	33.6%	0.08	0.02	0.10
	10.19	1.62	0.05	0.11	0.08	1.65	24.8%	0.05	0.00	0.06
	10.24	0.84	0.02	0.06	0.02	0.85	12.9%	0.02	0.00	0.02
	10.29	0.09	0.00	0.01	0.00	0.09	1.4%	0.00	0.00	0.00

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:	COMO CRE	EK #3
XS LOCATION:	0	
XS NUMBER:	3	
DATE:	0-Jan-00	
OBSERVERS:	SKINNER &	WOLFE
1/4 SEC:	0	
SECTION:	0	
TWP:	0	
RANGE:	0	
PM:	0	
COUNTY:	0	
WATERSHED:	0	
DIVISION:	0	
DOW CODE:	0	
USGS MAP:	0	
USFS MAP:	0	
SUPPLEMENTAL DATA		*** NOTE ***
	=	Leave TAPE WT and TENSION
CIECULE.		at defaults for data collected
TAPE WT:	0.0106	with a survey level and rod
TENSION:	99999	
CHANNEL PROFILE DATA		
SLOPE:	0.02344828	
INPUT DATA CHECKED BY	Y: ,,	DATE
ASSIGNED TO:		DATE

STREAM NAME: XS LOCATION: COMO CREEK #3

XS LOCATION:

0

DATA POINTS=

24

VALUES COMPUTED FROM RAW FIELD DATA

				WESTS SOM	O I LD I NOW IN	AW FILLD DA	16	
VERT DEPTH	TURE	WATER DEPTH	VEL	WETTED PERIM.	WATER DEPTH	AREA (Am)	Q (Qm)	% Q CELL
2.0							1	-
4.76				0.00		0.00	0.00	0.0%
5.00				0.00		0.00	0.00	0.0%
5.45				0.00		0.00	0.00	0.0%
5.95				0.00		0.00	0.00	0.0%
6.35				0.00		0.00	0.00	0.0%
6.45				0.00		0.00	0.00	0.0%
7.77		0.00	0.00	0.00		0.00	0.00	0.0%
7.90		0.20	0.16	0.33	0.20	0.06	0.01	3.7%
8.15		0.40	0.17	0.39	0.40	0.12	0.02	7.8%
8.25		0.20	0.38	0.32	0.20	0.06	0.02	8.7%
8.05		0.20	0.37	0.36	0.20	0.06	0.02	8.5%
8.10		0.30	0.70	0.30	0.30	0.09	0.06	24.0%
8.25		0.30	0.90	0.34	0.30	0.09	0.08	30.9%
8.05		0.20	0.50	0.36	0.20	0.06	0.03	11.4%
7.95		0.10	0.08	0.32	0.10	0.03	0.00	0.9%
8.05		0.20	0.07	0.32	0.20	0.06	0.00	1.6%
8.01		0.30	0.05	0.30	0.30	0.09	0.00	1.7%
8.05	13	0.20	0.03	0.30	0.20	0.05	0.00	0.6%
8.05		0.20	0.04	0.20	0.20	0.02	0.00	0.3%
7.82		0.00	0.00	0.23		0.00	0.00	0.0%
7.35	1.5			0.00		0.00	0.00	0.0%
7.00				0.00				0.0%
6.40				0.00				0.0%
5.65	4			0.00		0.00	0.00	0.0%
	TOTAL			4.06	0.4	0.79	0.26	100.0%
		6.40	6.40	6.40	6.40 0.00 5.65 0.00	6.40 0.00 5.65 0.00	6.40 0.00 0.00 5.65 0.00 0.00	6.40 0.00 0.00 0.00 0.00 5.65 0.00 0.00 0.0

Manning's n = Hydraulic Radius=

0.2304 0.194715498

COMO CREEK #3

XS LOCATION: XS NUMBER:

3

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	0.79	0.00	277 750
7.55		0.93	17.7%
7.57	0.79	1.84	132.7%
	0.79	1.77	123.2%
7.59	0.79	1.69	113.7%
7.61	0.79	1.62	104.3%
7.63	0.79	1.54	95.0%
7.65	0.79	1.47	85.7%
7.67	0.79	1.40	76.4%
7.69	0.79	1.32	67.3%
7.71	0.79	1.25	58.1%
7.73	0.79	1.18	49.0%
7.75	0.79	1,11	40.0%
7.76	0.79	1.07	35.5%
7.77	0.79	1.04	31.0%
7.78	0.79	1.00	26.5%
7.79	0.79	0.97	22.1%
7.80	0.79	0.93	17.7%
7.81	0.79	0.90	13.3%
7.82	0.79	0.86	9.0%
7.83	0.79	0.83	4.7%
7.84	0.79	0.79	0.4%
7.85	0.79	0.76	-3.8%
7.87	0.79	0.69	-12.2%
7.89	0.79	0.63	-20.4%
7.91	0.79	0.56	-28.6%
7.93	0.79	0.50	-36.6%
7.95	0.79	0.44	-44.6%
7.97	0.79	0.38	-52.5%
7.99	0.79	0.32	-60.0%
8.01	0.79	0.26	-67.1%
8.03	0.79	0.20	-73.6%
8.05	0.79	0.17	-79.1%

WATERLINE AT ZERO AREA ERROR =

7.836

COMO CREEK #3

XS LOCATION: XS NUMBER:

0

3

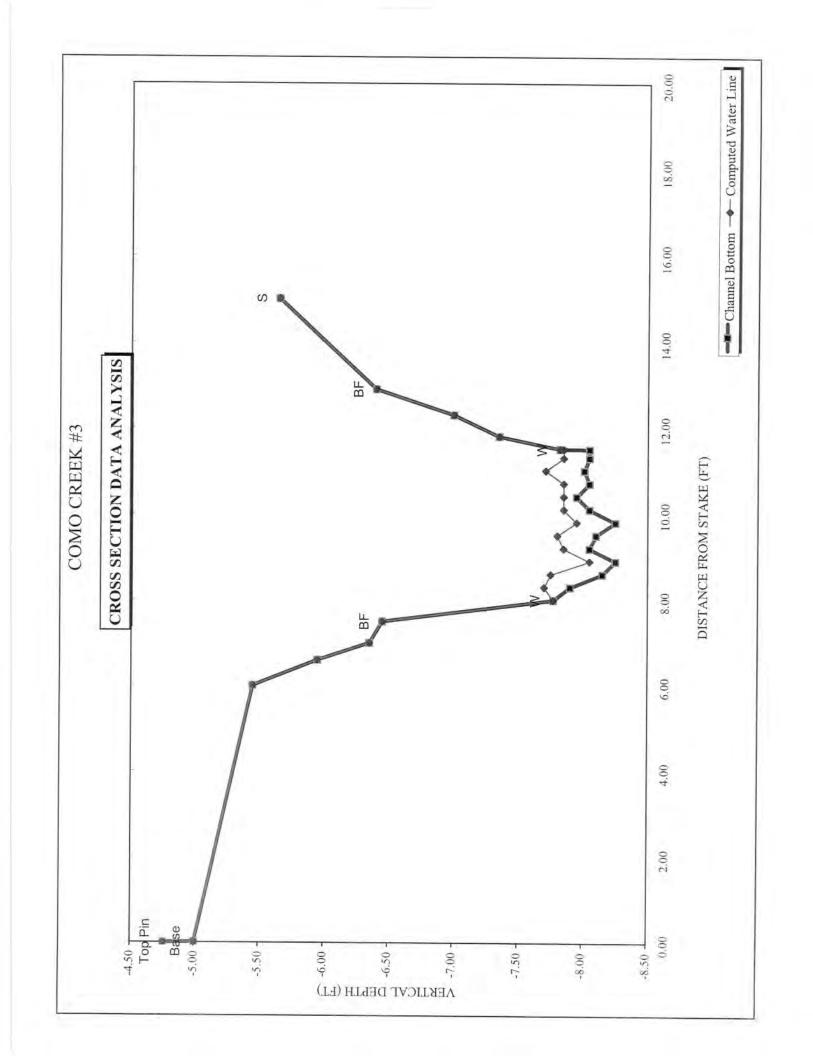
Constant Manning's n

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO WATER (FT)	TOP WIDTH (FT)	AVG. DEPTH (FT)	MAX. DEPTH (FT)	AREA (SQ FT)	WETTED PERIM. (FT)	PERCENT WET PERIM (%)	HYDR RADIUS (FT)	FLOW (CFS)	AVG VELOCITY (FT/SEC
GL	6.45	5.35	1 20	4.00	0.40	941	300.00	1.3-4.7		
OL	6.84	4.82	1.28	1.80	6.82	7.41	100.0%	0.92	6.38	0.93
	6.89		1.01	1.41	4.86	6.46	87.1%	0.75	3.97	0.82
	6.94	4.75	0.97	1.36	4.62	6.33	85.4%	0.73	3.70	0.80
	6.99	4.68	0.94	1.31	4.39	6.21	83.7%	0.71	3.44	0.78
		4.61	0.90	1.26	4.15	6.08	82.0%	0.68	3.18	0.77
	7.04	4.53	0.87	1.21	3,93	5.95	80.2%	0.66	2.94	0.75
	7.09	4.44	0.83	1.16	3.70	5.81	78.3%	0.64	2.71	0.73
	7-14	4,35	0.80	1.11	3.48	5.67	76.4%	0.61	2.49	0.71
	7.19	4.26	0.77	1.06	3.27	5 53	74.5%	0.59	2.27	0.70
	7.24	4.17	0.73	1.01	3.06	5.38	72.6%	0.57	2.07	0.68
	7.29	4.07	0.70	0.96	2.85	5.24	70.7%	0.54	1 88	0.66
	7.34	3.98	0.66	0.91	2.65	5.10	68.8%	0.52	1.69	0.64
	7.39	3.92	0.62	0.86	2.45	4.98	67.2%	0.49	1.51	0.62
	7 44	3.87	0.58	0.81	2.26	4.87	65.7%	0.46	1.33	0.59
	7,49	3.82	0.54	0.76	2.06	4.76	64.2%	0.43	1.17	0.57
	7.54	3,77	0.50	0.71	1.87	4.65	62.7%	0.40	1.01	0.54
	7.59	3.72	0.45	0.66	1_69	4.53	61.2%	0.37	0.86	0.51
	7.64	3.67	0.41	0.61	1.50	4.42	59.6%	0.34	0.72	0.48
	7.69	3.62	0.36	0.56	1.32	4.31	58.1%	0.31	0.59	0.45
	7.74	3,57	0.32	0.51	1.14	4.20	56.6%	0.27	0.47	0.41
	7.79	3.49	0.28	0.46	0.96	4.06	54.8%	0.24	0.36	0.38
WL	7.84	3.36	0.24	0.41	0.79	3.88	52.3%	0.20	0.27	0.34
	7.89	3.24	0.19	0.36	0.63	3.70	(50.0%)	0.17	> 0.19	0.30
	7.94	3.16	0.15	0.31	0.47	3.56	48.1%	0.13	0.12	0.25
	7.99	2.88	0.11	0.26	0.31	3.21	43.3%	0.10	0.07	0.23
	8.04	2.13	0.09	0.21	0.18	2.37	32.0%	0.08	0.03	
	8.09	1.25	0.08	0.16	0.10	1.43	19.3%	0.07	0.03	0.18
	8.14	0.89	0.06	0.11	0.05	1.00	13.5%	0.07	0.02	0.17
	8.19	0.51	0.03	0.06	0.02	0.58	7.8%	0.03		0.14
	8.24	0.11	0.01	0.01	0.02	0.13	1.7%	0.03	0.00	0.09


STREAM NAME: XS LOCATION: XS NUMBER:

COMO CREEK #3

0

SUMMARY SHEET

MEASURED FLOW (Qm)=	0.26	cfs	RECOMMENDED INS	TREAM ELOW
CALCULATED FLOW (Qc)=	0.27		=======================================	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
(Qm-Qc)/Qm * 100 =	-3.1			
	371	79	FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	7.80	ft	=========	PERIOD
CALCULATED WATERLINE (WLc)=	7.84		The second section was also and the second	
(WLm-WLc)/WLm * 100 =	-0.5			
(WEIII WEGHWEIII 100 -	-0.5	70	_	
MAX MEASURED DEPTH (Dm)=	2.10			
MAX CALCULATED DEDTILID	0.40			
MAX CALCULATED DEPTH (Dc)=	0.41			
(Dm-Dc)/Dm * 100	-3.5	%		
MEANINE OCCUR	4.40	W- 77		
MEAN VELOCITY=		ft/sec		
MANNING'S N=	0.230			
SLOPE=	0.02344828	ft/ft		
.4 * Qm =	0.1	cfe		
2.5 * Qm=	0.7			
RECOMMENDATION BY:	*****	AGENCY		DATE:
CWCB REVIEW BY:				DATE:

	advantable of the control of					VERT	WATER				Tape to
	Data Input & Proofing		GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	A	Q	Water
PTDEAM NAME.	COMO CREEK #3		-				ta Points = 2	14			
XS LOCATION:	COMO CREEK #3		- 1	Top Pin	0	4.76			0.00	0.00	0.00
XS NUMBER:	2		1	Base	0.01	5			0.00	0.00	0.00
DATE:	3				6	5.45			0.00	0.00	0.00
	SKINNER & WOLFE	1	1		6.6	5.95			0.00	0.00	0.00
OBSERVERS.	SKINNER & WOLFE	1	1.4		7	6.35			0.00	0.00	0.00
1/4 SEC: [7	1	BF	7.5	6.45			0.00	0.00	0.00
SECTION:			1	W	8	7.77	0	0	0.00	0.00	0.00
TWP:		-			8.3	7.9	0.2	0.16	0.06	0.01	7.70
RANGE:			1	-	8.6	8.15	0.4	0.17	0.12	0.02	7.75
PM:		-	-		8.9	8.25	0.2	0.38	0.06	0.02	8.05
i ivi.		I.	-		9.2	8.05	0.2	0.37	0.06	0.02	7.85
COUNTY: [1			9.5	8.1	0.3	0.7	0.09	0.06	7.80
WATERSHED:		-	-		9.8	8.25	0.3	0.9	0.09	0.08	7.95
DIVISION:			+		10.1	8.05	0.2	0.5	0.06	0.03	7.85
DOW CODE:			1		10.4	7,95	0.1	80.0	0.03	0.00	7.85
USGS MAP:			-		11	8.05	0.2	0.07	0.06	0.00	7.85
USFS MAP:			+	-	11.3	8.01	0.3	0.05	0.09	0.00	7.71
	i malanda a de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición de la composición dela composic		F		11.5	8.05 8.05	0.2	0.03	0.05	0.00	7,85
TAPE WT: [0.0106 Level and Rod Survey	lbs / ft	1	W	11.51	7.82	0.2	0.04	0.02	0.00	7.85
TENSION:	99999	lbs	+	VV	11.8	7.35	U	0	0.00	0.00	0.00
W. 2. C.		1.00	-		12.3	7.33			0.00	0.00	0.00
SLOPE: [0.023448276	ff / ft	1	BF	12.9	6.4			0.00	0.00	0.00
Total Park	0,020,10210	1.57 14		S	15	5.65			0.00	0.00	0.00
			L	0	10	3.00			0.00	0.00	0.00
CHECKED BY:.	DATE				-						
ASSIGNED TO:	DATE										

Totals 0.79 0.26

STREAM NAME::

COMO CREEK #3

XS LOCATION: XS NUMBER:

0 3

Thorne-Zevenbergen D84 Correction Applied

Estimated D84 =

0.79

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR	city based on t	AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
_	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL*	6.45	5.35	1.28	1.80	6.82	7.41	100.00/	0.00	40.00	
	6.84	4.82	1.01	1.41	4.86	6.46	100.0% 87.1%	0.92	19.39	2.84
	6.89	4.75	0.97	1.36	4.62	6.33		0.75	20.99	4.3
	6.94	4.68	0.94	1.31	4.39	6.21	85.4%	0.73	18.55	4.0
	6.99	4.61	0.90	1.26	4.15	6.08	83.7%	0.71	16.31	3.7
	7.04	4.53	0.87	1.21	3.93	5.95	82.0%	0.68	14.27	3.43
	7.09	4.44	0.83	1.16	3.70		80.2%	0.66	12.48	3.11
	7.14	4.35	0.80	1.11	3.48	5.81	78.3%	0.64	10.88	2.9
	7.19	4.26	0.77	1.06	3.46	5.67	76.4%	0.61	9.43	2.7
	7.24	4.17	0.73	1.00		5.53	74.5%	0,59	8.13	2.4
	7.29	4.07	0.70	0.96	3.06	5.38	72.6%	0.57	6.95	2.2
	7.34	3.98	0.66		2.85	5,24	70.7%	0.54	5.90	2.0
	7.39	3.92	0.62	0.91	2.65	5.10	68.8%	0.52	4.96	1.8
	7.44	3.92		0.86	2.45	4.98	67.2%	0.49	4.09	1.6
			0.58	0.81	2.26	4.87	65.7%	0.46	3.31	1.4
	7.49	3.82	0.54	0.76	2.06	4.76	64.2%	0.43	2.64	1.28
	7.54	3.77	0.50	0.71	1.87	4.65	62.7%	0.40	2.07	1.1
	7.59	3.72	0.45	0.66	1.69	4.53	61.2%	0.37	1.59	0.94
	7.64	3.67	0.41	0.61	1.50	4.42	59.6%	0.34	1.20	0.80
	7.69	3.62	0.36	0.56	1.32	4.31	58.1%	0.31	0.87	0.66
	7.74	3.57	0.32	0.51	1.14	4.20	56.6%	0.27	0.61	0.54
	7.79	3,49	0.28	0.46	0.96	4.06	54.8%	0.24	0.42	0.43
NL*	7.84	3.36	0.24	0.41	0.79	3.88	52.3%	0.20	0.27	0.34
	7.89	3.24	0.19	0.36	0.63	3.70	50.0%	0.17	0.16	0.26
	7.94	3.16	0.15	0.31	0.47	3.56	48.1%	0.13	0.09	0.19
	7.99	2.88	0.11	0.26	0.31	3.21	43.3%	0.10	0.04	0.14
	8.04	2.13	0.09	0.21	0.18	2.37	32.0%	0.08	0.02	0.10
	8.09	1.25	0.08	0.16	0.10	1.43	19.3%	0.07	0.01	0.08
	8.14	0.89	0.06	0.11	0.05	1.00	13.5%	0.05	0.00	0.03
	8.19	0.51	0.03	0.06	0,02	0.58	7.8%	0.03	0.00	0.0
	8.24	0.11	0.01	0.01	0.00	0.13	1.7%	0.01	0.00	0.00

Q = 1.35 3/3 = 1.7 2/3 = 0.6

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:

Como Creek Wp #24

XS LOCATION:

Up Stream of flum about 50'

XS NUMBER:

2

DATE:

5-Jul-06

OBSERVERS:

Todd

1/4 SEC:

SW

SECTION:

200

TWP:

23

TWP;

1N

RANGE:

73W

PM:

6

COUNTY:

Boulder

WATERSHED:

Boulder

DIVISION:

DOW CODE:

0

USGS MAP:

WARD

USFS MAP:

0

SUPPLEMENTAL DATA

*** NOTE ***

Leave TAPE WT and TENSION at defaults for data collected

with a survey level and rod

....

TAPE WT:

0.0106

TENSION:

99999

CHANNEL PROFILE DATA

SLOPE:

INPUT DATA CHECKED BY:	DATE
ASSIGNED TO:	DATE

Como Creek Wp #24 Up Stream of flum about 50°

XS NUMBER:

2

DATA POINTS=

30

VALUES COMPUTED FROM RAW FIELD DATA

		Signation Chirt		30	VALUES COIVIE	O LED FROM R	AW FIELD DA	IA	
FEATURE	DIST	VERT	WATER DEPTH	VEL	WETTED PERIM	WATER DEPTH	AREA (Am)	Q (Qm)	% Q CELL
						DELTIT	(Acid)	(Gill)	CELL
Top S	0.00	3.69			0.00		0.00	0.00	0.0%
	0.00	4.09			0.00		0.00	0.00	0.0%
	0.40	3.94			0.00		0.00	0.00	0.0%
1 GL	1.40	4.17			0.00		0.00	0.00	0.0%
	2.00	4.95			0.00		0.00	0.00	0.0%
	2.40	5.05			0.00		0.00	0.00	0.0%
WL	3.05	5.43	0.00	0.00	0.00		0.00	0.00	0.0%
	3.30	5.73	0.30	0.57	0.39	0.30	0.08	0.05	3.5%
	3.60	5.78	0.35	2.15	0.30	0.35	0.11	0.23	16.7%
	3.90	5.68	0.25	2.42	0.32	0.25	0.08	0.18	13.4%
	4.20	5.58	0.15	2.21	0.32	0.15	0.05	0.10	7.3%
	4.50	5.58	0.15	1.87	0.30	0.15	0.05	0.08	6.2%
	4.80	5.63	0.20	0.64	0.30	0.20	0.06	0.04	2.8%
	5.10	5.63	0.20	0.94	0.30	0.20	0.06	0.06	4.2%
	5.40	5.53	0.10	0.44	0.32	0.10	0.03	0.01	1.0%
	5.70	5.58	0.15	1.48	0.30	0.15	0.05	0.07	4.9%
	6.00	5.58	0.15	1.08	0.30	0.15	0.05	0.05	3.6%
	6.30	5.43	0.00	0.00	0.34	-7,4	0.00	0.00	0.0%
	6.60	5.43	0.00	0.00	0.00		0.00	0.00	0.0%
	6.90	5.63	0.20	2.21	0.36	0.20	0.06	0.13	9.8%
	7.20	5.71	0.28	1.80	0.31	0.28	0.08	0.15	11.0%
	7.50	5.63	0.20	2.33	0.31	0,20	0.06	0.14	10.3%
	7.80	5.63	0.20	0.99	0.30	0.20	0.06	0.06	4.4%
	8.10	5.63	0.20	0.22	0.30	0.20	0.06	0.01	0.9%
WL	8.35	5.40	0.00	0.00	0.34		0.00	0.00	0.0%
	8.80	5.17			0.00		0.00	0.00	0.0%
1 GL	10.40	4.50			0.00		0.00	0.00	0.0%
	13.00	4.35			0.00		0.00	0.00	0.0%
Bottom Stake	16.00	4.21			0.00		0.00	0.00	0.0%
Top Stake	16.00	3.65			0.00		0.00	0.00	0.0%
TO	TALS				5.41	0.35	0.91	1.05	400.001
1.9					3.41	0.33	0.81	1.35	100.0%

0.35 0.91 1.35 100.0% (Max.)

Manning's n = Hydraulic Radius=

0.0737 0.168339359

Como Creek Wp #24

XS NUMBER:

Up Stream of flum about 50'

NUMBER:

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	0.91	2.04	0.40
5.18		0.91	-0.4%
	0.91	2.33	156.3%
5.20	0.91	2.21	142,8%
5.22	0.91	2.09	129.5%
5.24	0.91	1.97	116.4%
5.26	0.91	1.85	103.4%
5.28	0.91	1.73	90.6%
5.30	0.91	1.62	78.0%
5.32	0.91	1.51	65.5%
5.34	0.91	1.39	53.2%
5.36	0.91	1.28	41.0%
5.38	0.91	1.17	29.0%
5.39	0.91	1.12	23.0%
5.40	0.91	1.07	17.1%
5.41	0.91	1.01	11.3%
5.42	0.91	0.96	5.4%
5.43	0.91	0.91	-0.4%
5.44	0.91	0.86	-5.8%
5.45	0.91	0.81	-11.2%
5.46	0.91	0.76	-16.5%
5.47	0.91	0.71	-21.7%
5.48	0.91	0.67	-26.9%
5.50	0.91	0.57	-37.1%
5.52	0.91	0.48	-47.1%
5.54	0.91	0.39	-56.8%
5.56	0.91	0.31	-65.8%
5.58	0.91	0.23	-74.3%
5.60	0.91	0.17	-80.8%
5.62	0.91	0.12	-86.6%
5.64	0.91	0.08	-90.8%
5.66	0.91	0.06	-93.4%
5.68	0.91	0.04	-95.5%

WATERLINE AT ZERO AREA ERROR =

Como Creek Wp #24

Up Stream of flum about 50'

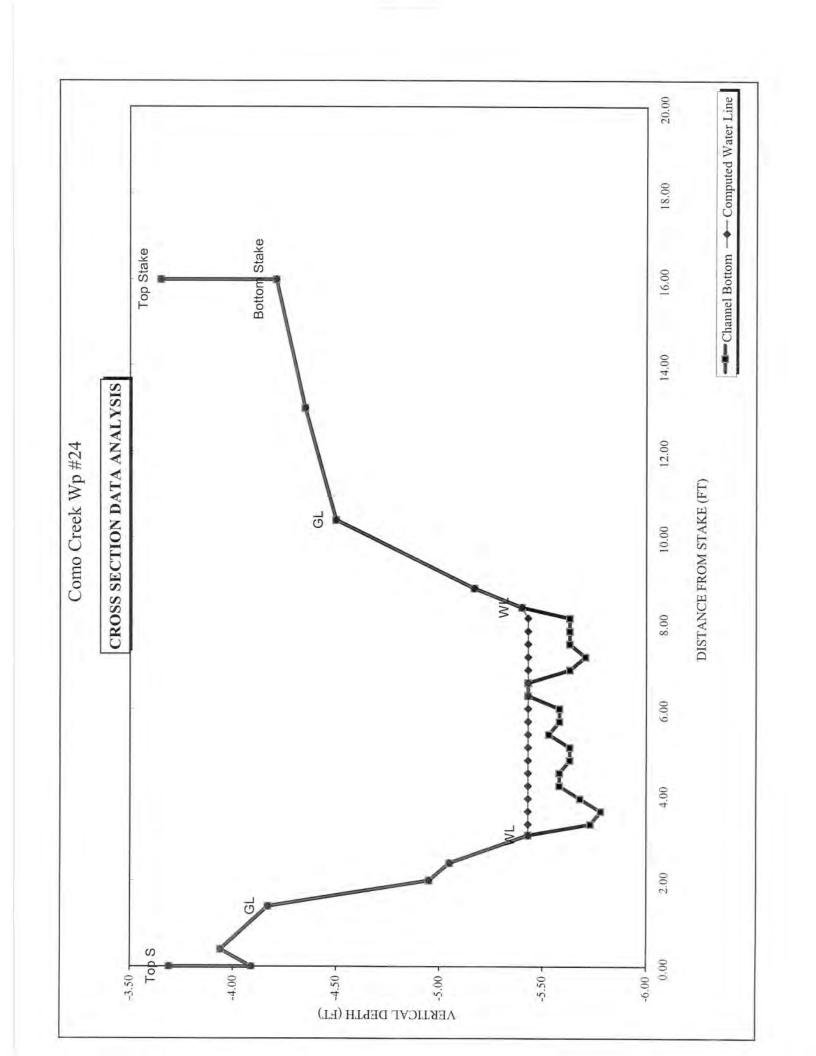
XS NUMBER:

Constant Manning's n

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

*WL" = Waterline corrected for variations in field measured water surface elevations and sag


	DIST TO WATER	TOP	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG VELOCITY
- 5	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC
GL*	4.50	8.75	0.86	1.28	7.48	9.68	100.0%	0.77	30.76	4.11
	4.53	8,65	0.84	1.25	7.23	9.57	98.8%	0.76	29.25	4.05
	4.58	8.50	0.80	1.20	6.80	9.37	96.8%	0.73	26.78	3.94
	4.63	8.34	0.76	1.15	6.38	9.18	94.9%	0.69	24.41	3.83
	4.68	8.18	0.73	1.10	5.97	8.99	92.9%	0.66	22.14	3.71
	4.73	8.02	0.69	1.05	5.56	8.80	90.9%	0.63	19.98	3.59
	4.78	7.86	0.66	1.00	5.16	8.60	88.9%	0.60	17.92	3.47
	4.83	7.71	0.62	0.95	4.77	8.41	86.9%	0.57	15.97	3.34
	4.88	7.55	0.58	0.90	4.39	8.22	84.9%	0.53	14.11	3.21
	4.93	7.39	0.54	0.85	4.02	8.03	82.9%	0.50	12.36	3.08
	4.98	7.14	0.51	0.80	3.65	7.75	80.1%	0.47	10.80	2.96
	5.03	6.82	0.48	0.75	3.31	7.41	76.6%	0.45	9.41	2,85
	5.08	6.57	0.45	0.70	2.97	7.14	73.8%	0.42	8.08	2.72
	5.13	6.36	0.42	0.65	2.65	6.91	71.4%	0.38	6.82	2.57
	5.18	6.16	0.38	0.60	2.34	6.69	69.1%	0.35	5.65	2.42
	5.23	5.98	0.34	0.55	2.03	6.48	66.9%	0.31	4.58	2.25
	5.28	5.79	0.30	0.50	1.74	6.27	64.8%	0.28	3.61	2.07
	5.33	5.61	0.26	0.45	1.45	6.06	62.6%	0.24	2.74	1.88
	5.38	5.43	0.22	0.40	1.18	5.85	60.5%	0.20	1.97	1.67
WL*	5.43	4.97	0.18	0.35	0.91	5.37	55.4%	0.17	1,36	1.49
7.5	5.48	4.70	0.14	0.30	0.67	5.02	51.9%	0.13	_ 0.85	1.27
	5.53	4.43	0.10	0.25	0.44	4.69	48.5%	0.09	0.44	1.01
	5.58	3.11	0.08	0.20	0.24	3.29	34.0%	0.07	0.20	0.84
	5.63	1.44	0.07	0.15	0.10	1.53	15.9%	0.06	0.08	0.79
	5.68	0.85	0.05	0.10	0.04	0.90	9.3%	0.05	0.03	0.63
	5.73	0.46	0.03	0.05	0.01	0.47	4.8%	0.02	0.00	0.41
	5.78	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/01

STREAM NAME: XS LOCATION: XS NUMBER: Como Creek Wp #24 Up Stream of flum about 50'

....

SUMMARY SHEET

MEASURED FLOW (Qm)=	1.35	cfs	RECOMMENDED INS	STREAM FLOW:
CALCULATED FLOW (Qc)=	1.36	cfs		
(Qm-Qc)/Qm * 100 =	-0.5	%		
(and any	20.00	10	FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	5,43	ft	=========	222222
CALCULATED WATERLINE (WLc)=	5.43			
(WLm-WLc)/WLm * 100 =	0.0	%	N	_
WWW. COURSE DEDTING	0.05			
MAX MEASURED DEPTH (Dm)=	0.35			
MAX CALCULATED DEPTH (Dc)=	0.35			
(Dm-Dc)/Dm * 100	-0.2	%		
MEAN VELOCITY=	1.40	ft/sec		
		IUSEC	-	-
MANNING'S N=	0.074			
SLOPE=	0.0585	tt/tt		
4 * Qm =	0.5	cfs		
2.5 * Qm=	3.4			
RECOMMENDATION BY:		AGENCY		DATE:
CWCB REVIEW BY:				DATE:

	Data Input & Proofing		GL=1	FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	A	Q	Tape to Water
XS NUMBER: DATE:	Up Stream of flum about 50' 2 7/5/2006		1	Top S GL	0.00 0.00 0.40 1.40	3.69 4.09 3.94 4.17	ata Points = 30		0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
	Todd SW 23 1N			WL	2.00 2.40 3.05 3.30 3.60	4.95 5.05 5.43 5.73 5.78	0.00 0.30 0.35	0.00 0.57	0.00 0.00 0.00 0.08	0.00 0.00 0.00 0.05	0.00 0.00 0.00 5.43
RANGE: PM:	73W 6 Boulder				3.90 4.20 4.50 4.80	5.68 5.58 5.58 5.63	0.35 0.25 0.15 0.15 0.20	2.15 2.42 2.21 1.87 0.64	0.11 0.08 0.05 0.05 0.06	0.23 0.18 0.10 0.08 0.04	5.43 5.43 5.43 5.43 5.43
WATERSHED: DIVISION: DOW CODE: USGS MAP:	Boulder 1 WARD				5.10 5.40 5.70 6.00	5.63 5.53 5.58 5.58	0.20 0.10 0.15 0.15	0.94 0.44 1.48 1.08	0.06 0.03 0.05 0.05	0.06 0.01 0.07 0.05	5.43 5.43 5.43 5.43
USFS MAP: TAPE WT: TENSION:		lbs / ft lbs			6.30 6.60 6.90 7.20 7.50	5.43 5.63 5.71 5.63	0.00 0.00 0.20 0.28 0.20	0.00 0.00 2.21 1.80 2.33	0.00 0.00 0.06 0.08 0.06	0.00 0.00 0.13 0.15 0.14	0.00 0.00 5.43 5.43 5.43
SLOPE: CHECKED BY	0.0585			WL	7.80 8.10 8.35 8.80	5.63 5.63 5.40 5.17	0.20 0.20 0.20 0.00	0.99 0.22 0.00	0.06 0.06 0.00 0.00	0.06 0.01 0.00 0.00	5.43 5.43 0.00 0.00
ASSIGNED TO):DATE		1 Bo	GL Itom Stake	10.40 13.00 16.00	4.50. 4.35 4.21			0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
								Totals	0.91	1.35	

1.35885

Distance from top of north pin to water	's edge:	3.05	1-12-	
Elevation change from N pin to water:		1.74		
Distance from top of south pin to wate	r's edge:	7.65	711	
Elevation change from S pin to water:	7.0	1.75	80	
Flow				
4	10			
4.3	0.3	0.57		0.0513
4.6	0.35	2.15		0.22575
4.9	0.25	2.42		0.1815
5.2	0.15	2.21		0.09945
5.5	0.15	1.87		0.08415
5.8	0.2	0.64		0.0384
6.1	0.2	0.94		0.0564
6.4	0.1	0.44		0.0132
6.7	0.15	1.48		0.0666
7	0.15	1.08		0.0486
7.3	0	0		0
7.6	0	0		0
7.9	0.2	2.21		0.1326
8.2	0.275	1.8		0.1485
8.5	0.2	2.33		0.1398
8.8	0.2	0.99		0.0594
9.1	0.2	0.22		0.0132
9.4	73			
	-			1.35885

WE 6 35 hold

Como Creek Wp #24 Up Stream of flum about 50"

XS NUMBER:

2

Thome-Zevenbergen D84 Correction Applied

Estimated D84 =

0.28

GL = lowest Grassline elevation corrected for sag

STAGING TABLE *WL* = Waterline corrected for variations in field measured water surface elevations and sag

Velocity based on test of R/D84>1 DIST TO TOP AVG. MAX. WETTED PERCENT HYDR

	WATER (FT)	WIDTH (FT)	DEPTH (FT)	DEPTH (FT)	AREA (SQ FT)	PERIM. (FT)	WET PERIM (%)	RADIUS (FT)	FLOW (CFS)	VELOCITY (FT/SEC)
GL	4.50	8.75	0.86	1,28	7.48	- 9.68	100.0%	0.77	E2 00	7.07
0.2	4.53	8.65	0.84	1.25	7.23	9.57	98.8%	0.76	52.88 49.99	7.07
	4.58	8.50	0.80	1.20	6.80	9.37	96.8%	0.73	1000000	6.92
	4.63	8.34	0.76	1.15	6.38	9.18	94.9%	0.69	45.26 40.77	6.66
	4.68	8.18	0.73	1.10	5.97	8.99	92.9%	0.66	36.51	6.39
	4.73	8.02	0.69	1.05	5.56	8.80	90.9%	0.63	32.49	6.12 5.84
	4.78	7.86	0.66	1.00	5.16	8.60	88.9%	0.60	28.69	5.56
	4.83	. 7.71	0.62	0.95	4.77	8,41	86.9%	0.57	25.13	5.26
	4.88	7.55	0.58	0.90	4.39	8.22	84.9%	0.53	21.79	4.96
	4.93	7.39	0.54	0.85	4.02	8.03	82.9%	0.50	18.69	4.65
	4.98	7.14	0.51	0.80	3.65	7.75	80.1%	0.47	15.98	4.37
	5.03	6.82	0.48	0.75	3.31	7.41	76.6%	0.45	13.61	4.12
	5.08	6.57	0.45	0.70	2.97	7.14	73.8%	0.42	11.36	3.82
	5.13	6.36	0.42	0.65	2.65	6.91	71.4%	0.38	9.27	3.50
	5.18	6.16	0.38	0.60	2.34	6.69	69.1%	0.35	7.38	3.16
	5.23	5.98	0.34	0.55	2.03	6.48	66.9%	0.31	5,69	2.80
	5.28	5.79	0.30	0.50	1.74	6.27	64.8%	0.28	4.22	2.43
	5.33	5.61	0.26	0.45	1.45	6.06	62.6%	0.24	3.77	2.59
	5.38	5.43	0.22	0.40	1.18	5.85	60.5%	0.20	2.28	1.94
WL	5.43	4.97	0.18	0.35	0.91	5.37	55.4%	0.17	1.36	1.49
	5.48	4.70	0.14	0.30	0.67	5.02	51.9%	0.13	0.71	1.06
	5.53	4.43	0.10	0.25	0.44	4.69	48.5%	0.09	0.30	0.69
	5.58	3.11	0.08	0.20	0.24	3.29	34.0%	0.07	0.11	0.49
	5.63	1.44	0.07	0.15	0.10	1.53	15.9%	0.06	0.03	0.34
	5.68	0.85	0.05	0.10	0.04	0.90	9.3%	0.05	0.01	0.19
	5.73	0.46	0.03	0.05	0.01	0.47	4.8%	0.02	0.00	0.07
	5.78	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!

Q = 10.04 $3/3 = 2.2^{\circ}$ $2/3 = 0.9^{\circ}$

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: Como Creek Wp #24 XS LOCATION: Up Stream of flum about 50' XS NUMBER:

DATE: 7-Jun-06

OBSERVERS: Uppendahl and Todd

1/4 SEC: SW SECTION: 23 TWP: 1N RANGE: 73W PM:

COUNTY: Boulder WATERSHED: Boulder DIVISION: DOW CODE: 0

USGS MAP: WARD USFS MAP: 0

SUPPLEMENTAL DATA

*** NOTE ***

Leave TAPE WT and TENSION at defaults for data collected

TAPE WT: TENSION: 0.0106 99999

with a survey level and rod

CHANNEL PROFILE DATA

SLOPE: 0.0585

INPUT DATA CHECKED BY:DATE......DATE...... ASSIGNED TO:DATE......DATE

Como Creek Wp #24 Up Stream of flum about 50'

XS NUMBER:

DATA POINTS=

2

26

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE	DIOT	VERT	WATER	Samo	WETTED	WATER	AREA	Q	% C
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
Top S	0.00	3.69			0.00		0.00	0.00	0.0%
	0.00	4.09			0.00		0.00	0.00	0.0%
	0.40	3.94			0.00		0.00	0.00	0.0%
GL	1.40	4.17			0.00		0.00	0.00	0.0%
WL	2.00	4.95	0.00	0.00	0.00		0.00	0.00	0.0%
	2.40	5.05	0.10	0.00	0.41	0.10	0.04	0.00	0.0%
	2.80	5.75	0.70	3.39	0.81	0.70	0.28	0.95	9.5%
	3.20	5.75	0.70	3.31	0.40	0.70	0.28	0.93	9.2%
	3.60	5.65	0.65	3.80	0.41	0.65	0.26	0.99	9.8%
	4.00	5.65	0.60	3.60	0.40	0.60	0.24	0.86	8.6%
	4.40	5.62	0.60	4.03	0.40	0.60	0.24	0.97	9.6%
	4.80	5.65	0.55	3.29	0.40	0.55	0.22	0.72	7.2%
	5,20	5.55	0.45	2.74	0.41	0.45	0.18	0.49	4.9%
	5.60	5.51	0.40	2.58	0.40	0.40	0.16	0.41	4.1%
	6.00	5.37	0.25	3.48	0.42	0.25	0.10	0.35	3.5%
	6.40	5.72	0.55	3.78	0.53	0.55	0.22	0.83	8.3%
	6.80	5.73	0.55	3.35	0.40	0.55	0.22	0.74	7.3%
	7.20	5.73	0.55	1,88	0.40	0.55	0.22	0.41	4.1%
	7.60	5.63	0.50	2.48	0.41	0.50	0.20	0.50	4.9%
	8.00	5.51	0.50	3.40	0.42	0,50	0.20	0.68	6.8%
	8.40	5.49	0.25	2.07	0.40	0.25	0.10	0.21	2.1%
WL	8.80	5.17	0.00	0.00	0.51	0.20	0.00	0.00	0.0%
GL	10.40	4.50		90.00	0.00		0.00	0.00	0.0%
	13.00	4.35			0.00		0.00	0.00	0.0%
Bottom Stake	16.00	4.21			0.00		0.00	0.00	0.0%
Top Stake	16.00	3.65			0.00		0.00	0.00	0.0%

TOTALS ----

7.55 0.7 3.16 10.04 100.0% (Max.)

Manning's n = Hydraulic Radius= 0.0633 0.418792855 STREAM NAME:

Como Creek Wp #24

XS LOCATION: XS NUMBER:

Up Stream of flum about 50'

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
 LINE	AREA	AREA	ERROR
	2.40	0.40	7.50
4.81	3.16	3,40	7.5%
	3.16	5.22	65.3%
4.83	3.16	5.07	60.4%
4.85	3.16	4.91	55.5%
4.87	3.16	4.76	50.7%
4.89	3.16	4.61	45.9%
4.91	3.16	4.46	41.2%
4.93	3.16	4.31	36.5%
4.95	3.16	4.17	31.8%
4.97	3.16	4.02	27.2%
4.99	3.16	3.88	22.7%
5.01	3.16	3.74	18.3%
5.02	3.16	3.67	16.1%
5.03	3.16	3.60	13.9%
5.04	3.16	3.53	11.8%
5.05	3.16	3.47	9.7%
5.06	3.16	3.40	7.5%
5.07	3.16	3.33	5.4%
5.08	3.16	3.27	3.4%
5.09	3.16	3.20	1.3%
5.10	3.16	3.13	-0.8%
5.11	3.16	3.07	-2.9%
5.13	3.16	2.94	-7.0%
5.15	3.16	2.81	-11.0%
5.17	3.16	2.68	-15.1%
5.19	3.16	2.56	-19.1%
5.21	3.16	2.43	-23.0%
5.23	3.16	2.31	-27.0%
5.25	3.16	2.18	-30.9%
5.27	3.16	2.06	-34.8%
5.29	3.16	1.94	-38.7%
5.31	3.16	1.82	-42.5%

WATERLINE AT ZERO AREA ERROR =

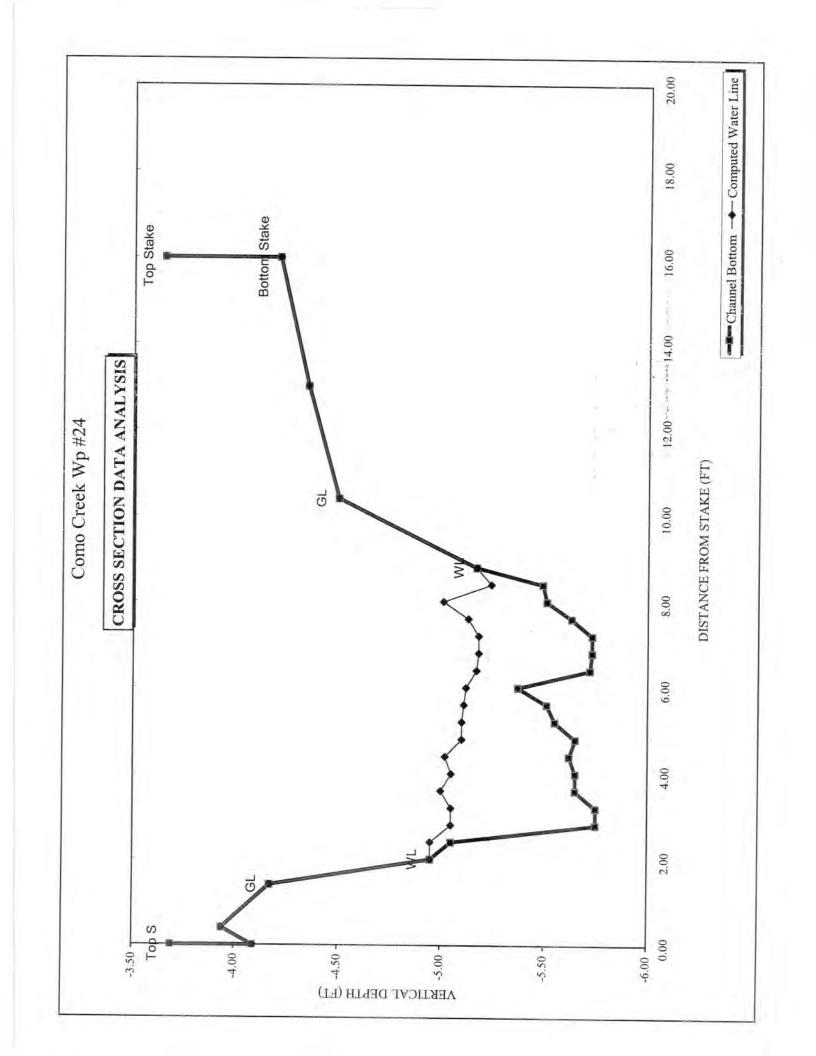
Como Creek Wp #24 Up Stream of flum about 50'

XS NUMBER:

STAGING TABLE

GL = lowest Grassline elevation corrected for sag

WL = Waterline corrected for variations in field measured water surface elevations and sag


(FT)	(FT)	(FT)			/CT\	1011	45.00	FLOW	VELOCITY
4.50			(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
4.50	8.75	0.89	1.25	7.78	9.85	100.0%	0.79	37.75	4.85
4.55	8.60	0.86	1.20	7.38	9.67	98.2%	0.76	34.99	4.74
4.60	8.44	0.82	1.15	6.96					4.62
4.65	8.28	0.79	1.10	6.54					4.49
4.70	8.13	0.75	1.05						4.49
4.75	7.97	0.72	1.00						4.23
4.80	7.81	0.68	0.95						4.23
4.85	7.65	0.65	0.90	4.94					3.95
4.90	7.50	0.61	0.85						3.80
4.95	7.34	0.57	0.80	4.19					3.65
5.00	7.03	0.55	0.75						3.53
5.05	6.71	0.52	0.70	3.49					3.42
5.10	6.55	0.48	0.65	3.16					3.26
5.15	6.40	0.44	0.60						3.08
5.20	6.28	0.40	0.55						2.89
5.25	6.19	0.36	0.50						2.68
5.30	6.10	0.31	0.45						2.46
5.35	6.01	0.27	0.40						2.22
5.40	5.82	0.22	0.35	1.30					1.99
5.45	5.52	7 0.18	0.30	1.02					1.76
5.50	5.12	0.15	0.25	0.75		The second secon			1.52
5.55	4.23	0.12	0.20	0.52				0.70	1.35
5.60	3.76	0.08	0.15	0.32				27 034 -	1.06
5.65	2.60	0.06	0.10						0.83
5.70	1.61	0.03	0.05	0.06	1.66				0.59
5.75	0.42	0.00	0.00			77,75,74			0.14
	4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60 5.65 5.70	4.65 8.28 4.70 8.13 4.75 7.97 4.80 7.81 4.85 7.65 4.90 7.50 4.95 7.34 5.00 7.03 5.05 6.71 5.10 6.55 5.15 6.40 5.20 6.28 5.25 6.19 5.30 6.10 5.35 6.01 5.40 5.82 5.50 5.12 5.55 4.23 5.60 3.76 5.65 2.60 5.70 1.61	4.65 8.28 0.79 4.70 8.13 0.75 4.75 7.97 0.72 4.80 7.81 0.68 4.85 7.65 0.65 4.90 7.50 0.61 4.95 7.34 0.57 5.00 7.03 0.55 5.05 6.71 0.52 5.10 6.55 0.48 5.15 6.40 0.44 5.20 6.28 0.40 5.25 6.19 0.36 5.30 6.10 0.31 5.35 6.01 0.27 5.40 5.82 0.22 5.45 5.52 0.18 5.50 5.12 0.15 5.55 4.23 0.12 5.60 3.76 0.08 5.65 2.60 0.06 5.70 1.61 0.03	4.65 8.28 0.79 1.10 4.70 8.13 0.75 1.05 4.75 7.97 0.72 1.00 4.80 7.81 0.68 0.95 4.85 7.65 0.65 0.90 4.90 7.50 0.61 0.85 4.95 7.34 0.57 0.80 5.00 7.03 0.55 0.75 5.05 6.71 0.52 0.70 5.10 6.55 0.48 0.65 5.15 6.40 0.44 0.60 5.20 6.28 0.40 0.55 5.25 6.19 0.36 0.50 5.30 6.10 0.31 0.45 5.35 6.01 0.27 0.40 5.40 5.82 0.22 0.35 5.45 5.52 0.18 0.30 5.55 4.23 0.12 0.25 5.65 2.60 0.06 0.10 5.70 1.61 0.03 0.05	4.65 8.28 0.79 1.10 6.54 4.70 8.13 0.75 1.05 6.13 4.75 7.97 0.72 1.00 5.72 4.80 7.81 0.68 0.95 5.33 4.85 7.65 0.65 0.90 4.94 4.90 7.50 0.61 0.85 4.57 4.95 7.34 0.57 0.80 4.19 5.00 7.03 0.55 0.75 3.83 5.05 6.71 0.52 0.70 3.49 5.10 6.55 0.48 0.65 3.16 5.15 6.40 0.44 0.60 2.84 5.20 6.28 0.40 0.55 2.52 5.25 6.19 0.36 0.50 2.21 5.30 6.10 0.31 0.45 1.90 5.35 6.01 0.27 0.40 1.60 5.40 5.82 0.22 0.35 1.30 5.45 5.52 0.12 0.25 0.75	4.65 8.28 0.79 1.10 6.54 9.29 4.70 8.13 0.75 1.05 6.13 9.09 4.75 7.97 0.72 1.00 5.72 8.90 4.80 7.81 0.68 0.95 5.33 8.71 4.85 7.65 0.65 0.90 4.94 8.52 4.90 7.50 0.61 0.85 4.57 8.32 4.95 7.34 0.57 0.80 4.19 8.13 5.00 7.03 0.55 0.75 3.83 7.81 5.05 6.71 0.52 0.70 3.49 7.47 5.10 6.55 0.48 0.65 3.16 7.27 5.15 6.40 0.44 0.60 2.84 7.08 5.20 6.28 0.40 0.55 2.52 6.92 5.25 6.19 0.36 0.50 2.21 6.79 5.30 6.10 0.31 0.45 1.90 6.65 5.40 5.82 0.22 0.35	4.60 8.44 0.82 1.15 6.96 9.48 96.2% 4.65 8.28 0.79 1.10 6.54 9.29 94.3% 4.70 8.13 0.75 1.05 6.13 9.09 92.3% 4.75 7.97 0.72 1.00 5.72 8.90 90.4% 4.80 7.81 0.68 0.95 5.33 8.71 88.4% 4.85 7.65 0.65 0.90 4.94 8.52 86.5% 4.90 7.50 0.61 0.85 4.57 8.32 84.5% 4.95 7.34 0.57 0.80 4.19 8.13 82.6% 5.00 7.03 0.55 0.75 3.83 7.81 79.3% 5.05 6.71 0.52 0.70 3.49 7.47 75.9% 5.10 6.55 0.48 0.65 3.16 7.27 73.8% 5.15 6.40 0.44 0.60 2.84 7.08 71.9% 5.25 6.19 0.36 0.50 2.21	4.60 8.44 0.82 1.15 6.96 9.48 96.2% 0.73 4.65 8.28 0.79 1.10 6.54 9.29 94.3% 0.70 4.70 8.13 0.75 1.05 6.13 9.09 92.3% 0.67 4.75 7.97 0.72 1.00 5.72 8.90 90.4% 0.64 4.80 7.81 0.68 0.95 5.33 8.71 88.4% 0.61 4.85 7.65 0.65 0.90 4.94 8.52 86.5% 0.58 4.90 7.50 0.61 0.85 4.57 8.32 84.5% 0.55 4.95 7.34 0.57 0.80 4.19 8.13 82.6% 0.52 5.00 7.03 0.55 0.75 3.83 7.81 79.3% 0.49 5.05 6.71 0.52 0.70 3.49 7.47 75.9% 0.47 5.10 6.55 0.48 0.65 3.16 7.27 73.8% 0.43 5.15 6.40	4.60 8.44 0.82 1.15 6.96 9.48 96.2% 0.73 32.12 4.65 8.28 0.79 1.10 6.54 9.29 94.3% 0.70 29.36 4.70 8.13 0.75 1.05 6.13 9.09 92.3% 0.67 26.73 4.75 7.97 0.72 1.00 5.72 8.90 90.4% 0.64 24.21 4.80 7.81 0.68 0.95 5.33 8.71 88.4% 0.61 21.81 4.85 7.65 0.65 0.90 4.94 8.52 86.5% 0.58 19.53 4.90 7.50 0.61 0.85 4.57 8.32 84.5% 0.55 17.36 4.95 7.34 0.57 0.80 4.19 8.13 82.6% 0.52 15.31 5.00 7.03 0.55 0.75 3.83 7.81 79.3% 0.49 13.55 5.05 6.71 0.52 0.70 3.49 7.47 75.9% 0.47 11.93 5.10 6.55 0.48 0.65 3.16 7.27 73.8% 0.43 10.29 6.15 6.40 0.44 0.60 2.84 7.08 71.9% 0.40 8.74 5.20 6.28 0.40 0.55 2.52 6.92 70.3% 0.36 7.29 5.25 6.19 0.36 0.50 2.21 6.79 68.9% 0.33 5.93 5.30 6.10 0.31 0.45 1.90 6.65 67.5% 0.29 4.68 5.35 6.01 0.27 0.40 1.60 6.51 66.1% 0.25 3.55 5.40 5.82 0.22 0.35 1.30 6.25 63.5% 0.21 2.59 5.45 5.50 5.12 0.15 0.25 0.75 5.32 3.93 39.9% 0.08 0.34 5.65 2.60 0.06 0.10 0.15 0.32 3.93 39.9% 0.08 0.34 5.65 2.60 0.06 0.10 0.15 0.27 1.57 0.06 1.66 16.9% 0.03 0.03

Constant Manning's n

STREAM NAME: XS LOCATION: XS NUMBER: Como Creek Wp #24 Up Stream of flum about 50' 2

SUMMARY SHEET

CALCULATED FLOW (Qc)=	10.04	cfs	RECOMMENDED INS	TREAM FLOW:
	10.29	cfs		
(Qm-Qc)/Qm * 100 =	-2.5	%		
in the same of the			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	5.06	ft	==========	=======
CALCULATED WATERLINE (WLc)=	5.10	ft		
(WLm-WLc)/WLm * 100 =	-0.7	%		A 1
MAX MEASURED DEPTH (Dm)=	0.70	ft		
MAX CALCULATED DEPTH (Dc)=	0.65	ft		_
(Dm-Dc)/Dm * 100	6.6	%		
MEAN VELOCITY=	3.26	ft/sec		
MANNING'S N=	0.063	10.000		
SLOPE=	0.0585	ft/ft		
4 * Qm =	4.0	efe		
2.5 * Qm=	25.1			
	20.1			
RECOMMENDATION BY:		AGENCY		DATE:

	Data Input & Proofing		GL=1 F	EATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	A	Q	Tape to Water
OTDEANAME.	[O. O. I.W. West					Total Da	ta Points = 26				4.5000
STREAM NAME:	Como Creek Wp #24			Top S	0.00	3.69	2100050		0.00	0.00	0.00
XS LOCATION:	Up Stream of flum about 50'				0.00	4.09			0.00	0.00	0.00
XS NUMBER:	2				0.40	3.94			0.00	0.00	0.00
DATE:	6/7/2006		1	GL	1.40	4.17			0.00	0.00	0.00
OBSERVERS:	Uppendahl and Todd			WL	2.00	4.95	0.00	0.00	0.00	0.00	0.00
ALC: AND					2.40	5.05	0.10	0.00	0.04	0.00	4.95
1/4 SEC:					2.80	5.75	0.70	3.39	0.28	0.95	5.05
SECTION:					3.20	5.75	0.70	3.31	0.28	0.93	5.05
	1N				3.60	5.65	0.65	3.80	0.26	0.99	5.00
RANGE:					4.00	5.65	0.60	3.60	0.24	0.86	5.05
PM:	6				4.40	5.62	0.60	4.03	0.24	0.97	5.02
2011171					4.80	5.65	0.55	3.29	0.22	0.72	5.10
	Boulder				5.20	5.55	0.45	2.74	0.18	0.49	5.10
WATERSHED:	Boulder				5.60	5.51	0.40	2.58	0.16	0.41	5.11
DIVISION:	1				6.00	5.37	0.25	3.48	0.10	0.35	5.12
DOW CODE:	1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2				6.40	5.72	0.55	3.78	0.22	0.83	5.17
USGS MAP:	WARD				6.80	5.73	0.55	3.35	0.22	0.74	5.18
USFS MAP:					7.20	5.73	0.55	1.88	0.22	0.41	5.18
man man a sum of	Level and Rod Survey				7.60	5.63	0.50	2.48	0.20	0.50	5.13
TAPE WT:	0.0106	os / ft			8.00	5,51	0.50	3.40	0.20	0.68	5.01
TENSION:	99999	os			8.40	5.49	0.25	2.07	0.10	0.21	5.24
212024				WL	8.80	5.17	0.00	0.00	0.00	0.00	0.00
SLOPE:	0.0585 ft	/ ft	1	GL	10.40	4.50	0.40	0.00	0.00	0.00	0.00
					13.00	4.35			0.00	0.00	0.00
ATTENDED ATT			Botto	m Stake	16.00	4.21			0.00	0.00	0.00
CHECKED BY:	DATE	observe.	T	op Stake	16.00	3.65			0.00	0.00	0.00
ASSIGNED TO	DATE					ering.			0.50	0.00	0.00

Totals 3.16 10.04

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

STREAM NAME:	COMO	C	RE	EX	<					W	P#	2	4			CROS	S-SECTION	ON NO.:
CROSS-SECTION LOCATION:	u/s o	FF	7/4	me		2	5	01										
40 01	48.2	11	05	3	1 .	59		,										
DATE: 6 7/06 OBSE	ERVERS: U.DA	ond.	chl		6	Ti	20	1										
LEGAL ¼ SEC DESCRIPTION	TION: SW	SECTIO	N:	2		OWNS			/ (N	s	RANG	E:	7	3 1	E/W	IPM:	6	2
COUNTY: Boulde	WATERS	· V		11			W	ATER D	IVISION	1	-	1	Ť	_	WATER	CODE	- 4	
USGS:	WAR	1	04	10/10			_			_		1	-					
MAP(S): USFS:	VOIL	1																
				SU	PPLI	EME	NTA	L D	ATA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	(YES) NO	VETER T	YPE:			- M						_						
METER NUMBER:	DATE RA	TED:		-	T		les LPs	_				_			1			
CHANNEL BED MATERIAL SIZE	E RANGE:				CALI	B/SPIN		_	sec	TAPE	WEIGH	Γ:		bs/foot	-	E TEN		lbs
							РНОТ	OGRAF	HS TAK	EN YE	sho		NUMB	ER OF	РНОТО	GRAPI	dS:	3
				CHA	NNA	ELF	ROF	FILE	DAT	A								T
STATION	DISTANCE FROM TAPE	(ft)		ROI	READ	ING (f	t)	T		_	- 2	X	R R	B			T	LEGEND:
Tape @ Stake LB	0.0						1				1	/ (K	V				_
Yape @ Stake RB	0.0			S.	5	1	- 1	S										take 🛞
1) WS @ Tape LB/RB	0.0		4	95	1,5	17		E			_	TAPE	_	->				tation (1)
2 WS Upstream	5.9			4	,7:	7		н				_					P	hoto (1)
3 WS Downstream	5,9			5	,41	6		=						-		-	Dire	ection of FI
SLOPE 0.6	9/11.8 -	0	0,0	58	5							(LB				
/			AC	UAT	IC S	AMI	PLIN	G S	JMM	IARY	,							
STREAM ELECTROFISHED: YE	ES/NO) DISTANC	CE ELEC	-		ft			_	UGHT:	-	-	1	WATE	RCHEN	MISTRY	SAMP	LED: YE	S/NO
	LENGT	H - FREC	UENC	Y DISTR	IBUTIO	ON BY	ONE-IN	ICH SIZ	F GRO	LIPS /1	0.10	20-20	-					5/110
SPECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
																10	7.10	TOTAL
		-																
AQUATIC INSECTS IN STREAM	SECTION BY COMMON	OR SCI	ENTIE	OPPO	DAVASA	F												
		J. 1501	CHILIT	ONDE	H NAM													
		-			-			_		-			-	-			-	
					CO	MM	ENT	S										
FLUME	DEPTH 2	0.6	/			F	ии	e.	ud	IL	2	01				-		

12*61.52 = 534

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	COM	-	Creek			(CROSS-SECTION	N NO.: 2	DATE: 7/00	5 SHEE	T_OF_/
BEGINNING OF M	EASUREMEN'	EDGE OF (0.0 AT ST	WATER LOOKING (AKE)	OOWNSTREAM	(LEFT)RIG	HT Gag	e Reading;	ft	тіме: /3	00	
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape Inst	Water Depth (ft)	Depth of Obser- vation	Revolutio	Time (sec)	Velocit At Point	Mean in Vertical	Area (ft ²)	Discharg (cfs)
TOD 5	0		3,69		(ft)		(360)	Y Out	vertical	4	-
	B		4,09								
	-4		3.94								T
61	1.4		4.17			1					
WC	2.0	.2	4,95	8				8	1		
	2.4	14	5.05	.10				1			
	2.8	1	5,15	.70				3,39			.949
	3.2		5,95	.70				3.31			1927
-	3.6	+	5,65	,65				3,80			1988
	4,4	1	5,65	.60				3.60			.860
t	4.8	-	5.66	.60				4,03	-		.967
	5.2		5,65	.45				3.29			.71
	61		5.51	.40				2.74			. 49
	6,0		537	.25				2,58			.413
	6.4		5.72	.55				3,78			,832
	6.8	1	5.73	,55	-			3,35			.73
	7.7		5.73	,55				1.88			.414
	7.6	- 1/	5,63	,50				2.48			,496
	8.0	V	5.51	.50				3,40			,680
	8.4	, 4	5,49	.25				2.07			,207
WL	8.8	-,2	5.17	20				8			0
66	13.0		4,50								
026			4,35								
100 5	16.0		3,65								
coy)	160		216)					-			-
											/
	1-1									- 3	
TOTALS:	17										10,0
	ment Tim				CALCULATIO				ALCULATIONS CH	- 3	714

STREAM NAME:

Como Creek Wp #24

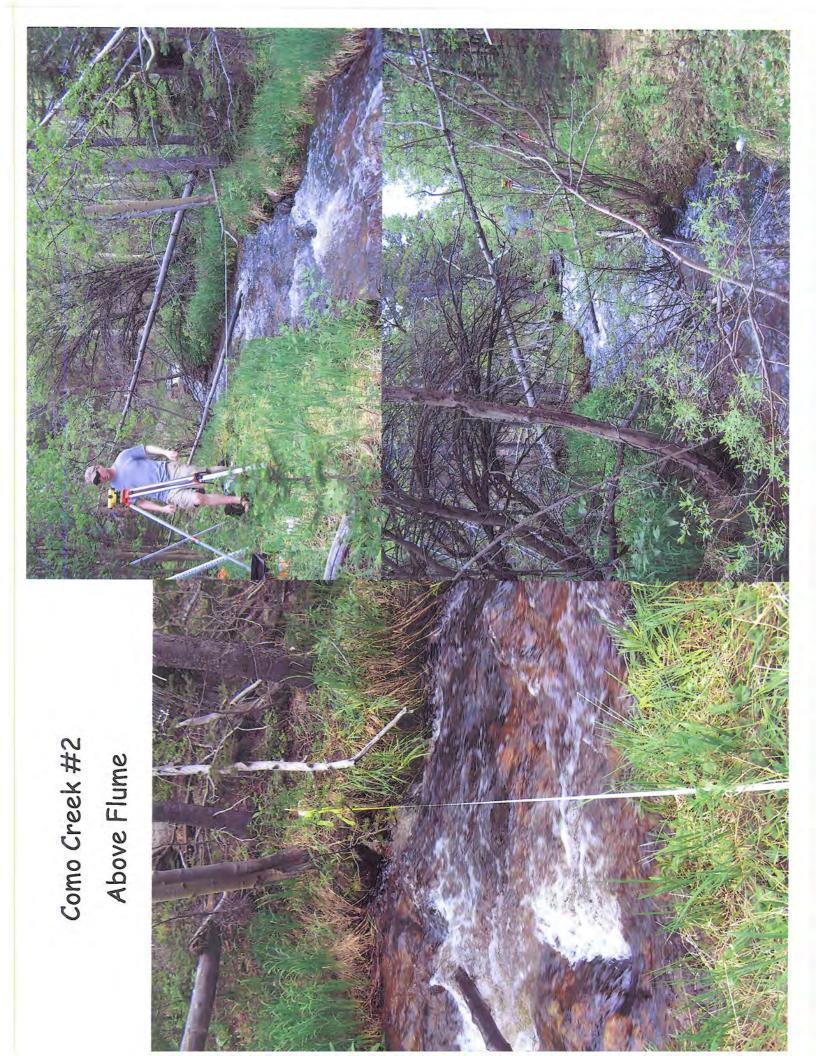
XS LOCATION:

Up Stream of flum about 50'

XS NUMBER:

2

Thorne-Zevenbergen D84 Correction Applied


Estimated D84 =

0.38

GL = lowest Grassline elevation corrected for sag

STAGING TABLE "WL" = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER (FT)	WIDTH (FT)	DEPTH (FT)	DEPTH (FT)	AREA (SQ FT)	PERIM. (FT)	WET PERIM (%)	RADIUS (FT)	FLOW (CFS)	VELOCITY (FT/SEC)
	1 22	(C. 45)	(2)40	l des	242			0.70	10.00	644
GL"	4.50	8.75	0.89	1.25	7.78	9.85	100.0%	0.79	49.07	6.31
	4.55	8.60	0.86	1.20	7.38	9.67	98.2%	0.76	44.95	6.09
	4.60	8.44	0.82	1.15	6.96	9.48	96.2%	0.73	40.68	5.85
	4.65	8.28	0.79	1.10	6.54	9.29	94.3%	0.70	36.64	5.60
	4.70	8.13	0.75	1.05	6.13	9.09	92.3%	0.67	32.80	5.35
	4.75	7.97	0.72	1.00	5.72	8.90	90.4%	0.64	29.18	5.10
	4.80	7.81	0.68	0.95	5.33	8.71	88.4%	0.61	25.78	4.84
	4.85	7.65	0.65	0.90	4.94	8.52	86.5%	0.58	22.58	4.57
	4.90	7.50	0.61	0.85	4.57	8.32	84.5%	0.55	19.59	4.29
	4.95	7.34	0.57	0.80	4.19	8.13	82.6%	0.52	16.81	4.01
	5.00	7.03	0.55	0.75	3.83	7.81	79.3%	0.49	14.49	3.78
	5.05	6.71	0.52	0.70	3.49	7.47	75.9%	0.47	12.40	3.55
VL*	5.10	6.55	0.48	0.65	3.16	7.27	73.8%	0.43	10.29	3.26
	5.15	6.40	0.44	0.60	2.84	7.08	71.9%	0.40	8.35	2.94
	5.20	6.28	0.40	0.55	2.52	6.92	70.3%	0.36	9.86	3.91
	5.25	6.19	0.36	0.50	2.21	6.79	68.9%	0.33	7.00	3.17
	5.30	6.10	0.31	0.45	1.90	6.65	67.5%	0.29	4.78	2.52
	5.35	6.01	0.27	0.40	1.60	6.51	66.1%	0.25	3.11	1.95
	5.40	5.82	0.22	0.35	1.30	6.25	63.5%	0.21	1.96	1.51
	5.45	5.52	0.18	0.30	1.02	5.89	59.8%	0.17	1.18	The second second
	5.50	5.12	0.15	0.25	0.75	5,41	54.9%	0.14	0.65	0.87
	5.55	4.23	0.12	0.20	0.52	4.47	45.4%	0.12	0.35	0.68
	5.60	3.76	0.08	0.15	0.32	3.93	39.9%	0.08	0.15	0.46
	5.65	2.60	0.06	0.10	0.15	2.71	27.5%	0.06	0.04	0.29
	5.70	1.61	0.03	0.05	0.06	1.66	16.9%	0.03	0.01	0.16
	5.75	0.42	0.03	0.00	0.00	0.42	4.3%	0.00	0.00	0.05

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKÉ LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:

Como Creek WP #023

XS LOCATION:

CU Research Station Low site below flume

XS NUMBER:

1

DATE:

7-Jun-06

OBSERVERS:

Uppendahl and Todd

1/4 SEC:

SW

SECTION:

23

TWP: RANGE:

1.N 73 W

PM:

6

COUNTY:

Boulder

WATERSHED:

Boulder Creek

DIVISION:

DOW CODE:

0

USGS MAP:

WARD

USFS MAP:

0

SUPPLEMENTAL DATA

*** NOTE ***

Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod

TAPE WT: TENSION:

0.0106

99999

CHANNEL PROFILE DATA

SLOPE:

INPUT DATA CHECKED BY:	DATE
ASSIGNED TO:	DATE

Como Creek WP #023

XS NUMBER:

CU Research Station Low site below flume

DATA POINTS=

34 VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
VENEZOE	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
Тор	0.00	6.32			0.00		0.00	0.00	0.0%
Bottom	0.00	6.94			0.00		0.00	0.00	0.0%
	0.40	7.00			0.00		0.00	0.00	0.0%
1 G.L.	1.00	7.32			0.00		0.00	0.00	0.0%
	2.00	7.65			0.00		0.00	0.00	0.0%
	3,00	7.71			0.00		0.00	0.00	0.0%
R	4.00	7.60			0.00		0.00	0.00	0.0%
WL.	4.60	8.26	0.00	0.00	0.00		0.00	0.00	0.0%
	5.00	8.52	0.35	0.39	0.48	0.35	0.14	0.05	0.6%
	5.40	8.62	0.50	0.43	0.41	0.50	0.20	0.09	0.9%
	5.80	8.67	0.40	0.79	0.40	0.40	0.16	0.13	1.3%
	6.20	8.72	0.60	3.55	0.40	0.60	0.24	0.85	8.7%
	6.60	8.46	0.45	5.05	0.48	0.45	0.18	0.91	9.3%
	7.00	8.46	0.35	6.79	0.40	0.35	0.14	0.95	9.7%
	7.40	8.50	0.45	5.17	0.40	0.45	0.18	0.93	9.5%
	7.80	8.51	0.50	3.86	0.40	0.50	0.20	0.77	7.9%
	8.20	8.75	0.75	1.80	0.47	0.75	0.30	0.54	5.5%
	8.60	8.88	0.90	4.47	0.42	0.90	0.36	1.61	16.4%
	9.00	8.73	0.70	1.64	0.43	0.70	0.28	0.46	4.7%
	9.40	8.62	0.50	2.24	0.41	0.50	0.20	0.45	4.6%
	9.80	8.60	0.50	3.70	0.40	0.50	0.20	0.74	7.6%
	10.20	8.50	0.50	3.54	0.41	0.50	0.20	0.71	7.2%
	10.60	8.40	0.35	3.50	0.41	0.35	0.14	0.49	5.0%
	11.00	8.32	0.30	0.83	0.41	0.30	0.12	0.10	1.0%
	11.40	8.23	0.20	0.11	0.41	0.20	0.08	0.01	0.1%
	11.80	8.23	0.20	0.00	0.40	0.20	0.08	0.00	0.0%
	12.20	8.19	0.15	0.00	0.40	0.15	0.06	0.00	0.0%
	12.60	8.26	0.25		0.41	0.25	0.10	0.00	0.0%
WL	13.00	8.05	0.00		0.45	0.00	0.00	0.00	0.0%
1 GL	14.00	6.99	10.00		0.00		0.00	0.00	0.0%
	15.00	6.12			0.00		0.00	0.00	0.0%
	16.00	5.79			0.00		0.00	0.00	0.0%
Stake	17.50	5.60			0.00		0.00	0.00	0.0%
Тор	17.50	5.22			0.00		0.00	0.00	0.0%
TO	TALS				8.81	0.9	3.56	9.78	100.0%
					0.01	(Max.)	0.00	3,10	100.076

Manning's n = Hydraulic Radius=

0.0741 0.404232349 STREAM NAME:

Como Creek WP #023

XS LOCATION: XS NUMBER:

CU Research Station Low site below flume

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	0	2 47	
227	3.56	2.84	-20.1%
7.91	3.56	5.00	40.3%
7.93	3.56	4.82	35.3%
7.95	3,56	4.64	30.4%
7.97	3.56	4,47	25.5%
7.99	3.56	4.29	20.6%
8.01	3.56	4.12	15.7%
8.03	3.56	3,95	10.8%
8.05	3.56	3.77	6.0%
8.07	3.56	3.60	1.2%
8.09	3.56	3.43	-3.6%
8.11	3.56	3.26	-8.4%
8.12	3.56	3.18	-10.7%
8.13	3,56	3.09	-13.1%
8.14	3.56	3.01	-15.4%
8.15	3.56	2.93	-17.8%
8.16	3.56	2.84	-20.1%
8.17	3.56	2.76	-22.5%
8.18	3.56	2.68	-24.8%
8.19	3.56	2.60	-27.1%
8.20	3.56	2.51	-29.4%
8.21	3.56	2.43	-31.6%
8.23	3.56	2.28	-36.0%
8.25	3.56	2.14	-40.0%
8.27	3.56	2.00	-43.7%
8.29	3.56	1.87	-47.4%
8.31	3.56	1.74	-51.1%
8.33	3.56	1.62	-54.6%
8.35	3.56	1.49	-58.1%
8.37	3.56	1.37	-61.5%
8.39	3.56	1.25	-64.9%
8.41	3.56	1.13	-68.1%

WATERLINE AT ZERO AREA ERROR =

STREAM NAME:

Como Creek WP #023

XS LOCATION:

CU Research Station Low site below flume

XS NUMBER:

1

Constant Manning's n

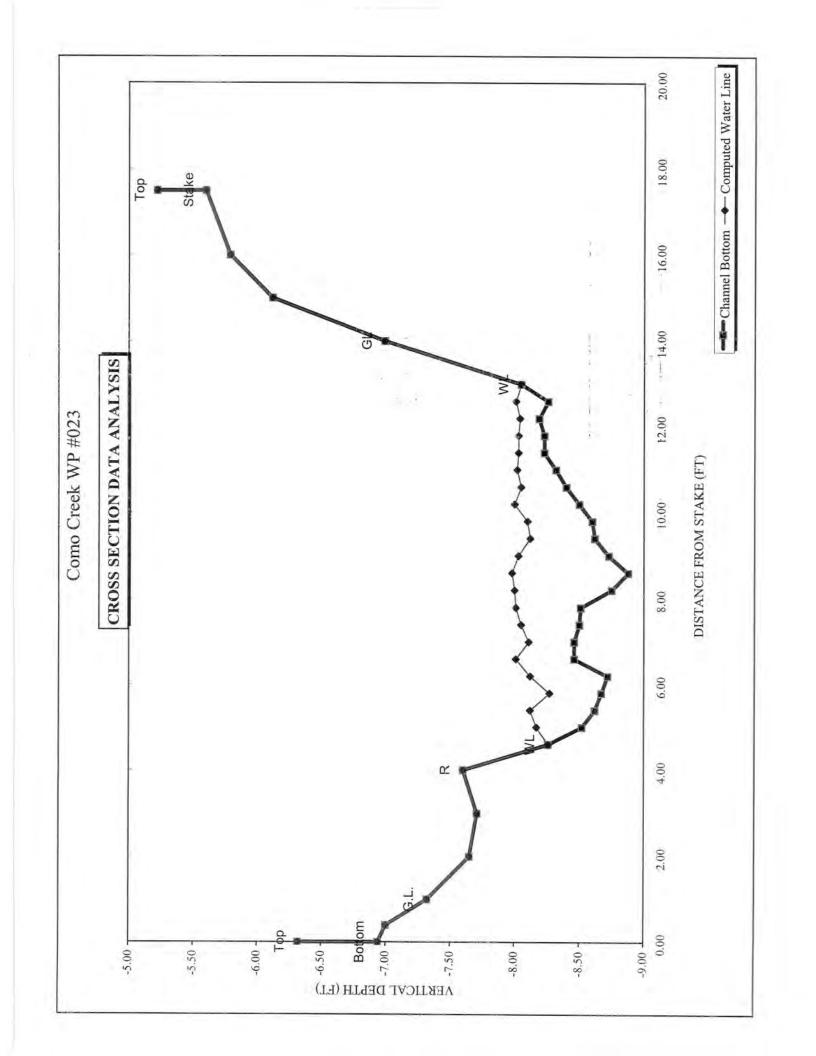
"GL" = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.	4.475.00	WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
	7.32	12.69	0.89	1.56	11,32	13.76	100.0%	0.82	49.95	4.41
	7.37	12.49	0.86	1.51	10.69	13.54	98.3%	0.79	45,93	4.30
	7.42	12.29	0.82	1.46	10.07	13.31	96.7%	0.76	42.05	4.18
	7.47	12.09	0.78	1.41	9.46	13.08	95.0%	0.72	38.34	4.05
	7.52	11.89	0.75	1.36	8.86	12.85	93.4%	0.69	34.78	3.92
	7.57	11.70	0.71	1.31	8.27	12.62	91.7%	0.66	31.38	3.79
	7.62	11.30	0.68	1.26	7.70	12.19	88.5%	0.63	28.47	3.70
	7.67	10.33	0.69	1.21	7.15	11.16	81.1%	0.64	26.71	3.74
	7.72	9.20	0.72	1.16	6.67	9.99	72.6%	0.67	25.59	3.84
	7.77	9.11	0.68	1_11	6.21	9.85	71.6%	0.63	22.94	3.69
	7.82	9.02	0.64	1.06	5.76	9.72	70.6%	0.59	20.41	3.55
	7.87	8.92	0.59	1.01	5.31	9.58	69.6%	0.55	18.00	3.39
	7.92	8,83	0.55	0.96	4.86	9.45	68.6%	0.51	15.71	3.23
	7.97	8.74	0.51	0.91	4.42	9.31	67.6%	0.48	13.55	3.06
	8.02	8.65	0.46	0.86	3.99	9.17	66.6%	0.43	11.51	2.89
*	8.07	8.53	0.42	0.81	3.56	9.02	65.5%	0.39	9.63	2.70
	8.12	8.39	0.37	0.76	3.14	8.85	64.3%	0.35	7.90	2.52
	8.17	8.25	0.33	0.71	2.72	8.67	63.0%	0.31	6.31	2.32
	8.22	7.64	0.30	0.66	2.32	8.02	58.3%	0.29	5.09	2.20
	8.27	6.61	0.30	0.61	1.97	6.95	50.5%	0.28	4.28	4 77 2.17
	8.32	6.31	0.26	0.56	1.65	6.63	5070 (48.2%)	0.25	3.27	1,99
	8.37	5.98	0.22	0 0.51	1.34	6.28	45.6%	0.21	2.41	1.80
	8.42	5.67	0.18	0.46	1.05	5.95	43.3%	0.18	1.66	1.58
	8.47	4.88	0.16	0.41	0.78	5.14	37,3%	0.15	1.11	1.43
	8.52	3.81	0.15	0.36	0.56	4.03	29.3%	0.14	0.75	1.35
	8.57	3.25	0.12	0.31	0.38	3.43	24.9%	0.11	0.44	1.16
	8.62	2.37	0.10	0.26	0.24	2.51	18.2%	0.09	0.25	1.04
	8.67	1.63	0.08	0.21	0.14	1.73	12.5%	0.08	0.13	0.92
	8.72	0.89	0.08	0.16	0.07	0.94	6.9%	0.08	0.07	0.91
	8.77	0.63	0.06	0.11	0.03	0.67	4.9%	0.05	0.02	0.70
	8.82	0.35	0.03	0.06	0.01	0.37	2.7%	0.03	0.00	0.47
	8.87	0.06	0.01	0.01	0.00	0.06	0.4%	0.00	0.00	0.14

(ivg depth)
$$.22 - .82 : .04 : .22 - .20 = .02$$
 $2.41 - 1.1.1... = .75 : ES$
 $.75 / .09 = 18.75 \times .02 = 0.375$
 $2.41 - 0.375 = 2.04$
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00
 1.00


2009-yelocity: 104-112=.12 104-10= D1 125-113=12 = F5 -12/12=1 = O1 - O4 (L5-14 +21) STREAM NAME: XS LOCATION: XS NUMBER:

Como Creek WP #023

CU Research Station Low site below flume

SUMMARY SHEET

THE PROPERTY OF STREET				
MEASURED FLOW (Qm)=	9.78		RECOMMENDED INS	STREAM FLOW:
CALCULATED FLOW (Qc)=	9.63	cfs	==============	
(Qm-Qc)/Qm * 100 =	1.6	%		
MEACURED WATER INF (M)			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	8.16			
CALCULATED WATERLINE (WLc)=	8.07			
(WLm-WLc)/WLm * 100 =	1.0	%	·	
MAX MEASURED DEPTH (Dm)=	0.90	6		
MAX CALCULATED DEPTH (Dc)=	0.81			
(Dm-Dc)/Dm * 100				
(DIII-DC)/DIII 100	10.0	%	-	_
MEAN VELOCITY=	2.70	ft/sec		0
MANNING'S N=	0.074			
SLOPE=	0.0629	ft/fr		
	0.0020	14.16		
.4 * Qm =	3.9	cfs		
2.5 * Qm=	24.5	cfs		
	-			
RECOMMENDATION BY:		AGENCY		DATE-
CWCB REVIEW BY:	and the second s		A SATURATION OF THE PROPERTY O	DATE:

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

								7 4 1 1									
STREAM NAME:	(re	ek					NP	4	2	02	13				CROSS	SECTIO	ON NO.:
CROSS-SECTION LOCATION:	legent	ch	- 5	4	102					Lo		Side		10-	1	DI	V-lore (na
40° 01 47 7	2" 10	5	21	12	56	6	"			10	W	-111		Be	lou	F	hur.
DATE: 67 06 OBSERVERS:	Lopenda	1	-	4	10	7	11	-									
LEGAL ¼ SECTION:	SECTION		72	Z TO	OWNSH	IP:	1	N	s	RANG	É:	7:	2 1	E/W	PM:	1	
COUNTY:	WATERSHED:		0	1		W	ATER D	VISION		A		1		WATER	CODE:	0	
Boulder 1	Boulde	,								1							
MAP(S): USFS:	ARK																
		_	400			Do I s								_			-
			SUF	PPLE	EMEI	NTA	L DA	ATA									
SAG TAPE SECTION SAME AS VES NO	METER T	YPE:		FI	0	-1	M	4T	6								
METER NUMBER:	DATE RATED:			CALIF	B/SPIN:				TARE	VEIGHT			t = Want	TAD	- +=NC		-11
CHANNEL BED MATERIAL SIZE RANGE:	1			UNLIL		PHOT		sec HS TAK		VEIGHT	1	100	ER OF	PHOTO	E TENS GRAPH		lbs
		-				FHOI	JURAL	HO IAN	ENTIE	S/NO	D			_		_	
	y.		CHA	INNI	EL P	ROF	ILE	DAT	Α								
STATION DIS	STANCE DM TAPE (ft)		ROD READING (ft)			1	RB Ø €							LEGEND:			
0	0.0						CB 0 8							•			
Tape @ Stake RB	0.0						S K										take 🕱
1) WS @ Tape LB/RB	0.0	X	8.26 8.QS				K E T C		_	TARE						Station (1)	
2 WS Upstream 6	6	7.53				Н						Photo (1)					
WS Downstream 6.	61		8.36			-								- Dire	rection of Flo		
SLOPE 0,83/	13.2 =	00009						LB - 🕸						-			
/	1			2				37.1							-		17.
		AG	TAU	IC S	AMP	LIN	G S	JMM	ARY								
STREAM ELECTROFISHED: YES/NO	DISTANCE ELEC	TROFIS	HED;_	ft		F	ISH CA	UGHT:	YES/NO)		WATE	RCHE	MISTRY	SAMPL	ED: YE	S/NO
	LENGTH - FREC	UENC	Y DISTR	IBUTIC	N BY C	NE-IN	CH SIZ	E GRO	UPS (1.	0-1.9,	2.0-2.9	, ETC.)					
SPECIES (FILL IN)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
AQUATIC INSECTS IN STREAM SECTION BY	COMMON OR SCI	ENTIFIC	ORDE	RNAM	E:												
				00		- 117	-0										
				CU	MM	ENI	5										

DISCHARGE/CROSS SECTION NOTES

00	IECKED BA:	CULATIONS CH	CAL	BA:	ONS PERFORMED	CALCULATI	# :1	Gage Reading	50, 71 :ar	niT Iname	End of Measure
36	Q.										:SJATOT
100								25.4			390
100	11										13.3
											- 0-
								J		_	
								22,2		St	001,
								09'9		sitt	3446
								PF.8		5 tl	- v
								219		0.21	
								56:0		0.41	79
							0	50.8	2'	0,51	700
0		- 077	0				921	92.8	h.	9.5	
0			0			106	91°	6118	Λ.	2.51	
800.			02.0	-			020	8.23	-	8/1	-
1000.		100	1100				02	8,23		hill	11
700,		£9,	58.0				08.	2813		0.11	
uph.		12,2	958				25.	ah'3	-	0,01	- 10
80t'		59%	198				09*	05.8		2.01	
Oht '		557	04'E		-		05'	09.7		8.9	
8hh *		53.	42.5				os"				-
654°		16'					Ot .	79'8 EE'8		h'5	
6091		90%	691						1	06	- 41
1 42.0		4012	16'h				09,	388 St'S		911	- VI 6
							St°			2.8	
18P.		2.74	988				OS'	19'8		8't	
159.		34.8	£1'5					95'S		h'E	etir
		50'5					58'			0.5	
909.	1 - 1 6	80'5	50'5				Sh"	24.8		3.9	
528.	PEF.	80,€	3,5,5				09.	SF,7		7.3	
251,		0	PT.0				94'	£9'8	V	8'9	
980"	980,	85.	54.0				09	69.3	12'	4.5	
550"	0	0	PE.0				25.	553	h'	0.8	17 - 111
	-8	0	0				0	22.8	S,	9%	M
								09'+		0.4	100
	NT	NT	maj					141		0.2	CAI
	17.2	11-	1,00					59.F		0.2	
							, ,	ZE.4		07	18
								00'E		10	2 5
- 100								48.0		0	mother!
								75'9		0	da
		(mmix : m c	distant.	(000)		(11)		(0)		(11)	301
(cfs)	And (SH)	Mean in Vertical	1A trioq	Time (sec)		Obser- vation	(11)	mort nigeu Iznl\eqsT		Initial Point	Waterline (W)
Discharge	6914	Velocity (ft/sec)			Revolutions	Depth Of Obser-	Water Depth (ft)	Total Vertical Month From	(ff)	Distance	Stake (S) Grassline (G) Waterline (W) Rock (R)
	0		AIT #	Super			7.711				
	1	h // :3v		Daibe	11	LEFT / RIGI	OWNSTREAM:	ATER LOOKING D	W TO BDGE OF W	EASUREMENT	GINNING OF M

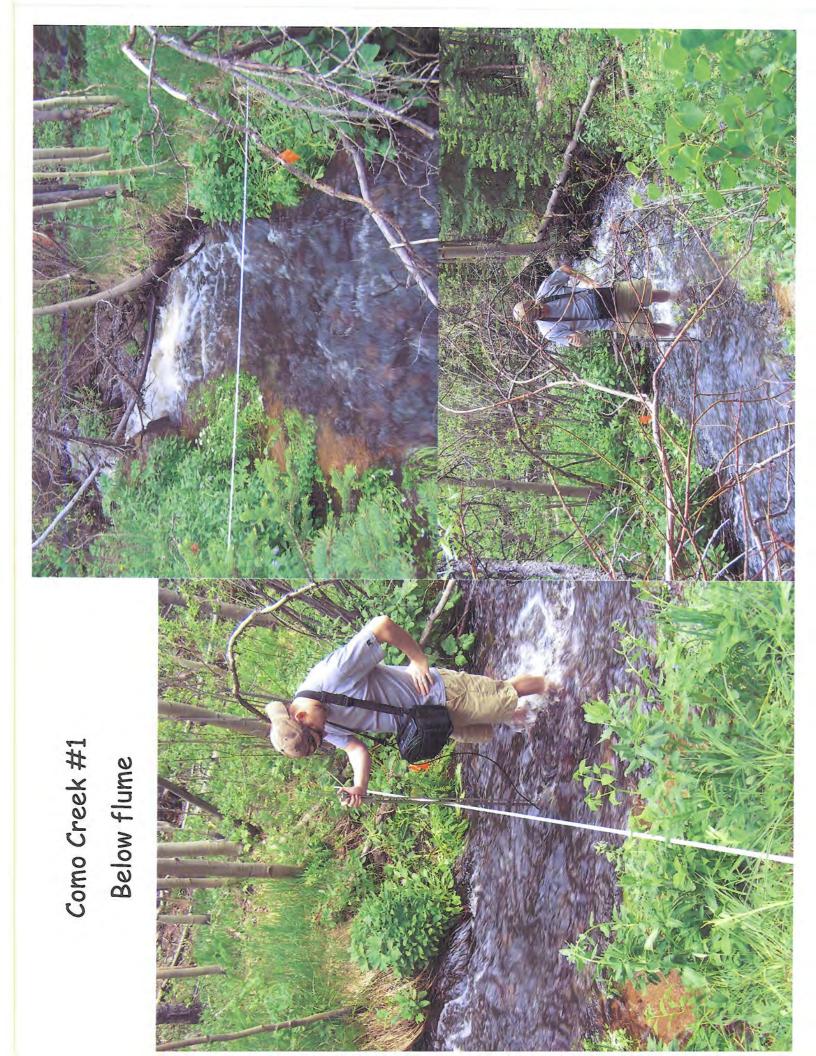
Como Creek WP #023

CU Research Station Low site below flume

XS NUMBER:

Thorne-Zevenbergen D84 Correction Applied

Estimated D84 =


0.57

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
_	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL*	7.32	12.69	0.89	1.56	11.32	13.76	100.0%	0.82	62.02	5.48
	7.37	12.49	0.86	1.51	10.69	13.54	98.3%	0.79	56.14	5,25
	7.42	12.29	0.82	1.46	10.07	13.31	96.7%	0.76	50.54	5.02
	7.47	12.09	0.78	1,41	9.46	13.08	95.0%	0.72	45.23	4.78
	7.52	11.89	0.75	1.36	8.86	12.85	93.4%	0.69	40.22	4.54
	7.57	11.70	0.71	1,31	8.27	12.62	91.7%	0.66	35.49	4.29
	7.62	11.30	0.68	1.26	7.70	12.19	88.5%	0.63	31.59	4.11
	7.67	10.33	0.69	1.21	7.15	11.16	81.1%	0.64	29.50	4.13
	7.72	9.20	0.72	1.16	6.67	9.99	72.6%	0.67	28.37	4.25
	7.77	9.11	0.68	1.11	6.21	9.85	71.6%	0.63	24.75	3.99
	7.82	9.02	0.64	1.06	5.76	9.72	70.6%	0.59	21.35	3.71
	7.87	8.92	0.59	1.01	5.31	9.58	69.6%	0.55	26.55	5.00
	7.92	8.83	0.55	0.96	4.86	9.45	68.6%	0.51	21.15	4.35
	7.97	8.74	0.51	0.91	4.42	9.31	67.6%	0.48	16.58	3.75
	8.02	8.65	0.46	0,86	3.99	9.17	66.6%	0.43	12.76	3.20
WL-	8.07	8.53	0.42	0.81	3.56	9.02	65.5%	0.39	9.63	2.70
	8.12	8.39	0.37	0.76	3.14	8.85	64.3%	0.35	7.12	2.27
	8.17	8.25	0.33	0.71	2.72	8.67	63.0%	0.31	5.11	1.88
	8.22	7.64	0.30	0.66	2.32	8.02	58.3%	0.29	3.85	1.66
	8.27	6.61	0.30	0.61	1.97	6.95	50.5%	0.28	3.18	1.62
	8.32	6.31	0.26	0.56	1.65	6.63	48.2%	0.25	2.19	1.33
	8.37	5.98	0.22	0.51	1.34	6.28	45.6%	0.21	1.43	(1.07
	8.42	5.67	0.18	0.46	1.05	5.95	43.3%	0.18	0.88	0.84
	8.47	4.88	0.16	0.41	0.78	5.14	37.3%	0.15	0.52	0.67
	8.52	3.81	0.15	0.36	0.56	4.03	29.3%	0.14	0.32	0.57
	8.57	3.25	0.12	0.31	0.38	3.43	24.9%	0.11	0.16	0.42
	8.62	2.37	0.10	0.26	0.24	2.51	18.2%	0.09	0.07	0.31
	u.67	1.63	0.08	0.21	0.14	1.73	12.5%	0.08	0.03	0.21
	8.72	0.89	0.08	0.16	0.07	0.94	6.9%	0.08	0.01	0.15
	8.77	0.63	0.06	0.11	0.03	0.67	4.9%	0.05	0.00	0.07
	8.82	0.35	0.03	0.06	0.01	0.37	2.7%	0.03	0.00	0.02
	8.87	0.06	0.01	0.01	0.00	0.06	0.4%	0.00	0.00	0.00

Q= 135 cPs 3/3= 3.0 2/3= 20

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

Como Creek WP #023
CU Research Station Low site below flume
1
5-Jul-06
Todd
SW
23
1 N
73 W
6
Boulder
Boulder Creek
1
0
0
WARD
0
*** NOTE ***
Leave TAPE WT and TENSIC at defaults for data collected
0.0106 with a survey level and rod
99999
DATA

STREAM NAME:

Como Creek WP #023

XS LOCATION: XS NUMBER: CU Research Station Low site below flume

1

DATA POINTS=

38

VALUES COMPUTED FROM RAW FIELD DATA

	#	DATA POINTS) =	38	VALUES COMPUTED FROM RAW FIELD DATA							
FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	WETTED PERIM.	WATER DEPTH	AREA (Am)	Q (Qm)	% Q CELL			
400		2.00			W/WW							
Тор	0.00	6.32			0.00		0.00	0.00	0.0%			
Bottom	0.00	6.94			0.00		0.00	0.00	0.0%			
120	0.40	7.00			0.00		0.00	0.00	0.0%			
G.L.	1.00	7.32			0.00		0.00	0.00	0.0%			
	2.00	7.65			0.00		0.00	0.00	0.0%			
	3.00	7.71			0.00		0.00	0.00	0.0%			
R	4.00	7.60			0.00		0.00	0.00	0.0%			
	4.60	8.26			0.00		0.00	0.00	0.0%			
W	5.00	8.49	0.00	0.00	0.00		0.00	0.00	0.0%			
	5.30	8.69	0.20	0.00	0.36	0.20	0.06	0.00	0.0%			
	5.60	8.79	0.30	0.18	0.32	0.30	0.09	0.02	1.2%			
	5.90	8.79	0.30	0.02	0.30	0.30	0.09	0.00	0.1%			
	6.20	8.79	0.30	1.56	0.30	0.30	0.09	0.14	10.4%			
	6.50	8.89	0.40	0.90	0.32	0.40	0.12	0.11	8.0%			
	6.80	8.69	0.20	2.41	0.36	0.20	0.06	0.14	10.7%			
	7.10	8.64	0.15	2.26	0.30	0.15	0.05	0.10	7.6%			
	7.40	8.74	0.25	1.05	0.32	0.25	0.08	0.08	5.8%			
	7.70	8.69	0.20	0.99	0.30	0.20	0.06	0.06	4.4%			
	8.00	8.74	0.25	0.95	0.30	0.25	0.08	0.07	5.3%			
	8.30	8.99	0.50	0.38	0.39	0.50	0.15	0.06	4.2%			
	8.60	8.89	0.40	1.40	0.32	0.40	0.12	0.17	12.5%			
	8.90	9.04	0.55	2.10	0.34	0.55	0.17	0.35	25.7%			
	9.20	8.89	0.40	0.01	0.34	0.40	0.12	0.00	0.1%			
	9.50	8.79	0.30	0.20	0.32	0.30	0.09	0.02	1.3%			
	9.80	8.74	0.25	0.35	0.30	0.25	0.08	0.03	1.9%			
	10.10	8.69	0.20	0.11	0.30	0.20	0.07	0.01	0.6%			
wi	10.50	8.40	0.00	0.00	0.49		0.00	0.00	0.0%			
	11.00	8.32	0.50		0.00		0.00	0.00	0.0%			
	11.40	8.23			0.00		0.00	0.00	0.0%			
	11.80	8.23			0.00		0.00	0.00	0.0%			
	12.20	8.19			0.00		0.00	0.00	0.0%			
	12.60	8.26			0.00		0.00	0.00	0.0%			
	13.00	8.05			0.00		0.00	0.00	0.0%			
I GL	14.00	6.99			0.00		0.00	0.00	0.0%			
	15.00	6.12			0.00		0.00	0.00	0.0%			
	16.00	5.79			0.00		0.00	0.00	0.0%			
Stake	17.50	5.60			0.00		0.00	0.00	0.0%			
Тор	17.50	5.22			0.00		0.00	0.00	0.0%			
and the second	TAL C				F 66	n ne	4.50	4 pr	400.001			
10	TALS				5.98	0.55 (Max.)	1.56	1.35	100.0%			

Manning's n = Hydraulic Radius= 0.1753 0.260105763 STREAM NAME:

Como Creek WP #023

XS LOCATION:

CU Research Station Low site below flume

XS NUMBER:

WATER LINE COMPARISON TABLE

AREA	COMP	MEAS	WATER
ERROF	AREA	AREA	LINE
40.00	4.70	4.50	
15.0%	1.79	1.56	0.00
117.6%	3.38	1.56	8.20
107.4%	3.23	1.56	8.22
97.9%	3.08	1.56	8.24
89.0%	2.94	1.56	8.26
80.5%	2.81	1.56	8.28
72.1%	2.68	1.56	8.30
63.9%	2.55	1.56	8.32
55.9%	2.42	1.56	8.34
48.0%	2.30	1.56	8.36
40.4%	2.18	1.56	8.38
33.0%	2.07	1.56	8.40
29.3%	2.01	1.56	8.41
25.7%	1.95	1.56	8.42
22.1%	1.90	1.56	8.43
18.5%	1.84	1.56	8.44
15.0%	1.79	1.56	8.45
11.4%	1.73	1.56	8.46
7.9%	1.68	1.56	8.47
4.4%	1.62	1.56	8.48
0.9%	1.57	1.56	8.49
-2.5%	1.52	1.56	8.50
-9.4%	1.41	1.56	8.52
-16.2%	1.30	1.56	8.54
-22.9%	1.20	1.56	8.56
-29.5%	1.10	1.56	8.58
-36.1%	0.99	1.56	8.60
-42.6%	0.89	1.56	8.62
-49.0%	0.79	1.56	8.64
-55.3%	0.70	1.56	8.66
-61.2%	0.60	1.56	8.68
-66.9%	0.51	1.56	8.70

WATERLINE AT ZERO AREA ERROR =

8.488

STREAM NAME:

Como Creek WP #023

XS LOCATION:

CU Research Station Low site below flume

XS NUMBER:

4

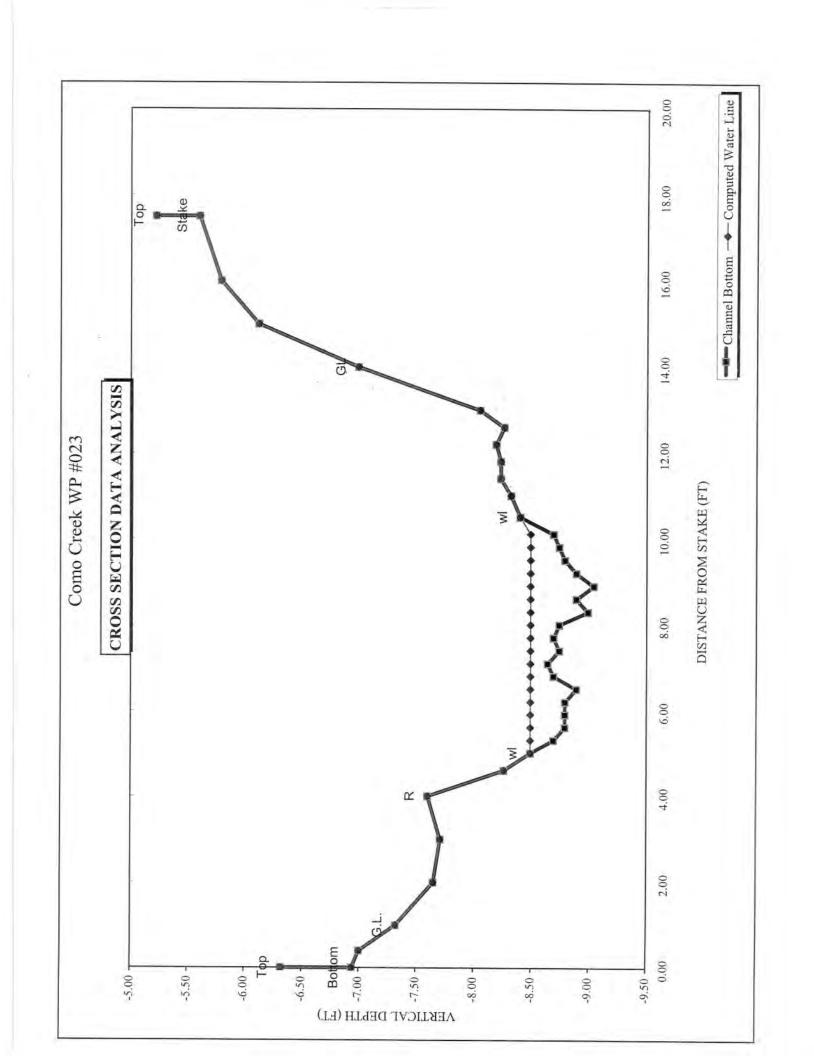
GL = lowest Grassline elevation corrected for sag

STAGING TABLE *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO WATER	TOP	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG VELOCITY
15	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC
GL*	7.32	12.69	0.96	1.72	12,19	13.97	100.0%	0.87	23.66	1.94
	7.49	12.02	0.84	1.55	10.12	13.21	94.5%	0.77	18.00	1.78
	7.54	11.82	0.81	1.50	9.52	12.98	92.9%	0.73	16.46	1.73
	7.59	11.62	0.77	1.45	8.94	12.75	91.3%	0.70	14.98	1.68
	7.64	11.05	0.76	1.40	8 37	12.13	86.8%	0.69	13.88	1.66
	7.69	9.84	0.80	1.35	7.84	10.86	77.8%	0.72	13.41	1.71
	7.74	9.17	0.80	1.30	7.37	10.15	72.7%	0.73	12.66	1.72
	7.79	9.08	0.76	1.25	6.92	10.01	71.7%	0.69	11.49	1.66
	7.84	8.98	0.72	1.20	6.47	9.88	70.7%	0.65	10.36	1.60
	7.89	8.89	0.68	1.15	6.02	9.74	69.7%	0.62	9.28	1.54
	7.94	8.80	0.63	1.10	5.58	9.61	68.7%	0.58	8.25	1.48
	7.99	8.71	0.59	1.05	5.14	9.47	67.8%	0.54	7.27	1.41
	8.04	8.61	0.55	1.00	4.71	9.33	66.8%	0.50	6.34	1,35
	8.09	8.48	0.50	0.95	4.28	9.17	65.6%	0.47	5.47	1.28
	8.14	8.34	0.46	0.90	3.86	8.99	64.4%	0.43	4.66	1.21
	8.19	8.20	0.42	0.85	3.44	8.82	63.1%	0.39	3.91	1.14
	8.24	6.96	0.44	0.80	3.06	7.53	53.9%	0.41	3.56	1.17
	8.29	6.50	0.42	0.75	2.72	7.04	50.4%	0.39	3.07	1.13
	8.34	6.15	0.39	0.70	2.41	6.68	47.8%	0.36	2,59	1,08
	8.39	5.75	0.37	0.65	2.11	6.26	44.8%	0.34	2.17	1.03
	8.44	5.54	0.33	0.60	1.83	6.02	43.1%	0.30	1.76	0.96
NL.	8.49	5.38	0.29	0.55	1.55	5.83	41.8%	0.27	1.37	0.88
	8.54	5.24	0.25	0.50	1.29	5.66	40.5%	0.23	1.02	0.79
	8.59	5.09	0.20	0.45	1.03	5.48	39.2%	0.19	0.72	0.70
	8.64	4.95	0.16	0.40	0.78	5.31	38.0%	0.15	0,46	0.59
	8.69	4.38	0.12	0:35	0.55	4.69	33.6%	0.12	0.28	0.51
	8.74	3.13	0.11	0.30	0.36	3.40	24.4%	0.11	0.17	0.47
	8.79	2.52	0.09	0.25	0.22	2.74	19.6%	0.08	0.09	0.39
	8.84	1.48	0.09	0.20	0.13	1.65	11.8%	0.08	0.05	0,39
	8.89	1.04	0.07	0.15	0.07	1.17	8.3%	0.06	0.02	0.32
	8.94	0.63	0.04	0.10	0.03	0.70	5.0%	0.04	0.01	0.24
	8.99	0.22	0.03	0.05	0.01	0.24	1.8%	0.02	0,00	0.17
	9.04	0.01	0.00	0.00	0.00	0.01	0.1%	0.00	0.00	0.02

3/3 = 3.0 2/3 = 2.0

Constant Manning's n


STREAM NAME: XS LOCATION; XS NUMBER: Como Creek WP #023

CU Research Station Low site below fiume

4

SUMMARY SHEET

MEASURED FLOW (Qm)=	1.35	cfs	RECOMMENDED INS	TREAM ELOW:
CALCULATED FLOW (Qc)=	1.37		======================================	
(Qm-Qc)/Qm * 100 =	-1.6			
(4.11 40) 4.11	-1.0	70	FLOW (CFS)	PEDIOD
MEASURED WATERLINE (WLm)=	8.45	64	FLOW (CFS)	PERIOD
CALCULATED WATERLINE (WLc)=	8.49	1,5		
(WLm-WLc)/WLm * 100 =	-0.5			
(WEIII-WEG)/WEIII 100 =	-0.5	70		_
MAX MEASURED DEPTH (Dm)=	0.55	E.		
	0.55		-	
MAX CALCULATED DEPTH (Dc)=	0.55			
(Dm-Dc)/Dm * 100	-0.4	%		-
MEAN VELOCITY=	0.00	ft/sec		
MANNING'S N=		IVSec	-	_
COLD COLD TO THE TOTAL COLD COLD COLD COLD COLD COLD COLD COL	0.175	0.00		
SLOPE=	0.0629	tt/tt		
.4 * Qm =	0.5	ofe		
2.5 * Qm=	3.4			
	3.4	CIS		
RECOMMENDATION BY:		AGENCY	***************************************	DATE:
CWCB REVIEW BY:	***************************************		3894993444444444444	DATE:

	Data Input & Proofing	GI =1	FEATURE	DIST	VERT	WATER	VEL	À	0	Tape to
	Data input a 1 100mig	OL-1	LATURE	DIST			VEL	Α	Q	Water
STREAM NAME:	Como Creek WP #023		Top	0	6.32	ita Points = 38		0.00	0.00	0.00
XS LOCATION:	CU Research Station Low site below flume		Bottom	0	6.94			0.00	0.00	0.00
XS NUMBER:	1		Dottom	0.4	7.00			0.00	0.00	0.00
DATE:	7/5/2006	1	G.L.	1	7.32				0.00	0.00
OBSERVERS:			O.L.	2	7.65			0.00	0.00	0.00
ODOLIVEINO.	Toda			3				0.00	0.00	0.00
1/4 SEC:	SW		D		7.71			0.00	0.00	0.00
			R	4	7.60			0.00	0.00	0.00
				4.6	8.26	2.24		0.00	0.00	0.00
TWP:			w	5	8.49	0.00	0.00	0.00	0.00	0.00
RANGE:	73 W			5.3	8.69	0.20	0.00	0.06	0.00	8.49
PM:	6			5.6	8.79	0.30	0.18	0.09	0.02	8.49
0.00000000				5.9	8.79	0.30	0.02	0.09	0.00	8.49
				6.2	8.79	0.30	1.56	0.09	0.14	8.49
WATERSHED:	Boulder Creek			6.5	8.89	0.40	0.90	0.12	0.11	8.49
DIVISION:	1			6.8	8.69	0.20	2.41	0.06	0.14	8.49
DOW CODE:				7.1	8.64	0.15	2.26	0.05	0.10	8.49
	WARD			7.4	8.74	0.25	1.05	0.08	0.08	8.49
USFS MAP:				7.7	8.69	0.20	0.99	0.06	0.06	8.49
	Level and Rod Survey			8	8.74	0.25	0.95	0.08	0.07	8.49
TAPE WT:	0.0106 lbs / fi	t		8.3	8.99	0.50	0.38	0.15	0.06	8.49
TENSION:	99999 lbs			8.6	8.89	0.40	1.40	0.12	0.17	8.49
				8.9	9.04	0.55	2.10	0.17	0.35	8.49
SLOPE:	0.0629 ft / ft			9.20	8.89	0.40	0.01	0.12	0.00	8.49
0.037 (2)	111932			9.50	8.79	0.30	0.20	0.09	0.02	8.49
				9.80	8.74	0.25	0.35	0.08	0.02	8.49
CHECKED BY	DATE,			10.10	8.69	0.20	0.11	0.07	0.03	
OTTE OTTE DE			wl	10.50	8.40	0.00	0.00			8.49
ASSIGNED TO	D:DATE		VVI	11	8.32	0.00	0.00	0.00	0.00	0.00
ASSIGNED TO	A manufacture of the second A I Economics							0.00	0.00	0.00
				11.4	8.23			0.00	0.00	0.00
				11.8	8.23			0.00	0.00	0.00
				12.2	8.19			0.00	0.00	0.00
				12.6	8.26			0.00	0.00	0.00
		101		13	8.05			0.00	0.00	0.00
		1	GL	14	6.99			0.00	0.00	0.00
				15	6.12			0.00	0.00	0.00
				16	5.79			0.00	0.00	0.00
			Stake	17.5	5.60			0.00	0.00	0.00
			Тор	17.5	5.22			0.00	0.00	0.00
						-	Tabelet	4 501	1.05	
							Totals	1.56	1.35	

1.34603

Distance from top of north pin to water's	edge:	5	
Elevation change from N pin to water:		2.17	
Distance from top of south pin to water's	s edge:	7.05	
Elevation change from S pin to water:		3.18	
Flow			
6			
6.3	0.2	0	0
6.6	0.3	0.18	0.0162
6.9	0.3	0.02	0.0018
7.2	0.3	1.56	0.1404
7.5	0.4	0.9	0.108
7.8	0.2	2.41	0.1446
8.1	0.15	2.26	0.1017
8.4	0.25	1.05	0.07875
8.7	0.2	0.99	0.0594
9	0.25	0.95	0.07125
9.3	0.5	0.38	0.057
9.6	0.4	1.4	0.168
9,9	0.55	2.1	0.3465
10.2	0.4	0.004	0.00048
10.5	0.3	0.2	0.018
10.8	0.25	0.35	0.02625
11.1	0.2	0.11	0.0077
11.5			
			10 TH 17 TH 18 TH

The \$37.

199

mark 704d

STREAM NAME:

Como Creek WP #023

XS LOCATION:

CU Research Station Low site below flume

XS NUMBER:

1

Thome-Zevenbergen D84 Correction Applied

Estimated D84 =

0.90

"GL" = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.	1,000	WETTED	PERCENT	HYDR		test of R/D84> AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
_	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	7.32	12.69	0.96	1.72	12.19	13.97	100.0%	0.87	79.02	0.40
	7.49	12.02	0.84	1.55	10.12	13.21	94.5%			6.48
	7.54	11.82	0.81	1.50	9.52	12.98	92.9%	0.77	51.36	5.08
	7.59	11.62	0.77	1.45	8.94	12,75	91,3%	0.73	44.62	4.69
	7.64	11.05	0.76	1.40	8.37	12.13	86.8%	0.69	38.52	4.31
	7.69	9.84	0.80	1.35	7.84	10.86	77.8%	0.69	35.35	4.23
	7.74	9.17	0.80	1.30	7.37	10.15	72.7%	0.72	36.97	4.72
	7.79	9.08	0.76	1.25	6.92	10.13	71.7%	0.73	35.72	4.84
	7.84	8.98	0.72	1.20	6.47	9.88	70.7%		30.35	4,39
	7.89	8.89	0.68	1.15	6.02	9.74	69.7%	0.65	25.58	3.96
	7.94	8.80	0.63	1.10	5.58	9.61	68.7%	0.62 0.58	21.35	3.55
	7.99	8.71	0.59	1.05	5.14	9.47	67.8%		17.64	3.16
	8.04	8.61	0.55	1.00	4.71	9.33	66.8%	0.54	14.40	2.80
	8.09	8.48	0.50	0.95	4.28	9.17	65.6%	0.50	11.60	2.47
	8.14	8.34	0.46	0.90	3.86	8.99	64.4%	0.47	9.26	2.16
	8.19	8.20	0.42	0.85	3.44	8.82	63.1%	0.43	7,28	1.89
	8.24	6.96	0.44	0.80	3.06	7.53	53.1%	0.39	5.61	1.63
	8.29	6.50	0.42	0.75	2.72	7.04		0.41	5.25	1.72
	8.34	6.15	0.39	0.70	2.41	6.68	50.4% 47.8%	0.39	4.31	1.58
	8.39	5.75	0.37	0.65	2.11	6.26	100000000000000000000000000000000000000	0.36	3.38	1.40
	8.44	5.54	0.33	0.60	1.83	6.02	44.8% 43.1%	0.34	2.65	1.25
WL	8.49	5.38	0.29	0.55	1.55	5.83		0.30	1.95	1.07
	8.54	5.24	0.25	0.50	1.29	5.66	41.8%	0.27	1.37	0.88
	8.59	5.09	0.20	0.45	1.03	5.48	40.5% 39.2%	0.23	0.92	0.71
	8.64	4.95	0.16	0.40	0.78	5.31	38.0%	0.19	0.58	0.56
	8.69	4.38	0.12	0.35	0.55	4.69	33.6%	0.15	0.34	0.43
	8.74	3.13	0.11	0.30	0.36	3.40	24.4%	0.12	0.18	0.34
	8.79	2.52	0.09	0.25	0.22	2.74		0.11	0,09	0.25
	8.84	1.48	0.09	0.20	0.13	1.65	19.6%	0.08	0.04	0.18
	8.89	1.04	0.07	0.15	0.13	1.17	11.8%	80.0	0.02	0.12
	8.94	0.63	0.04	0.10	0.07	0.70	8.3%	0.06	0.00	0.07
	8.99	0.22	0.03	0.05	0.03		5.0%	0.04	0.00	0.03
	9.04	0.01	0.00	0.00	0.00	0.24	1.8%	0.02	0.00	0.01
	5.04	U.U.I	0.00	0.00	0.00	0.01	0.1%	0.00	0.00	0.00

STREAM NAME: XS LOCATION: Como Creek WP #023

XS LOCATION:

CU Research Station Low site below flume

XS NUMBER:

Thorne-Zevenbergen D84 Correction Applied

Estimated D84 =

0.90

GL = lowest Grassline elevation corrected for sag

STAGING TABLE *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.	72.0	WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
_	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL*	7.32	12.69	0.96	1.72	12.19	13.97	100.0%	0.87	79.02	6.48
	7.49	12.02	0.84	1.55	10.12	13.21	94.5%	0.77	51.36	5,08
	7.54	11.82	0.81	1.50	9.52	12.98	92.9%	0.73	44.62	4.69
	7.59	11.62	0.77	1.45	8.94	12.75	91.3%	0.70	38.52	4.31
	7.64	11.05	0.76	1.40	8.37	12.13	86.8%	0.69	35.35	4.23
	7.69	9.84	0.80	1.35	7.84	10.86	77.8%	0.72	36.97	4.72
	7.74	9.17	0.80	1.30	7.37	10.15	72.7%	0.73	35.72	4.84
	7.79	9.08	0.76	1.25	6.92	10.01	71.7%	0.69	30.35	4.39
	7.84	8.98	0.72	1.20	6.47	9.88	70.7%	0.65	25.58	3.96
	7.89	8.89	0.68	1,15	6.02	9.74	69.7%	0.62	21.35	3.55
	7.94	8.80	0.63	1.10	5.58	9.61	68.7%	0.58	17.64	3.16
	7.99	8.71	0.59	1.05	5.14	9.47	67.8%	0.54	14.40	2.80
	8.04	8.61	0.55	1.00	4.71	9.33	66.8%	0.50	11.60	2.47
	8.09	8.48	0.50	0.95	4.28	9.17	65.6%	0.47	9.26	2.16
	8.14	8.34	0.46	0.90	3.86	8.99	64.4%	0.43	7.28	1.89
	8.19	8.20	0.42	0.85	3,44	8.82	63.1%	0.39	5.61	1.63
	8.24	6.96	0.44	0.80	3.06	7.53	53.9%	0.41	5.25	1.72
	8.29	6.50	0.42	0.75	2.72	7.04	50.4%	0.39	, 4.31	1.58
	8.34	6.15	0.39	0.70	2.41	6.68	47.8%	0.36	3.38	1.40
	8.39	5.75	0.37	0.65	2.11	6.26	44.8%	0.34	2.65	1.25
	8.44	5.54	0.33	0.60	1.83	6.02	43.1%	0.30	1.95	1.07
WL*	8.49	5.38	0.29	0.55	1.55	5.83	41.8%	0.27	(1.37)	0.88
	8.54	5.24	0.25	0.50	1,29	5.66	40.5%	0.23	0.92	0.71
	8.59	5.09	0.20	0.45	1.03	5.48	39.2%	0.19	> 0.58	0.56
	8.64	4.95	0.16	0.40	0.78	5.31	38.0%	0.15	0.34	0.43
	8.69	4.38	0.12	0.35	0.55	4.69	33.6%	0.12	0.18	0.34
	8.74	3.13	0.11	0.30	0.36	3.40	24.4%	0.11	0.09	0.25
	8.79	2.52	0.09	0.25	0.22	2.74	19.6%	80.0	0.04	0.18
	8.84	1.48	0.09	0.20	0.13	1.65	11.8%	0.08	0.02	0.12
	8.89	1.04	0.07	0.15	0.07	1.17	8.3%	0.06	0.00	0.07
	8.94	0.63	0.04	0.10	0.03	0.70	5.0%	0.04	0.00	0.03
	8.99	0.22	0.03	0.05	0.01	0.24	1.8%	0.02	0.00	0.01
	9.04	0.01	0.00	0.00	0.00	0.01	0.1%	0.00	0.00	0.00

urveyed by: JENRY WHITTAKER

(CODE	
ode No. 13184	1	Region Northeast CE
, , , , , , , , , , , , , , , , , , ,	2	Beaver dams
2te 8/14/75 ection No. /	3	Number (count or estimate) None
tream Name Come Creers	4	Estimated acreage
Primary Drainage North Boulden Creek	5	Physical stream damage (% of
FILMALY DIAINAGE NORTH BOULDER CREEK	1	section affected)
Major Drainage SP 4/	6	Bank degredation
ower terminus FISHERY	1	Channelization
Location: 1/2 mile Downstream From THE	7	Dredging
	1-1	Mine tailing encroachment
C.U. CAMPUS TURNSFF.		Road encroachment
	1	Accessibility (miles)
	8	Surfaced
T. / N	9	Non-surfaced car /
R. 13 ω	10	4-wheel
S. 26	11	Established trail
Width 6'	12	No established trail
Elevation 9300'		
Flow (c.f.s.)	13	Boat only
pH 7.0	14	No access
phth 17.1	15	Land Status and mileage
МО	16	USFS 1 (CLOSED DIE 70 GREGORAGIE FISHERY)
EDTA	17	BLM
Conductivity 17	18	Municipal
if stream profile obtained	19	Div. of Wild.
er terminus	XXX	Private, no public access
Location: THE UPPER COLD OF THE CHURCHESTY OF	20	Private, open to public
COLORADO CALIFUS TO \$ 100 YARRS UPSTREAM.	1 20	State Land Board
		County
T. / N	21	Mixed small tracts, open
R. 73 W	22	Mixed small tracts, closed
S. 43	23	Stocking
Width 6'	24	Miles creel size
Elevation 9500'	25	Miles fingerling
Flow	26	Miles fry
pH	27	Miles not stocked /
phth	28	Aquatic Vegetation
MO	29	Filamentous algae (x one)
EDTA	30	Absent
Conductivity	31	Rare
X if stream profile obtained	32	Common
ection Summary	XXX	Abundant
Meander factor HETURE MILERSE	33	Watercress
Length in Miles /	34	X if present
Width in feet 4'	35	Stream Size classification (x one)
Acreage 0.12	36	Large river > 100'
Observed flow Negman	37	River 60-99'
X if inundated by reservoir	38	Large stream 36-59'
Mileage unsectioned	39	Medium 20-35'
ounties where section is located	XXX	Small 10-19'
unty Boutoek	40	Minor 4-9'
	41	Very small stream <4'
Miles /		
		Gradient (computer-use elevation & miles)
County	42	Gradient (computer-use elevation & miles)
		Gradient (computer-use elevation & miles) Percent per mile

ishery Value (X one)	XXXX	Upper Station
None	88	Elevation
Poor	89	Describe or map station location .
Below average	90	
Average	91	
Above average	92	THE UPPER END OF THE C.U. CAMPUS
Excellent X	93	TO LOD YAKOS UPSTREHM,
'ishery Value - limiting factors	XXXX	10 100 MARIO OF GIRCHINA,
	94	
<i>i</i>	95	1 A
	96	
ISH SAMPLING	XXXX	
Lower or only station	XXXX	
Elevation	97	
Describe or map station location	98	
	1	
	1	
Como Creek		the state of the s
	1 1	
<u></u>		i i
CO:	1	
CAMPUS	! !	
Chimpos	1 1	}
X	1	
	1 1	2 11
	1 1	Sampling method ELECTROFISHING
	1 1	Length - feet 3cc
//		Sampling adequate X
	1 1	Sampling inadequate
		X if scales collected
	1 1	Estimated % of fish biomass
: // X	1 1	Rough fish
	1 1	Game fish
2/2 mile		Estimated % of rough fish biomass
Section 26 Downsteam From	1 1	Bullheads
C.U. campus Tounges		Carp
		Cottids
		Dace
Sampling method FLECTRO FISHING	99	Minnows
Length - feet 150	100	Suckers
Sampling adequate X	101	Sunfish
Sampling inadequate	102	Combined stations
X if scales collected	103	Estimated % of fish biomass
Estimated % of fish biomass	XXXX	Rough fish
Rough fish	104	Game Fish
Game Fish 100%	105	Estimate % of rough fish biomass
Estimated % of rough fish biomass	XXXX	Bullheads
Bullheads	106	Carp
Carp	107	Cottids
Cottids	108	Dace
Dace	109	Minnows
Minnows	110	Suckers
	111	Sunfish
Suckers	TIT	

Length-frequency distribution by one-inch size groups (1.0 - 1.9 etc.)

Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	5 15	Total
							LOW	IER	STA	TIOIT.	1					
Rainbow Brown								Н	-	-						
Brook																
Native Whitefish		4	2	2	6	5	.2	ı			-	\dashv			108X	7.2
Total																22
							UPI	PER	STA	TION						
Rainbow																
Brown	-	-	-	-	H	-			-	-		-	\dashv		-	
Brook			-						7	-	\dashv					
Native														v		
Whitefish						7										
Total																
						CC	MB I	NED	SI	ATIC	NS					
Rainbow								1	1	1						
Brown			-	-					-		-	-	-	-		
Brook								-	+	-	-		-			
Native Whitefish		4	2	2	6	5	2	1							15¢1.	22
Total											1					22.

POPULATION ESTIMATE

A	В	С	D	DC		Code
Marked	Fish	Marked		Population	No. > 6.0 (For Station)	139
Fish	Captured	Recovery	AXB	Extimate	Weight $>$ 6.0 (For Station)	140

	Code
Resident game fish size rating	141
Resident game fish density rating	142
Recommended flow from profile	143

Comments and Recommendations

THE UPPER STATION PRODUCED NO FISH TO OUR ELECTROFISHING EFFORTS HOWEVER, THE HABITAT LOOKS GOOD FOR GREEN BACK NATIVES (I.E. DEEP POLLS, GOOD COVER). THE WATER IN THE LOWER STATION WAS NOT AS DEEP, BUT THE COVER WAS MUCH BETIEK, ALSO, THE GRAVIENT WAS NOT AS STEEP 30 THE WATER WAS NOT MOVING AS PAST.

IT HAS BEEN SUGGESTED THAT COMO CREEK BE WERE AGAIN USED AS A FOTHER SOURCE FOR FUTURE GREENBALL PLANTS. IT SHOULD FIRST BE INVESTIGATED AS TO WHETHER THIS POPULATION CAN WITHSTAND THE PRESSURE OF FISH BEING THACK OUT ON A STENDY BASIS.

APPENDIX 1

FISHERY VALUE LIMITING FACTOR LIST

rishery value would be higher except for the following 3 or less most important limiting factors: (X up to three limiting factors)

A Natural factors (physical)

- 1 Intermittent stream
- 2 Blow out stream
- 3 Flash flood area
- 4 Highly erosive drainage
- X5 Steep gradient
 - 6 No spawning areas
- 17 Poor pools and cover
 - 8 Pool area excessive
 - 9 Riffle area excessive
- 10 Poor fishability
- 11 Remoteness
- 12 Streamside access limited (canyon walls, etc.)
- 13 Poor aesthetically
- 14 High temperature
- 15 Low temperature

B Natural factors (biological)

- A Rough fish
- 2 Small trout
- X 3 Few trout
 - 4 Lack of reproduction
 - 5 Unsuited game fish
 - 6 Riparian vegetation inadequate
 - 7 Dense riparian vegetation-poor fishability
 - 8 Excessive reproduction

MAJOR DRAINAGES

- 31 A Arkansas
- 32 C Colorado
- 33 D Dolores
- 34 G Gunnison
- 35 GR Green
- 36 L Larimer
- 37 NP North Platte
- 38 REP- Republican
- 39 RG Rio Grande
- 40 SJ San Juan
- 41 SP South Platte
 - W White
- J Y Yampa

C Artificial factors

- 1 Water diversion-irrigation
- 2 Water diversion-domestic
- 3 Water diversion-power
- 4 Water diversion-other
 - 5 Flow fluctuation-power
 - 6 Flow fluctuation-irrigation
 - 7 Flow fluctuation-domestic
 - 8 Return irrigation flows
 - 9 Land abuse-roads
- 10 Land abuse-housing
- 11 Land abuse-logging
- 12 Land abuse-livestock
- 13 Land abuse-other
- 14 Stream encroachment-roads
- 15 Stream encroachment-mine tailings
- 16 Mine dredging
- 17 Channelization-road related
- 18 Channelization-ice control
- 19 Channelization-land reclamation
- 20 Streamside deciduous plant spraying

D Recreational conflict

- 1 Wading or swimming
- 2 Boats or tubes
- 3 Recreational streamside overuse

E Pollution

- 1 Excessive siltation
- 2 Mining
- 3 Commercial-chemical
- 4 Commercial-organic
- 5 Domestic
- 6 Stock (feed lots)

SAMPLING METHODS

- X 50 Electrofishing
 - 51 Seining
 - 52 Gill netting
 - 53 Toxicants
 - 54 Hook and Line
 - 55 Prima cord or dynamite
 - 56 Other or combination

Electrofishing Record

Length of Stream electrofis	hed		
Estimated efficiency	Good	Fair	Poor
Type of water . Conquenuity =	17	Velccity & Volume	
Crew Tree Man-AREA		· , 	
Rock N =- man			
Bux Marce			
Two Reference i De	11.0		
- I we fre far sour i	24 Marchanis		

		1	1-		Mortality	
Species	Length.	Weight	Scale Sample No.	Species	Length	Weigh
NATIVE	8.4	4.5				
NATIVE	5-6	1.0	100 10			
	7.5	3.5				
	61	2.5				
	4.6	20				
	7.5	35				
	2.4	-				
مستحدث	2.3					
	6.0					
	4.2	-				
	5.L	-				
	61	_				
	5.2	-				
	5.9	-				
	69					
	7.1	-				

ALSO SAW: 2 FISH 23"

2 FISH 23-4"

1 FISH 25"

1 FISH 26"

PUERAME LENGTHS & WEIGHTS OF Species

Number = 22 Fish

Ave. Length: 5.1 Inches

Ave. Wion = 2.8 Ounces

NO FISH TAKEN ABOVE CU CAMPO, NATURAL REPRODUCTION EVIDENT.

172-	73 FISHERIES IN 1041 RELATED	VENTORY / DATA	Stream Code _	ory <u>s</u>
Per	cent Open to Publi ('72 Inventory)	C	Stream Name_	Como Creek
Poor Ten Claring Claring Con Leg Phy Aes Mea	lity of Water 1-riffle Ratio nperature of Water rity of Water h Food Supply dition of Fish cal Access rsical Access thetic Value anders Value provement Potential	8, 7, 8, 5, 5, 10, 7, 6,		
Pol	cking Status pulation Status		occasionally, ran	
IIM MII	NIMUM STREAM	FLOW DATA		
Ma Ma	ximum Channel W ximum Wetted Per ximum Depth	idth, imeter,		
Elue book	creed Flow tial Month tial Day			
[Ini	tial Year	*		

STREAM SURVEY Field Form

13184

Stream	n Name:	Col	no o	Cree.	K_	Sec. No	•• =	Markey .	44 BE 1				
Person	nnel: _	Red .	yer +	Robe	Mson	Date: _	Ju	4 30,1	186	100	(S)(6-7/F)		
Time:	_ 9	: 45 a	n			Sec. No.: Date: July 30,1986 Temp: Air 70 Water 48°							
Gradie	ent:					Location: 1/4 mile down from C.U. Research Center							
G - Gi	cass		W	- Water	r		/. /	Researce	4 60	~101			
*		Cross S	Section		T LA LEG		-4	Discl	harge				
0.0					1-6	Dist.	Depth	Clicks	Dist.	Depth	Clicks		
										7,00	_001		
						-200	4 10398	6.		1147	72.10		
					1, 64	100	Lin			- 0	-		
						-					The state of the s		
				_		1000	to Acide	-		-	-10-0490		
					://6	100	- 48	06		- 197	- tri #4		
			100		08,00	1000	The state of	20408		- 19	-0.500		
			18.		855 y		- 91	1964		- 11913	7.00		
			-01		1					., 15,			
					10:79				4	-1/9	11/2		
	-				7 - 1	* * *		- 170		-			
7						-0/2-	i de				10		
						6,375	- 03	1 - 1		15	12/185		
n in The	iper.		9.00	- 5		- 545. - 754.		77.00	political and the second	779	-725050		
100000			2017		1765.4X 5,345.4	Width	1 - 1900 1 -	N 1 155	pH:	7.1	\$1715 ****		
114	150	4-	1_1		545	pHTH:			MO:	V. KINE	To block to the		
44(3)	4	73	Uging)	10000	- 300	01.000	te les Miller	ppm			30		
1000	something.	1,902	-distant	1,000	and the	Algae	* in last		T.V. T.	ress:			
eniet.	Sona L	12.4	147,0	11300	-4	Beave	r:	1.35	4-36	W. 184	- 50 8 1		
W.	Shak	inst.	2-401	100	1018	Comme	No Philipson	CHECK!	o March	1. 6	harysa		
495	TO PROPER	34	1170	Lights	148	(3)5(6)		St.	192	1 4000			

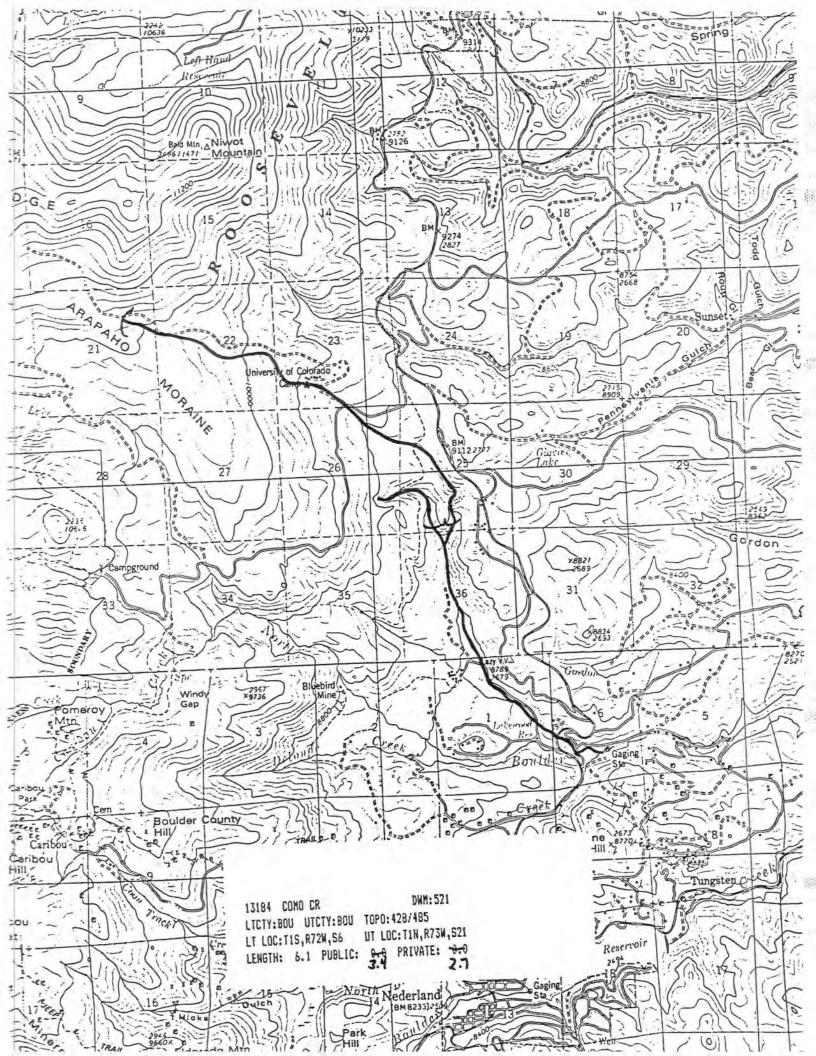
ELECTRO-FISHING RECORD

tati	m: on #1:	1/4		m	10	d	OR	in	3	11	eat	n	+	10	n	/	-6	1.	1	POSP	arch	510
		Distar	ice:		5	0	1		Wi	dth	:		3'			A	cre	age	:	0.	004	
tati	on #2:															_						
		Distar	ice:	_					Wi	dth	: _					A	cre	age	:			
tati	on #3:																					
		Distar	ice:						Wi	dth	: _					_ A	cre	age	: _			
	ment Use	d:																				
erso	nnel: _	Red	(d:	200	,	+	Ro	bei	150	~												
	Species	1.0=	1.			Γ.						IN	-							12.2		
	Greenback	<	1	2	3	3	5	6	1 a	8	9	10	11	12	13	14	15	16	17	18+	Tot.	Avg.
	NoTive	+	-			3		1	0	1			H			-		-			/	-
-		+	\vdash		-	-		-				-	-						-	-		
-		1	-	-	-				-		-	-			-	-						-
-		+	1	-		-	-				-	-				-	-		-			-
-		+	-					-				-				-		-	-			
1	-				-			-				-		-	-	-		-				-
-		1	-													-	-					
	-	-	-				-			-								-				
1			1	-	-									-						-		
								-									-		-			
+					-											-						
																				-		-
7																						
									18													
1				7																		
		1																				
-		+	-		-	-	-				-	-		-		-					-	

COLORADO DIVISION OF WILDLIFE

FISH POPULATION SAMPLING SUMMARY

10	HOURS	IAL	
DATE 30,1986	NETS;	ADDITIONAL INFORMATION	X
DATE	,05	CATCH PER HOUR	
	EFFORT: 50	% TOTAL CATCH no. wt.	100%-100%
ry Book	elected hing	WEIGHT RANGE (gm)	15-80
COUNTY		MEAN WEIGHT (gm)	40.6
	SAMPLE METHOD	LENGTH RANGE (mm)	108-203
Coock		MEAN LENGTH (mm)	152.6
000		TOTAL	^
ATER	TATION(S)*	PECIES	reemback -


note: if more than one station, data represents all stations combined.

- Maria

FISH POPULATION SAMPLING SUMMARY

LENGTH FREQUENCY DISTRIBUTION (Millimeters)

PECIES	0 76 1 75 100	0 76 101 126 151 176 201 	126 150	151 175	176 200	201 225	226 251 276 1	251 275	276 300	301 326 1 325 350	326 - 350	351 375	376 1 400	401 425	426 1 450	451 	3 351 376 401 426 451 476 501 526	501 525	526 551 550 600	551 601 600 UP	601 - UP
reenback -		3		_	6	_															1

WATERWORKS

STREAM IMPROVEMENTS TO AID COLORADO'S GREENBACK CUTTHROAT

A Colorado native was in need of a little help. The native in need was the Colorado greenback cutthroat trout (Salmo clarki stomias). Through the efforts of a successful stream improvement project last July by the Boulder Flycasters Chapter of Trout Unlimited, the U.S. Forest Service and the Colorado Division of Wildlife, the greenbacks of Como Creek received the strong helping hand they needed. The habitat improvements on the creek will assist the species on their amazing route to recovery.

Como Creek is located just east of the Continental Divide about 18 miles west of Boulder, Colorado. What makes the creek special is that it is one of only three remaining historic sites of the rare greenback cutthroat trout (see About Trout by Robert J. Behnke, Trout, winter 1985). Only a little more than a century ago the greenbacks were the native trout of the Eastern Slope of Colorado. Unfortunately, the greenback's inability to coexist with other trout species doomed the greenbacks to near extinction. As rainbows, browns and brookies were introduced into Colorado's streams and lakes, the native greenbacks were eventually squeezed out. By the 1940s the species was believed extinct.

Amazingly, in 1969, a researcher at the University of Colorado's Alpine Research Center discovered what he believed to be greenbacks in Como Creek - a tiny, high-altitude stream that flows through the center's property. He called renowned trout expert Robert J. Behnke in Fort Collins, Colorado, and, sure enough, Behnke confirmed that the Como Creek trout were indeed pure greenbacks. Since then, after extensive search, two more pure populations of the rare greenbacks have been discovered in Colorado. These three populations, all located in small headwater streams naturally protected by barrier falls, are the only remaining historic greenback populations. The total number of fish in the three streams is less that 3,000, with

Volunteers transport a check dam log to Como Creek.

Como Creek holding the majority of greenbacks.

Over the past seven years, under the guidelines of the Greenback Cutthroat Trout Recovery Plan, a team of fisheries biologists from the U.S. Fish and Wildlife Service, the National Park Service, the U.S. Forest Service and the Colorado Division of Wildlife have united in an effort to re-introduce the greenbacks into high-mountain streams and lakes throughout the species' original range of habitation.

On June 16, 1985, board members of the Boulder Flycasters met with Bob Stuber, fishery biologist for the U.S. Forest Service out of Fort Collins, Colorado, and Bill Weiler, fisheries biologist for the Central Region of the Colorado Division of Wildlife. The purpose of the gathering was to plan a stream improvement project for Como Creek. Even though the creek is closed to fishing in order to protect its rare greenback population, the Boulder Flycasters enthusiastically agreed to participate in such a unique project. The chapter members were excited about being able to contribute to the comeback of this rare species of trout.

The Flycasters mailed hundreds of fliers asking would-be volunteers to "Give a day back to the trout." The fliers looked like an FBI wanted poster, and in large, bold letters read, "Wanted. Wild, Native Trout." Below that, in smaller type, the sign said, "... And a few volunteers to help them." This was followed by information about the project and the greenbacks. As an added incentive, anyone who volunteered to work for a day had their name entered into an exclusive raffle. The prize was a graphite fly rod, and only those who worked on the Como Creek project or another project that summer were eligible. The project was set for July 27.

Five weeks after the planning meeting, on a beautiful, warm and sunny Saturday morning, over 20 people from the Boulder Flycasters and the U.S. Forest Service convened at Como Creek. The objective was to install a series of five log check dams in the creek. The check dams would increase trout habitat by creating self-scouring plungepools. These new pools would dramatically improve habitat and cover for the greenbacks. Stuber's computer projections revealed that the improve-

Como Cr 13184

1950 ENVIRONMENTAL ASSESSMENT REPORT

3.7

Como Creek Greenback Cutthroat Trout Restoration Project Roosevelt National Forest Boulder County, Colorado

Lead Agency: USDA-Forest Service

301 South Howes

Ft. Collins, CO 80522

Cooperating Agencies: Colorado Division of Wildlife

6060 Broadway

Denver, CO 80216

Responsible Official: Gray F. Reynolds, Forest Supervisor

Arapaho and Roosevelt National Forest

For Further Information Contact: James C. Cruse

Range & Wildlife Staff Officer

Arapaho and Roosevelt National Forest

301 South Howes

Ft. Collins, CO 80522

(303-482-5155)

Abstract: This...includes

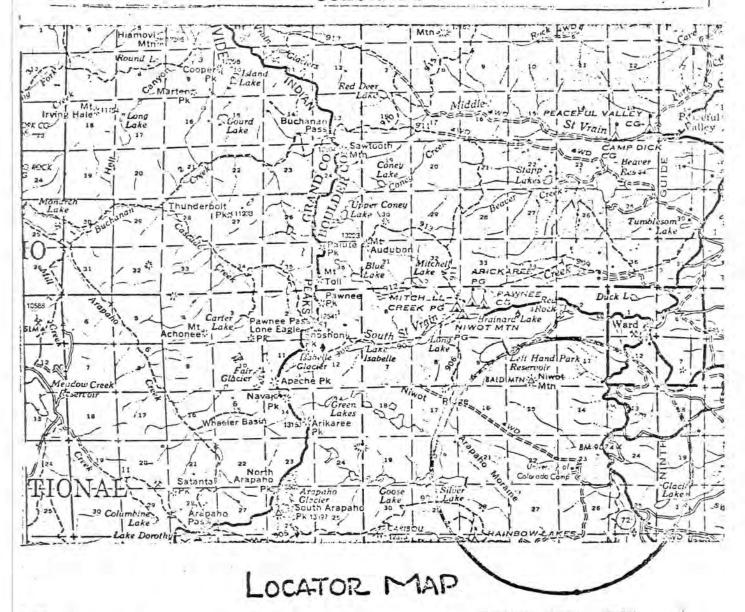
Comments regarding this report should be sent to the Forest Supervisor of the Arapaho and Roosevelt National Forest by ______.

Abstract: This Environmental Assessment Report describes two alternatives:
(1) habitat rehabilitation of Como Creek to permanently close all roads that are now temporarily closed due to adverse impacts, maintain continued closure of Como Creek to fishing and implementation of habitat improvement work to restore Como Creek to natural conditions, and (2) the no action alternative. The Forest Service preferred alternative is identified. The reasoning for determining why an environmental statement will not be prepared is included.

TABLE OF CONTENTS

I. INTRODUCTION

- A. Proposed Activity
- B. Nature of Decision
- C. Background


II. ENVIRONMENTAL SETTING

- A. Location
- B. Ecological Setting
- C. Social and Economic Setting

III. EVALUATION CRITERIA

- IV. ALTERNATIVES CONSIDERED
- V. EFFECT OF IMPLEMENTATION
 - A. Alternative A
 - B. Alternative B
- VI. EVALUATION OF ALTERNATIVES
- VII. IDENTIFICATION OF PREFERRED ALTERNATIVE
- VIII. MANAGEMENT REQUIREMENTS AND CONSTRAINTS
 - IX. CONSULTATION WITH OTHERS
 - X. FINDING OF NO SIGNIFICANT EFFECT

ROOSEVELT NATIONAL FOREST COLORADO

	LEGEND		
	National Forest Boundary	F 3	Forest Supervisors Headquarters
	Adjacent National Forest Boundary	\$	District Ranger Station
	State Boundary Line	1	Forest Service Station
	County Boundary Line	4	Recreation Site
	Reservation Boundary	Å	Recreation Site other than Forest Service
***********	Wilderness Boundary	3	Ski Area
(25)	Interstate Highway		Observation Site
<u> </u>	U.S. Highway		Point of Interest
$\widetilde{\underline{\omega}}$	State Highway	10.0	House, Cabin or other Building
•••	Forest Route	190	Water Well
بالتعم	Paved Road	*	Mine, Quarry or Gravel Pit

I. INTRODUCTION

A. Proposed Activity

The proposed activity on Como Creek involves (1) permanent closure of all the roads that have been temporarily closed due to adverse impacts to Como Creek, (2) continued closure of Como Creek to fishing, and (3) habitat improvement work which includes removal of litter in Como Creek.

The habitat improvement work would consist of reseeding all banks that have eroded due to livestock grazing or vehicle use. (The banks are too small for any type of bank cribbing work.) In areas where pools are few, log dams will be placed at strategic positions to enhance trout production. Log dams have been described by W. Harry Everhart et al. (Principles of Fishery Science 1975. Comstock Publ., Ithaca, N.Y.). A few trees will be cut down locally to provide material for the dams. Construction of these log dams is simple and takes little time to complete. Habitat improvement structures such as log dams have been known to increase mean annual biomass and mean annual numbers of trout in the long run (R. Hunt. 1976. A long-term evaluation of trout habitat development and its relation to improving management-related research. Trans. Amer. Fish. Soc. 105(3): 361-364).

The proposed activity is a cooperative project with fisheries biologists from the Colorado Division of Wildlife implementing the habitat improvement work.

B. Nature of the Decision

The decision to be made is one of how best to carry out the greenback cutthroat trout recovery program and are the impacts to Como Creek adversely affecting the greenback trout population.

C. Background

In 1969 the only population ideally conforming to the diagnostic characters of the threatened greenback cutthroat trout was found in a tiny stream locally called Como Creek, tributary to North Boulder Creek in Roosevelt National Forest (see map). On May 18, 1978, the greenback cutthroat trout was declassified from endangered to threatened. Most of the new greenback trout populations that have been established have come from Como Creek.

A habitat assessment and population estimate of Como Creek was conducted by Colorado Division of Wildlife personnel during May, 1978. The main objective of this reconnaissance effort was analysis of the lower two miles of Como Creek from the University of Colorado research station downstream to the barrier falls at the Caribou Ranch property line. The results of this survey are divided into sections corresponding to the areas samples (see map).

Section I: Numerous campsites were found with trash evident along the stream and throughout the campsites. Electrofishing efforts produced 225 cutthroat trout with largest only seven inches. The downstream portion of this section contains optimum trout habitat. This section is composed mainly of an Aspen-Conifer forest.

Section II: The evidence of heavy fishing pressure and environmental perturbations was substantial. Only 75 cutthroat trout were electrofished from this section and they were substantially smaller than those sampled in the other sections. Fishing tackle was found along the stream and fishermen were seen during the survey. A picnic table and several campsites were observed in this section. Trash (bedsprings, bottles, etc.) were found in the stream. Erosion of the stream banks and surrounding area due to livestock grazing and numerous jeep trail crossings was evident throughout this section. The vegetative type is mainly Aspen and grass meadows.

Section III: Livestock grazing and litter was apparent in the upper portion of this section. Electrofishing efforts produced 175 cutthroat trout, with larger fish (8") being more abundant than the other sections. Most of this section of stream flows through a dense coniferous forest.

II. ENVIRONMENTAL SETTING

A. Location

The portion of Como Creek occupied by greenback cutthroat trout is located on the Boulder District of the Roosevelt National Forest, with the exception of a few hundred yards on the Arctic and Alpine Research Institute of the University of Colorado. Como Creek is a tributary of North Boulder Creek, Boulder County, Colorado.

B. Ecological Setting

Como Creek is a perennial stream with an average discharge of 2.5 cfs. The average depth is approximately 0.5 feet and average width is 3 feet. The section of Como Creek under consideration is 2 miles in length, beginning at the property line of the Arctic and Alpine Research Station (9,800 ft.), extending downstream to the Caribou Ranch property line (8,600 ft.), at which point the stream enters a series of natural waterfall barriers. The flora and fauna of this 2 mile section of stream is characteristic of a subalpine and upper montain forest zone. The vegetative type is blue spruce, lodgepole and ponderosa pine, with areas of aspen stands and grassy meadows. The dominant riparian vegetation consists of willow, bog-birch and various grasses. The common terrestrial animals are elk, deer, snowshoe hare, yellow-bellied marmot, pine squirrel, goldenmantled ground squirrel, robin, magpie, gray jay, and the dipper. The common aquatic organisms are greenback cutthroat trout (a

federal and state threatened species), mayflies, stoneflies, caddisflies, and various species of dipterans.

C. Social and Economic Setting

Recreation use is moderate. Access to Como Creek is via highway 72 and various vehicle trails coming off of this highway. Vehicle access to the stream (off of highway 72) has been temporarily halted by road closures. Human uses of the area are hunting, illegal fishing, camping and "jeeping."

Archeological or historical surveys are not needed in regard to this proposal because the proposed action will only affect aquatic organisms.

There will be no change in economics of the local communities of Ward or Nederland from this proposed action.

III. EVALUATION CRITERIA

The only objective involved in this proposal is to improve and expand management programs to enhance a threatened fish population by protection of habitat and increasing the abundance of greenback cutthroat trout.

The evaluation criteria used in the alternative section will be based on the alternative which:

- -Best satisfies the management objective.
- -Best maximizes favorable effects and minimizes adverse effects.
- -Best maintains or enhances long-term productivity.

The source of the criteria have been developed by an interdisciplinary team and used in environmental analysis on this forest for several years.

IV. ALTERNATIVES CONSIDERED

The <u>Greenback Cutthroat Trout Recovery Plan</u> was prepared to delineate reasonable actions which would restore this threatened trout to a healthy, self-sustaining population over much of its natural range and restore the species to a non-threatened status by the year 2000. This plan and the 1979 Program of Work are the sources used in formulating the alternatives.

Two alternatives which were considered are as follows:

- A. No action.
- B. Permanent closure of all the roads that have been temporarily closed due to adverse impacts on Como Creek, continued closure of Como Creek to fishing and implementation of habitat improvement work to restore Como Creek back to natural conditions.

V. EFFECTS OF IMPLEMENTATION

- A. Alternative A. The no action alternative would leave the green-back trout population as it is now, with a continual decline in abundance and size of the fish and degradation of habitat due to various impacts. No cost would be involved but extinction of the species would be enhanced under this alternative.
- B. Alternative B. This alternative involves constructing small log dams, and bank seeding, closure of jeep trails crossing Como Creek and prevention of illegal livestock grazing and fishing in the Como Creek drainage.
 - 1. Expected Environmental Changes. The main impact is the restoration of Como Creek and the surrounding area to a once-existing stable state. In accomplishing this, only a limited amount of disturbance to the environment will occur. A few trees will be lost in the construction of log dams. Stream flow will be altered slightly in places where log dams are constructed, but in the long run these structures are beneficial to fish populations and production.

Other impacts include the closure of access roads and fishing on Como Creek. As a result recreation values will initially decrease. However, the proposed action will be in accord with the threatened and endangered species preservation values and guidelines established by the U.S. Fish and Wildlife Service and the Colorado Division of Wildlife.

The proposed action will help to remove the greenback cutthroat trout from the threatened category by increasing the abundance of this trout. This may eventually make it possible for the State of Colorado, in cooperation with the U.S. Forest Service, to open some areas previously closed to fishing. This allows for a more efficient management scheme and increases good public relations and support for the recovery program.

- 2. Estimated Forest Service Expenditures. The habitat improvement and monitoring work will be done by the Colorado Division of Wildlife so there are no Forest Service costs initially. Followup site inspections yearly and increased enforcement of illegal grazing practices will be made at an estimated cost of \$100.00 per year.
- 3. Expected Outputs. Initially Como Creek will be closed to fishing and fish will not be removed for establishment of new greenback cutthroat trout populations in other areas. After the population builds back up to carrying capacity, Como Creek may again provide brood stock for future introductions. If these transplants are successful, and the greenback cutthroat trout is declassified, fishing will then be allowed and recreation visitor days will increase in the area.

4. Significant Effects in Physical, Biological, Social and Economic Components of the Human Environment. The expected changes in the physical and biological environment are covered in the Environmental Changes section above. The social and economic effects of camping and jeep driving in or near Como Creek will decrease. Fishing and livestock grazing in this section of Como Creek is illegal, therefore, continued closure to these practices will not result in any social or economic loss.

Minimal amount of disturbance will be done to the environment in the construction of various habitat improvement structures. Trees will be cut for the log dams but they can be replaced with tree seedlings. Although some recreation days will be lost under the proposed action, the end result will be restoration of the environment of the greenback cutthroat trout to its original state. No species will be eradicated from or introduced into Como Creek.

VI. EVALUATION OF ALTERNATIVES

This evaluation shows which alternative best satisfies the selection criteria described in Section III. A plus sign (+) indicates the criteria which accomplishes the criteria. A minus sign (-) indicates a detrimental effect. A zero (0) means no effect from the present condition.

		Altern	atives
	Criteria	A	В
1.	Best satisfies the management objectives.	-	+
2.	Best maximizes favorable effects and minimizes adverse effects.	2,	+
3.	Best maintains or enhances long-term productivity.	-	+

VII. IDENTIFICATION OF PREFERRED ALTERNATIVES

Alternative B, which will permanently close all roads that are now temporarily closed due to adverse impacts on Como Creek, maintain continued closure of Como Creek to fishing and implementation of habitat improvement work to restore Como Creek back to natural conditions, is the preferred alternative.

VIII. MANAGEMENT REQUIREMENTS AND CONSTRAINTS

A. Enforcement of laws by U.S. Forest Service and Colorado Division of Wildlife concerning fishing, grazing and off-road vehicle use in the Como Creek drainage.

B. Construction of habitat improvements only in sections of Como Greek where necessary. This results in minimal disturbance to the environment.

IX. CONSULTATION WITH OTHERS

The <u>Greenback Cutthroat Trout Recovery Plan</u> has been circulated and commented on by the interested public. This proposed action is planned within the framework of the Recovery Plan. Agencies and individuals consulted about this project include the following:

Greenback Trout Recovery Team

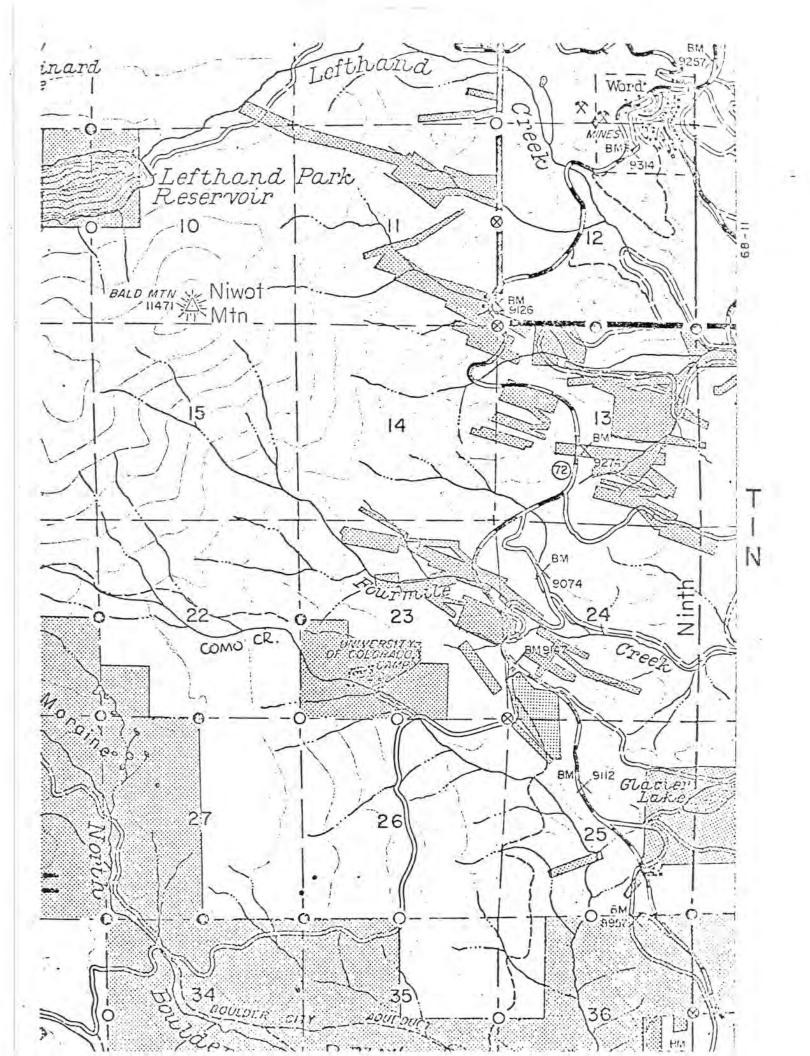
U.S. Fish and Wildlife Service....Bruce D. Rosenlund
U.S. Forest Service....Richard L. Moore
Colorado Division of Wildlife.....Dave Langlois
National Park Service....Dave R. Stevens

Private Landowners....University of Colorado Caribou Ranch

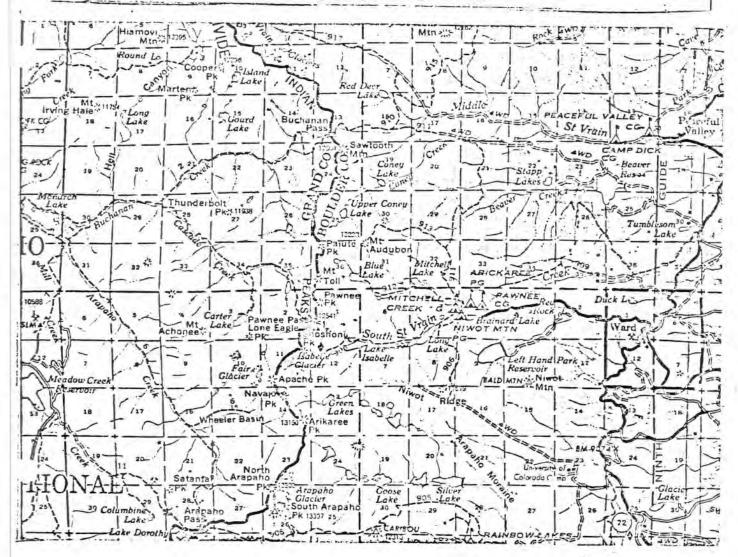
No work will be done on private land but the above landowners own land adjacent to the section of Como Creek covered in the proposed action. Caribou Ranch should be informed about grazing in the Como Creek drainage.

X. FINDING OF NO SIGNIFICANT EFFECT

Como Creck Fisheries Rehabilitation USDA-Forest Service Arapaho and Roosevelt National Forest


An Environmental Assessment Report that discusses permanent closure of all roads that are now temporarily closed due to adverse impacts on Como Creek, maintain continued closure of Como Creek to fishing and implementation of habitat improvement work to restore Como Creek to natural conditions is available for public review into the Poudre District Office, 148 Remington, Fort Collins, Colorado.

This report does not indicate that there will be any significant effects upon the quality of the human environment. It has been determined that an environmental statement will not be prepared.


This determination was based upon consideration of the following factors, which are discussed in detail in the Environmental Assessment Report: (a) There will be no significant impacts to the physical, biological, social and economic components of the human environment, and (b) Minimal amount of disturbance will be done to the environment in the construction of various habitat improvement structures. A few trees will be lost but they will be replaced with tree seedlings where necessary.

Implementation of the plan may take place on or after following public distribution of this Record of Decision. Questions regarding this decision should be sent to the Forest Service.

Forest Supervisor	Date

ROOSEVELT NATIONAL FOREST COLORADO

LOCATOR MAP

	LEGENI	0	
	National Forest Boundary	1	Forest Supervisors Headquarters
	Adjacent National Forest Boundary	£	District Ranger Station
	State Boundary Line	1 .	Forest Service Station
	County Boundary Line	<u>k</u> .	Recreation Site
	Reservation Boundary	Y	Recreation Site other than Forest Service
************	Wilderness Boundary	1	Ski Area
(25)	Interstate Highway		Observation Site
17	U.S. Highway	•	Point of Interest
(1)	State Highway	4.3	House, Cabin or other Building
449	Forest Route	81	Water Well
	Paved Road	*	Mine, Quarry or Grave! Pit

Como Ca-

Job Progress Report

State of Colorado

Project No. SE-3-3 Endangered Wildlife Investigation

Work Plan No. 1: Endangered Fishes Job No. 2

Job Title: Greenback Cutthroat Trout Inventory, Restoration and Monitoring

Period Covered: 1 July 1979 - 28 February 1981

Personnel: David Langlois, Terry Hickman, David Miller, Steve Culver, Brian

Anderson, Chuck Loeffler, Robin Knox, Gary Brown, Ted Washington

Abstract

To date, taxonomic analysis of greenback cutthroat trout <u>Salmo clarki</u> <u>stomias</u> based on the stream evaluation system developed by Binns (1977) has identified 18 populations of greenbacks, 7 of which are type "A." Of these 7, only greenbacks from Como Creek, Cascade Creek and to a limited extent the Little South Fork of the Poudre are being used to establish new population. Currently, in addition to those populations mentioned above, greenbacks have been transplanted to McAlpine Lake, May Creek and Hourglass Creek. By the end of the 1981-1982 field season, transplants will have been made to Lytle Pond at Fort Carson, Sheep Creek and possibly Williams Gulch and/or East Fork of Roaring Creek. Likewise, plans are to eradicate the existing fish population in George and Cornelius Creeks and put in a man-made barrier.

During 1978, a survey was conducted to determine the extent of brook trout reinvasion. Upstream from the constructed barrier, a natural rock barrier exists. The brook trout have been found between the two barriers, but not above. An eradication program for the section of stream below the second barrier will be necessary to insure the stability of the greenback population. Some reproduction of greenbacks has been noted. Eight fish were kept for taxonomic analysis.

Como Creek: R73W, T1N, Secs. 22, 23, 24, 25, 26; Ward Quad

In 1969, the only population ideally conforming to the diagnostic characters of the greenback cutthroat trout was found in Como Creek. Since then, the fish from Como Creek have been reintroduced into other available waters as part of the restoration program. A habitat assessment and population survey was conducted in May, 1978. The reach of the stream from the Rainbow Lakes road crossing downstream to the Caribou Ranch property line was assessed. As a result of this survey, this reach of stream was divided into three sections:

- Section I: Numerous campsites were found with trash evident along stream as well as throughout the campsites. The downstream end of Section I was the best habitat for trout. Two hundred twenty-five fish were electroshocked with the largest only seven inches.
- Section II: The evidence for heavy fishing pressure and environmental perturbations was substantial. Only 75 fish were shocked and the fish were much smaller. Fishing tackle was found along the stream. Several fishing parties were warned of fishing there during the survey. Livestock grazing was evident. A makeshift picnic ground with picnic tables was found—this only encouraged more fishing. Trash (bedsprings, bottles, etc.) were found in the stream. Erosion of banks and surrounding area was found to be due to numerous jeep trails that are fairly recent and were not made by the U.S. Forest Service. Access to this area is possible by numerous roads coming off of Colorado 160 (see map).
- Section III: One hundred seventy-eight fish were shocked in this section. Larger fish (8 inches) were more abundant. Livestock grazing was apparent in upper half of this section. Trash was also found in this area.

GBC 1981 Prog. R S. Culver 2

Como (-13184

II. Status of Existing Populations.

Five populations of greenback cutthroat trout are presently managed in the North East region (Table 1.) None of the populations at this point in time can be considered stable populations.

Table 1. Existing greenback cutthroat trout populations.

County	Stream	Drainage
Soulder	Como Creek	Boulder Creek
Clear Creek	- -	9
Douglas	4	-
Jetferson		1.51
Gilpin	+	-
Larimer	Black Hollow	Poudre River
	Hounglass	Poudre River
	Little South Fork	Poudre River
	of Poudre River	
	May Creek	Poudre River
Park	-	1.5

Como Creek

Habitat degradation and fishing are the main problems confronting the Como Creek population. Habitat degradation is manifested mainly in the lack of good deep pools and excessive silt loads. Washout from four wheel drive roads which run alongside and cross Como Creek in the lower sections is the main source of

siltation. Silt build up in the stream is a limiting factor to both reproductive success and food production. Fishing pressure is still a factor limiting this population. Although no anglers were encountered, there was evidence of fishing.

Blackhollow Creek

New signs were posted on Black Hollow Creek to alert the public of the status of the Black Hollow population. Letters explaining the status of the greenback cutthroat trout and of the Black Hollow Creek population (see appendix A) were also distributed to all landowners living near Black Hollow Creek. No attempt was made to collect any fish from this area during the 1981 field season.

Little South Fork of the Poudre

Several attempts were made in June to collect adult fish for an egg taking operation. Unfortunately, no fish over 10cm were captured. During 1980, large fish up to 30cm were collected. Based on evidence of camping along the stream, we suspect this population has been depleted due to fishing.

Signs were posted to alert the public of the status of this population. Furthermore, all landowners adjacent to the U.S. Forest Service property were notified of the status of the greenback cutthroat and fishing regulations (see appendix A).

During late August and early September fry traps were installed in the creek to determine if reproduction had been successful during 1981 and catch fry for transportation to a more secluded area upstream. No fry were captured.

offered his support in restoring the upper sections of Caribou Creek to its natural conditions, building a fish barrier, and reintroducing the greenback cutthroat trout. This is a moderate ship of the stream.

Como Creek (tributary of North Boulder Creek)

Surveyed on 22 September 1981. The lower reaches of Como Creek below the waterfall barrier and located on the Caribou Ranch was surveyed. Habitat was good with deep pools, adequate cover, and good flow (3.0cfs). An intense electroshocking survey was conduted to determine if any greenback cutthroat were below the waterfall. No greenback trout were captured. The only species found was brook trout. James Guercio, the owner of the Caribou Ranch, expressed some interest in the reclamation of the lower reaches of Como Creek.

Fourmile Creek(tributary of Boulder Creek)

Surveyed on 23 September 1981. Upper reaches were surveyed above highway 72. Trout habitat was marginal with moderate flow and a few deep pools. No natural fish barriers were found, but several potential barrier sites were present. Brook trout was the only species collected. This is moderate priority stream.

Clear Creek County

Band Cheek(tributary of Clear Creek)

Surveyed on 1 October 1981. Band Creek was brought to our attention by Stave Puttman after his stream survey crew found the

STOCKING AND FISH SAMPLING DATA

STREAM CODE 13184

STO	CKING						S
STO	CK 79-83	O YRS					
	CKYRS N		\triangle				
SPE	CIES-SIZE	STOCKED					
						است	
FTC	H SAMPLIN	ic.					
	PLE DATE:		0,86				
			0/00				
MET	HODS: EL			_			
	SPECIES	#TAKEN	AVG.LENGTH (cm)	RANGE (cm)	AVG.WT	RANGE (g)	%TOTAL CATCH
1.	CBN	22	11.8	5-20			100
2.	GBN	7	15.3	11-20	40.6	15-80	100
3.							
4.	_		-				
5.				-			
6.		-					
7.	-		-		-	-	-
8.					-	-	
9.					-		
10.		-					-
11.	-				-		
12.							
13.	-						بننت
14.		-					

15.

Appendix - C

Water Availability Analysis

Station: SOUTH ST. VRAIN CREEK NEAR WARD, CO.

Parameter: STREAM FLOW CFS

Year: 1925-1973 State: CO

County: BOULDER

Monthly Statistics

Statistic: Mean

06722500

Latitude: 40:05:27

105:30:50 Elevation: 9372.00 Longitude:

14.40

Drainage Area:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Ang	Sep	Oct	Nov	nec	Ann
# Dave	744	677	744	720	744	720	744	744	750	744	720	744	8795
Ava Day	28.6	2.63	2.94	6.49	40.38	123.6	80.95	38.60	18.75	10,21	5.30	3,65	28.08
Max Dav	8.00	6.20	00'9	27.00	223,0	328.0	271.0	148.0	58.00	33.00	14.00	8.00	328.0
Min Day	1.10	1.10	1,30	1.80	3.00	30.00	24.00	11.00	5.20	2.70	1.90	1.30	1.10
# Months	20	24	24	24	24	24	24	24	52	24	24	24	24
SDev Month	1 19	1.04	1.24	4.19	19.74	28.00	35.64	14.19	6.36	3,50	2,15	1.74	6,46
Skew Month	121	0.784	1.40	1.95	1.13	-0.811	1.06	1.66	0.919	0.984	1.33	1.45	0.485
Min Month	1.41	1.10	4	2,65	15.03	52.90	36.39	20.52	9.51	4.06	2.51	1,80	15.24
Max Month	6.00	5.00	6.00	20.00	86.40	164.5	171.8	82.81	36.57	20.10	10.10	8,00	42.69
Exceedences													1000
1%	00'9	5.00	6.00	21.00	212.4	278.8	216.7	121.7	43.50	25.00	12.00	8.00	197.0
%° L	5 16	5.00	6.00	20.00	109.4	215.0	176.0	80.00	36.00	19.00	10.00	8.00	128.3
100%	5.00	4 00	200	15.00	80.00	188.0	146.0	61.00	30.00	16.00	10.00	6.00	86.00
30%	00.0	96	3.70	10.00	00.09	163.0	110.0	50.00	25.00	14,00	6.80	4.50	44.00
£0%	0.50	2.20	270	4.50	30.00	120.0	71.00	34.00	17.00	9.80	5.00	3.10	8.00
%08	2 00	1.80	2.00	3.00	12.00	77.00	45,00	24.00	11.00	6,16	3.30	2.30	2.70
%06	1.60	1.50	1.70	2.50	7.78	60.00	36,00	19.00	9.80	4.60	2.80	2.00	2.10
%26	1.50	1.38	1.50	2.30	5.80	51.00	32.20	16.00	8.25	3.60	2.40	1.80	1.90
%66	1.30	1.10	1.30	2.00	4.29	40.00	27.44	12.00	6.10	3.00	2.00	1.74	1.40

1,07

75.7

COMO CRUBK Total US SEC 36

Date: Mon Feb 12 2007 17:26:48

Site Location: Colorado Latitude: 40.0142 Longitude: -105.5147 Drainage Area: 4.07 mi2

Peak Flow Basin Characteristics			
100% Mountain Region Peak Flow (4.07	' mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	4.07 (below min value 5.5)	5.5	945
Mean Basin Slope ft per ft (dimensionless)	0.16	0.126	0.554

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Low Flow Basin Characteristics			
100% Mountain Region Low Flow (4.07	7 mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	4.07	1	1150
Mean Basin Elevation (feet)	10100	8400	12200
Mean Annual Precipitation (inches)	25.6	17.5	39.4

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Streamflow St		Standard Error	Equivalent	90-Percent Pred	diction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
PK2	46.7				
PK5	69.5				
PK10	85.4				
PK25	105				
PK50	120				
PK100	134				
PK200	149				
PK500	168				

o			Estimation Error	Equivalent	90-Percent Pred	diction Interval
Statistic		Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
Q1	J	0.47	49			
Q2	F	0.45	49			
Q3	(/\	0.57	43			
Q4	A	1.59	56			
Q5	M	10.3	58			
Q6	2	20.6	510			
Q7	3	6.19	63			
Q8	15	1.97	70			
Q9	5	1.26	63			
QA		4.63	43			
Q10	0	1.1	50			
Q11	N	0.76	43			
Q12	0	0.56	45			
Low-Flow	Statistics					
M7D2Y		0.28	62			
M7D10Y		0.13	100			
M7D50Y		0.0757	160			

Street State

Basin Characteristics Report

Date: Mon Feb 12 2007 17:26:01

Latitude: 40.0142 Longitude: -105.5147

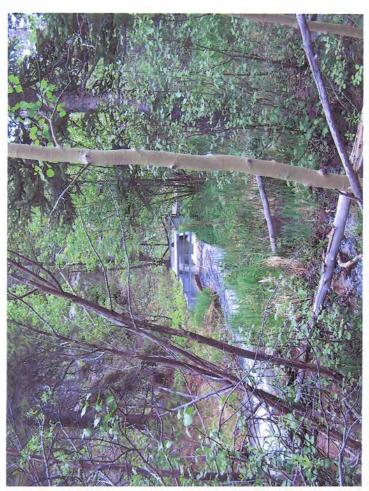
Parameter	Value
Area that drains to a point on a stream in square miles	4.07
Mean Basin Elevation in feet	10100
Mean basin slope in percent, computed from 10 m DEM	17.6
Mean annual precipitation in inches (unadjusted)	27.6
Mean basin slope determined using the grid-sampling method (dimensionless)	0.16
Mean annual precipitation in inches (adjusted)	25.6

http://ccc.atmos.colostate.edu/cgi-bin/mlydb.pl

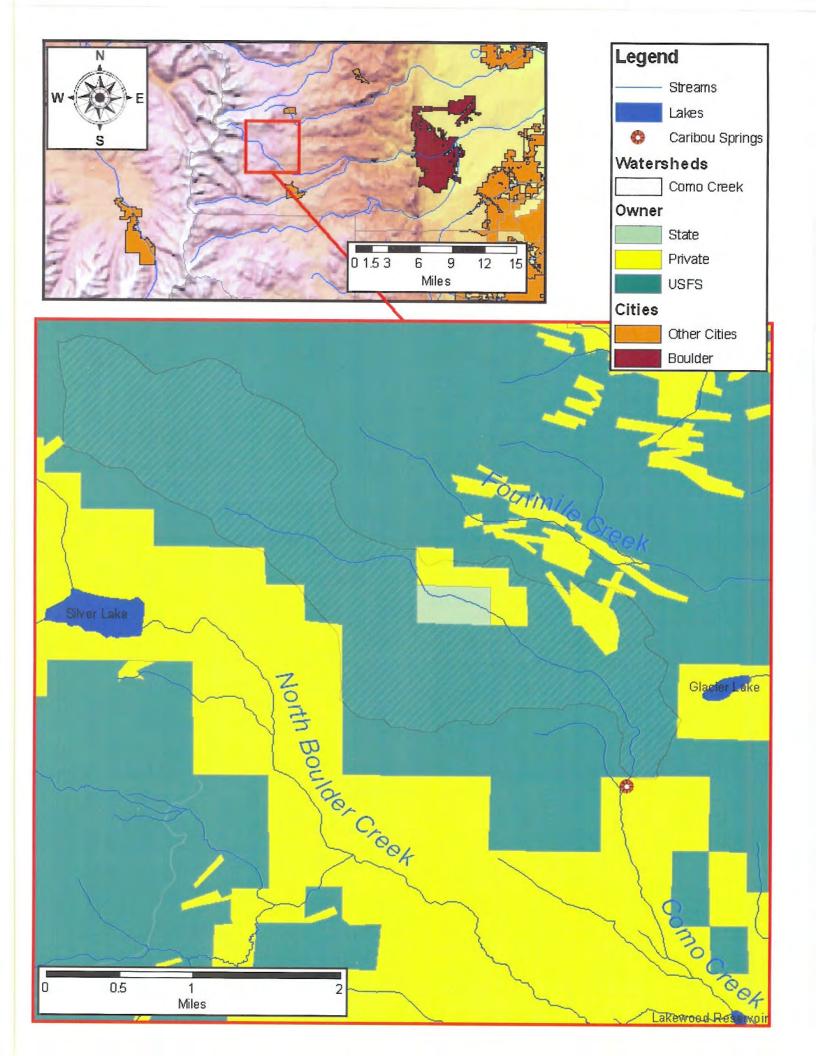
	ec Annual		2 22.8	3 30.8	1 26.8	9 24.7	6 24.7	5 32.8	69 28.33	5 30.7	8 18.9	1 33.	4 27.1	2 30.1	7 22.7	5 27.3	9 36.4	7 27.9	5 35.2	4	2 32.0	I 14.7	0.0 I	I 0.	0.0 I	0.0 I		4 22.	9 36.4	5 194	0.0	
	De		ш	17	17	14		ш	26	26	0	13	9	29	Φ		3.4		00	20	0)	0	0	0	0	0			3.4	01		٠
	Nov		76	169	m	246	0)	28	305	OJ.	3.5	154	0	1	1	LO	274	4	5	1	65	0	0	0	0	0	299	3	4	94	00.0	
	Oct		4	243	3		0	0	169	0	4	N	3	4	N	0	IS	0	S	m	N	0	0	0	0	0	131	n	10	94		
	Sep		120	1	1	0	3	-	216	3	0	1	10	0	3		8	CV	-	113	0	0	0		0	0	47	3	7.	93	00.0	
i I	Ang		3	0	00	10	4	447	94	3	108	CV	1	S	219	78	N	4	0	116	5	65	0	0	0	0	387	0	CA	94	00.00	
	Jul		∞	TU	∞	O	5	587	417	E	154	w	4	221	1	ω	0	3	O	M	381	9	O	0	0	0	114	i,	100	93	00.00	
	Jun		∞	349	68	0	m	399	426	210	M	96	0	222	3	3	N	8	0	М		S	0	0	0	0	0	0.	0	94	00.00	
	May		-	3		∞	3	4	222	4	N	-	m	8	751	LO	-	0	1		310	3	0	0	0	0	0	4	7	94	0.00	
)	Apr		340	431	647	210	493	103	295		184	302			180	548		146	258	Σ		314	0	0	0	0	0	2.78	8.07	1942	00.00	
	Mar	1.	149	589	0	0	16	392	195		H	10)	S		470	731		168	5	Σ	231	N	0	0	0	0	0	2.43	7.31	1944	00.0	
	Feb	ipitation	338	1	171	475	88	1	165	LO	-	N	CI	0		130	341		350	Σ		121	0	0	0	0	0	1.98	4.80	94	00.0	
	Jan	hly precip	O	0)	121	84	50	388	09	CAL	199	0		0	102	71	245	4	63	Σ	a	159	0	0	0	0	0	1.28	0	1940	00.0	
		T	0	63	93	1934	93	m	93	93	m	94	94	9	4	94	0	4	94	94	94	95	95	92	95	951	1955	Ave	Max	Year	Min	

2/15/2007

Jan Feb Mar Apr Máy Jun Jul Aug Sep Oct Nov Dec Annual Memorthly Precipitation. Machine Mar Apr Máy Jun Jul Aug Sag 34 120 15 17.27 Machine Mar Apr Machine Mar Apr Máy Jun Jul Aug Sep Oct Nov Dec Annual Machine Mar Apr Mar Mar Mar Mar Mar Mar Mar Mar Mar Ma														
Mainthly precipitation. Mainthly precipi		Jan	Feb	TO	Apr	May	Jun	Jul	Aug	(1)	0	Nov	D	Annual
M		aly prec	0	'n.										
1.1 37 116 101 461 179 45 309 146 326 23 42 42 17.2 1.3 40 79 65 165 192 116 244 199 121 306 67 17.2 4.6 72 65 115 248 475 117 263 186 121 306 67 17.2 4.7 73 65 115 248 7 184 265 116 149 121 306 67 37 187 <td>1</td> <td>Σ</td> <td></td> <td></td> <td>Μ</td> <td></td> <td>-</td> <td>3</td> <td>0</td> <td>0</td> <td>34</td> <td>CA</td> <td>15</td> <td></td>	1	Σ			Μ		-	3	0	0	34	CA	15	
13 40 79 65 165 192 116 244 199 121 306 67 17.2 4 70 67 113 385 475 117 263 97 185 76 93 20.0 20.9 3 4 10.0 67 113 385 475 117 263 116 149 221 10 32 116 149 221 10 3 3 10 3 3 10 3 10 10 10 3 11 49 221 10 3 11 49 221 10 3 10 40 10 40 10 40 10 40 10 4	-		-	0	10	1	4	0	4	N	CA	4	47	8
3 85 6 113 385 475 117 263 97 185 76 93 200 20.09 4 70 67 115 248 7 184 265 116 149 221 86 34 15.0 6 63 49 103 167 180 137 221 167 303 197 21 89 72 34 16.4 445 16.4 446 46 167 131 355 201 167 131 355 201 167 131 355 202 167 189 476 48 48 22 194 45 167 131 440 6 139 150 106 303 197 21 89 72 31 13.1 13.1 13.2 131 13.2 131 13.2 13.2 138 148 25 13.2 13.2 13.2 13.2	-	3		79	65	W	0	F	4	01	OI	0	67	7.2
4 70 67 115 248 7 184 265 116 149 221 86 34 15.6 6 63 129 1301 252 192 343 116 119 64 445 26 16.4 7 12 65 72 221 102 106 303 197 21 89 75 16.4	1		φ	H	00	1	H	0	07	00	1	0	0	0.9
5 129 1301 252 192 343 116 119 64 145 26 16.4 6 63 49 103 167 137 221 167 323 138 45 16.4 7 6 137 221 167 323 138 45 16.4 8 20 167 131 355 202 48 48 22 194 16 16.4 9 53 20 167 131 355 202 48 48 22 194 16 113 135 166 93 219 140 6 139 166 167 181 168 219 169 112 181 182	1			-	4	7	∞	0	-	4	N	00	m	5.6
6 63 49 103 167 180 137 221 167 323 138 45 46 46 7 12 65 72 221 106 303 197 21 89 72 51 13.1 9 53 30 20 167 181 476 106 303 197 21 89 72 51 13.1 10 152 411 77 319 440 6 139 150 106 33 219 48 27 199 123 219 18 310 106 31 6 130 110 199 </td <td>1</td> <td></td> <td></td> <td>129</td> <td>30</td> <td>In</td> <td>0</td> <td>4</td> <td>-</td> <td>1</td> <td>10</td> <td>4</td> <td>26</td> <td>6.4</td>	1			129	30	In	0	4	-	1	10	4	26	6.4
7 12 65 72 221 102 106 303 197 21 89 72 51 13.5 8 33 20 48 48 22 194 16 113 13.5 9 53 37 213 181 476 190 114 381 106 93 219 16 113 13.5 10 152 41 73 410 272 280 209 263 123 28 21 93 19.3 19.1 19.3 19.3 19.1 19.3 19.3 19.1 19.3 <t< td=""><td>976</td><td></td><td></td><td>103</td><td>10</td><td>00</td><td>3</td><td>W</td><td>0</td><td>OI</td><td>3</td><td>A.</td><td>49</td><td>6.4</td></t<>	976			103	10	00	3	W	0	OI	3	A.	49	6.4
8 39 20 167 131 355 202 48 48 22 194 16 113 181 476 190 114 381 106 93 219 16 21.4 10 152 411 77 319 440 6 139 106 93 219 86 21.4 11 45 191 73 440 6 280 209 263 123 28 20 316 196 48 25 19.6 19.6 19.6 48 21.2 19.6 48 25 19.6 <t< td=""><td>1</td><td></td><td></td><td>72</td><td>221</td><td>0</td><td>0</td><td>0</td><td>0</td><td>CI</td><td>00</td><td>72</td><td>51</td><td>3.1</td></t<>	1			72	221	0	0	0	0	CI	00	72	51	3.1
9 53 37 213 181 476 190 114 381 106 93 219 6 139 150 105 31 53 219 6 139 150 105 31 53 219 6 139 150 105 31 53 219 6 139 150 105 31 53 213 53 123 150 105 131 52 190 191 190 191 191 48 25 191 191 191 48 25 191	1			0	m	10	0	4		22	9	16	-	3.5
10 152 411 77 319 440 6 139 150 165 31 53 150 150 165 169 263 123 28 209 263 123 28 180 209 263 123 28 183 200 316 48 25 191 60 191 48 260 260 316 47 48 25 193 193 193 200 316 47 47 47 48 25 193 193 193 20 21 20 284 477 47 <td></td> <td></td> <td></td> <td>H</td> <td>00</td> <td>-</td> <td>9</td> <td>H</td> <td>∞</td> <td>0</td> <td>0</td> <td>-</td> <td>00</td> <td>1.4</td>				H	00	-	9	H	∞	0	0	-	00	1.4
1 18 45 191 73 410 272 280 209 263 123 28 55 196 48 25 196 48 25 180 193 469 308 200 316 196 48 25 180 193 469 308 200 316 48 25 180 35 181 25 180 35 181 25 180 35 181 25 181 35 181 35 181 35 181 35 181 35 181 35 181 35 181 47 87 47 87 47 47 47 41 46.6 48 35 184 14.6 48 14.6 48 25 18.4 14.6 48 25 18.4 14.6 48 14.6 48 14.6 48 14.6 48.6 18.6 18.6 18.6 18.6 18.6	00	LO.	-		17.1	4		m	TU	0	31	10	0	5.1
2 29 32 59 731 469 308 200 316 196 48 25 180 19.3 3 11 43 330 234 370 188 354 477 87 10 329 1181 25.5 4 30 92 141 270 62 112 312 4371 110 244 12 23 18.4 5 36 92 73 139 156 1071 313 20 283 85 117 41 14.6 6 25 73 156 1071 128 128 174 120 14.6 14.6 14.6 14.6 14.7 14.6 14.6 14.7 14.7 14.7 14.6 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7	8	18		191	73	1	1	00	0	10	N	28	52	9.6
13 11 43 330 234 370 188 354 477 87 10 329 1181 25.5 4 30 92 141 270 62 112 312 4371 110 244 12 23 18.4 5 36 92 73 139 156 1071 313 20 283 85 117 41 14.6 6 25 M 59 413 260 226 212 1221 167 174 205 55 7 45 M	82	29			m	0	0	0	-	9	4	25	00	9.3
4 30 92 141 270 62 112 312 4371 110 244 12 23 184.4 5 36 92 73 139 156 1071 313 20 283 85 117 41 14.6 6 25 M 59 413 260 226 212 167 174 205 55 7 45 169 M	83	11		3	m	1	00	S	1	87	-	N	18	5.5
5 36 92 73 139 156 1071 313 20 283 85 117 41 14.6 6 25 M 59 413 260 226 212 1221 167 174 205 55 7 45 169 M 183 341 198 178 284 72 69 106 153 8 59 35 163 227 339 M <				4	1	62	-	-	37	H	4	H	O	4.8
6 25 M 59 413 260 226 212 122I 167 174 205 55 45 169 M 183 341 198 178 284 72 69 106 153 8 59 35 163 227 339 M M M M M M M M M M M M M M M M M M				73	3	TU.	07	-		∞	∞	-1	41	4.6
7 45 169 M 183 341 198 178 284 72 69 106 153 8 59 35 163 227 339 M M M M M M M M M M M M M M M M M M			M		H	0	N	5	22	0	1	0	55	
8 59 35 163 227 339 M M M M M M M M M M M M M M M M M M	87		0	M		4	O	1	∞		0	0	M	
0.54 0.59 1.29 2.18 2.69 1.67 2.39 2.01 1.74 1.02 1.12 0.73 17.7 1.52 1.69 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.5 1.98 1987 1983 1971 1972 1983 1983 1970 1984 1983 1973 1989 0.11 0.06 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 197 18 18 18 1				0	U	3	M	M	M	M	Σ	Σ	M	
1.52 1.69 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.5 1980 1987 1983 1970 1984 1983 1973 198 0.11 0.06 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1984 1980 197 18 17 17 18 18 18 18 18 18 18		rJ.	17	i	-	6	6	3	0	7	0	-	1	7.7
1980 1987 1983 1971 1979 1982 1983 1970 1984 1983 1973 198 0.11 0.06 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 197 18 17 17 19 18 18 18 18 18 18 18 18 18		5	9	3		7	0	13	7.	0	4.	3	0	5.5
0.11 0.06 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1984 1980 197 1983 1984 1980 197 18 18 18 18 18 18 18 18 18 18 18 18 18		8	98	98	9	16	98	98	98	16	8	98	97	98
1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 197 18 17 17 18 18 18 18 18 18 18 18 18 1		1	0.	10	6	0.	0.	4	N	N	H	1	0	3.1
18 17 17 18 18 18 18 18 18 18 18 18 1	Year	98	16	986	16	16	9	16	98	16	98	98	98	197
	Count					-	-	-	H	Н	Н	-	H	H


http://ccc.atmos.colostate.edu/cgi-bin/mlydb.pl

2/15/2007


	Annual				18.10	6.2	11.23	19.69				18.82		1965	11.23	1966	4
	Dec		26	45	232	24	58	IO	M	M	Δ		6	1964	0	96	9
	Nov		Σ	ω	125	18	0	125	86	27	Ψ	0.57	1.25	1967+	00.00	1966	7
	Oct		Σ	43	15	0	87	0	0	441	M		4.41	1969		1968+	7
	Sep		Σ	N	110	1	4	156	O	Σ	M	1.46	2.54	1963	00.00		9
- 8360	Aug		Σ	579	0,00	120	178	355	0	0	M	00	5.79	96	00.0		7
1970 Elevation	Jul		Σ	236	0	4	5	245	4	0	M	2.71	4	1965	00.0	96	7
1	Jun		M	M	170	376	4	TU	70	0	M	0	5	1967		1969	6
or years 1962 tude - 10531	May		Μ	75	350	142	96	296	0	771	M	2.47	*	1969	00.0	1968	7
44 -14	Apr		M	0	185	220	120	89	146	153	M	1.30	2.20	1965	00.00	1963	7
CARIBOU F	Mar	1	Σ	150	135	159	a	112	73	83	M	0	1.59		00.00	1966	7
ita for (чер	pitation	Σ	72	140	81	120	76	109	14	68	0.88	1.40	1964	0.14	1969	00
imatic Da	Jan	ily preci	Σ		28I	430	22	57	13	47	0	96.0	4.30	1965	0.0.0	1970	ω
Monthly Climatic Data for CARIBOU RANCH Station - 51342 Latitude - 4000 Long		Total monthly precipitation.	1962	1963	1964	1965	1966	1967	1968	1969	1970	Ave	Max	Year	Min	Year	Count

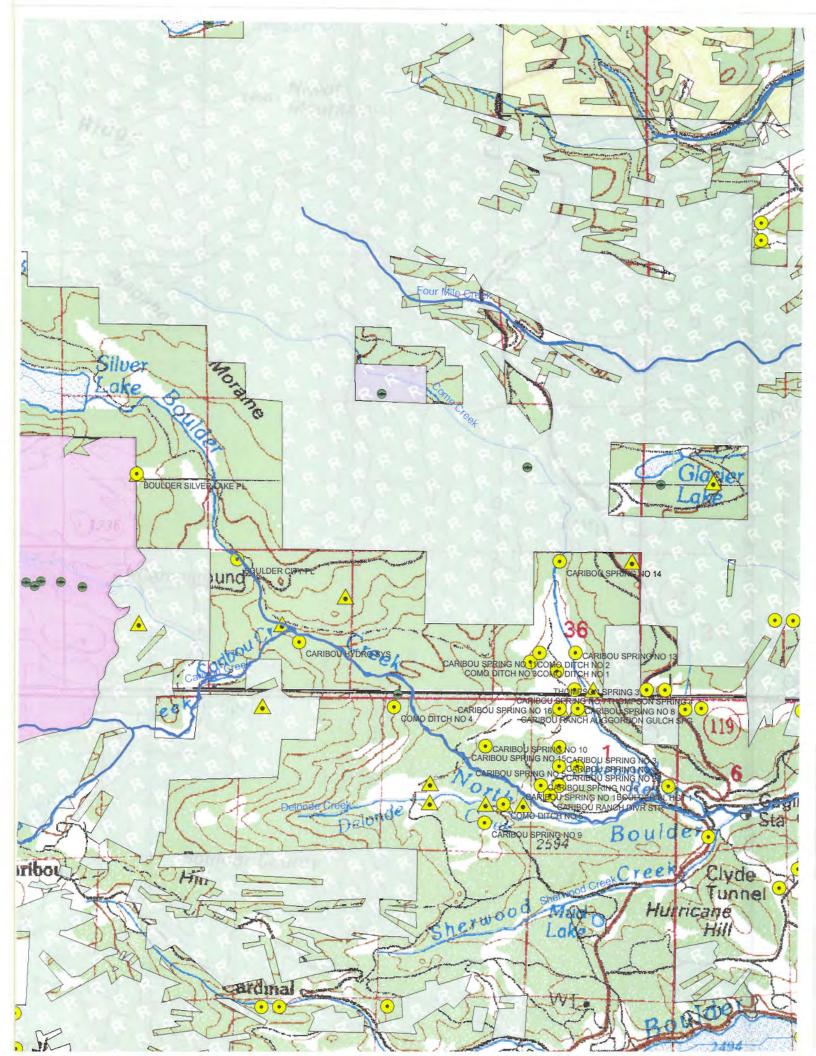
COMO

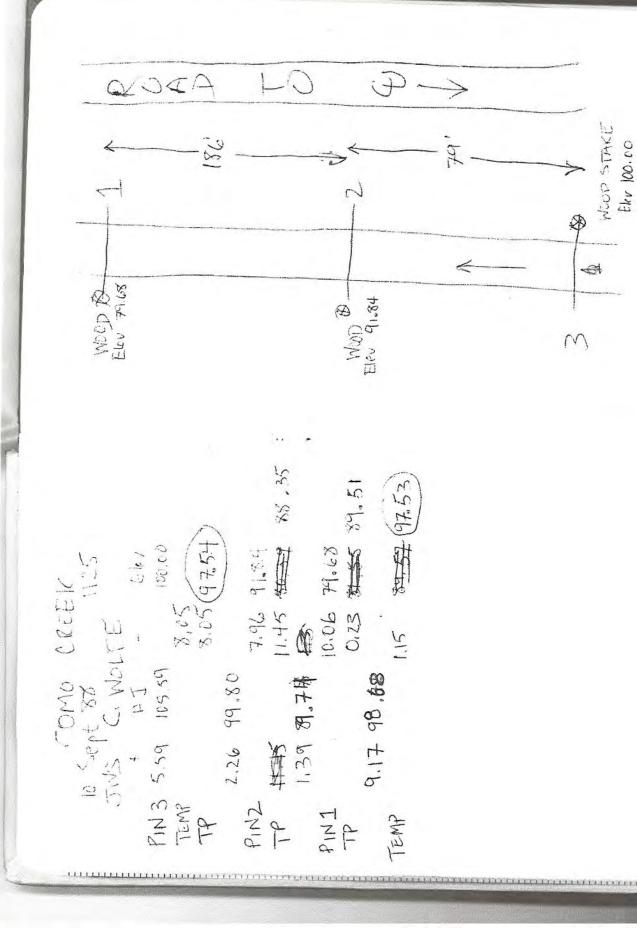
CREEK

Date: Tue Nov 28 2006 14:06:55

Site Location: Colorado Latitude: 40.0134 Longitude: -105.5154 Drainage Area: 4.1 mi2

Peak Flow Basin Characteristics			
100% Mountain Region Peak Flow (4.1	mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	4.1 (below min value 5.5)	5.5	945
Mean Basin Slope ft per ft (dimensionless)	0.08 (below min value 0.126)	0.126	0.554


Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.


Low Flow Basin Characteristics			
100% Mountain Region Low Flow (4.1	mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	4.1	1	1150
Mean Basin Elevation (feet)	10000	8400	12200
Mean Annual Precipitation (inches)	25.5	17.5	39.4

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

ar a	2	Standard Error	Equivalent	90-Percent Pred	diction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
PK2	36.6				
PK5	57.4				
PK10	72.5				
PK25	91.5				
PK50	106				
PK100	121				
PK200	135				
PK500	155				

Statistic	rt (031.)	Estimation Error	Equivalent	90-Percent Pred	diction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
Q1	0.45	49			LI
Q2	0.44	49			
Q3	0.56	43			
Q4	1.6	56			
Q5	10.3	58			
Q6	19.5	510			3
Q7	5.62	63			
Q8	1.8	70			
Q9	1.17	63			
QA	4.47	43			
Q10	1.04	50			
Q11	0.73	43			
Q12	0.54	45			
Low-Flow Statist	ics				
M7D2Y	0.26	62			
M7D10Y	0.12	100			
M7D50Y	0.069	160			

MOOD STAKE Elev 100.00

Station: MIDDLE ST. VRAIN CREEK NEAR ALLENS PARK, CO. Parameter: STREAM FLOW CFS

Year: 1925-1930 State: CO County: BOULDER

Monthly Statistics

ID: 06723000 Statistic: Mean Latitude: 40:10:00 Longitude: 105:26:38

Longitude: 105:26:38 Elevation: 7560.00

Drainage Area: 28.00

	nel.	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
# Dave	155	141	155	150	155	150	155	155	150	155	150	155	1826
Ave Days	3 4	474	188	24.13	104.5	160.7	106.2	61.30	22.39	13.94	9.49	6.60	43.93
May Day	000	8.00	12.00	84.00	246.0	312.0	219.0	183.0	27.00	35.00	15.00	8.00	312.0
Min Day	3.90	3.20	300	6.60	17.00	86.00	48.00	16.00	10.00	4.00	4.00	2.00	3.00
Will Day	y u	, u	i ic	un	ហ	2	'n	10	ഗ	S	S	S	Ω.
# Month	0.883	0.827	168	10.62	33.87	33.40	22.15	17.89	10.99	7.07	3.86	1.14	6.04
Skew Month	-0.094	1.06	-1 64	0.175	-0.068	0.892	-1.47	1.66	1.74	1.50	0.504	-0.405	0.576
Min Month	4 00	4.00	3.00	12,40	67.26	128.0	69.81	44.13	13,07	7.65	5,63	2.00	36.87
Max Month	6,00	6.00	7.00	36.60	142.2	210.1	125.1	91.74	41.13	25.68	15.00	8.00	52.72
Exceedences												2	
1%	00.9	6.00	11,45	81.50	245.4	301,5	193.1	181.9	56.50	35,00	15.00	8.00	230.2
704	00 9	009	006	58.00	225.3	256.5	159.0	150.0	51,50	28.50	15.00	8.00	162.0
906	9 6	008	7.00	54.00	206.0	228.0	152.0	95.00	42.00	26.00	15.00	8.00	137,4
30%	000	5.94	7.00	34.00	150.0	181.0	130.0	75.00	29,00	18.00	15.00	8.00	85.00
20%	00.0	4 65	6.20	20.00	94.50	152.0	108.5	52.50	19.00	13.00	10.00	7.00	14.00
%00 00	00.4	4 00	4.40	12.00	53.00	130.0	76.00	41,00	13.00	8,60	00'9	6.00	6.00
%09 %09	00 4	4 00	3.00	11.00	39,50	114.0	65.50	33.50	12.00	7.00	6.00	2,00	4.80
%26	4.00	4.00	3.00	10.00	32.75	100.0	59.75	31,75	11.00	6.00	5.00	2.00	4.00
%66 6	4.00	3.76	3.00	7.55	17,55	92.50	49.10	18.10	10.00	2.00	4.00	2.00	3.00

Station: MIDDLE BOULDER CREEK AT NEDERLAND, CO. Parameter: STREAM FLOW CFS

Year: 1907-1995 State: CO County: BOULDER

Monthly Statistics

06725530

Statistic: Mean Latitude: 39:57:42 Longitude: 105:30:14 Longitude:

8186.00 Elevation:

36.20 Drainage Area:

	-lan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	NON	car	7 Bo
# Dave	7697	2458	2697	2640	2728	2670	2759	2759	2670	2697	2610	2697	11.032
r Cays	5.41	5.04	6 44	23.03	124.4	240.2	134.6	53.03	24.99	17.67	11.40	7.11	33.07
Avg Day		12.00	7400	130.0	508.0	698.0	542.0	288.0	153.0	80.00	67.00	26.00	638.0
Min Day	0.800	1 90	2.20	3.00	12.00	27.00	15.00	9,60	6.60	4.40	2.70	2.20	0.800
Wooths	87	28.	87	88	88	88	88	88	68	87	87	87	87
SDev Month	130	1.15	2.09	10.72	39.65	72,66	61.87	23.81	10.32	7.30	3.80	1.96	12.4
Skew Month	-0.225	0.123	1.89	1.03	0.757	-0.014	1.05	0.798	1.14	1.41	0.834	0.589	0.074
Min Month	2.00	2.75	3.46	6.70	62.03	79.89	26.45	14.09	10.08	7.74	5.43	3.97	26.16
Max Month	8.77	8.42	15.41	57.47	251.3	399.3	326.4	117.5	65.17	47.19	23.13	12.65	83.22
Exceedences													2000
1%	9.50	8.30	18.00	101.6	369.4	547.5	398.8	165.0	69.00	48.03	26.00	00.4	3/7.
704	7.90	7.11	11.00	00.99	278.6	415.0	275.0	113.0	20.00	32.00	20.00	12.00	246.(
% 6%	7 20	05.0	00 6	45.00	233.2	370.0	239.0	95,00	41.00	28.00	18.00	10.00	176.0
%06	09.9	6.00	7.50	32.00	189.0	319.0	191.2	75.00	33.00	24.00	14.00	8.90	91.00
20%	530	2.00	5.80	16.00	107.0	230.0	116.0	44.00	23.00	16,00	10.00	6.80	16.00
%08	4 10	4.00	4.50	9.20	52.00	153.0	71.00	28.00	14.00	10.00	7.70	5,10	6.0
%06	9.60	3.40	4.00	7,30	37.80	120.0	55.00	22.00	12.00	8.70	6.70	4.30	4.9
%56	3.00	3.00	3.70	6.30	29.00	101.5	45.00	18.00	10.00	7.70	2,90	4.00	4.1
%66	2.00	2.50	3.00	5.10	18,28	67.10	29.00	13,00	8.37	6.20	4.70	3.00	3.0

Date: Tue Feb 13 2007 10:32:33

Site Location: Colorado Latitude: 39.9953 Longitude: -105.5070 Drainage Area: 5.63 mi2

Peak Flow Basin Characteristics			
100% Mountain Region Peak Flow (5.63 mi2			
Parameter	Value	Min	Max
Drainage Area (square miles)	5.63	5.5	945
Mean Basin Slope ft per ft (dimensionless)	0.18	0.126	0.554

Low Flow Basin Characteristics			
100% Mountain Region Low Flow (5.6	3 mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	5.63	1	1150
Mean Basin Elevation (feet)	9780	8400	12200
Mean Annual Precipitation (inches)	24.4	17.5	39.4

Streamflow St	atistics				
	2	Standard Error	Equivalent	90-Percent Pred	diction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
PK2	61.4	60			
PK5	90.7	49			
PK10	111	45			
PK25	136	42			
PK50	155	42			
PK100	174	43			
PK200	192	45			
PK500	216	49			

Streamflow St	tatistics				
Chadiatia	m (m3)	Estimation Error	Equivalent	90-Percent Pred	diction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
	0.50	5			

Q1	0.56	49	
Q2	0.55	49	
Q3	0.74	43	
Q4	2.18	56	
Q5	13.1	58	
Q6	22	510	
Q7	5.84	63	
Q8	1.97	70	
Q9	1.32	63	
QA	5.32	43	
Q10	1.23	50	
Q11	0.89	43	
Q12	0.67	45	
Low-Flow Statistics			
M7D2Y	0.32	62	
M7D10Y	0.15	100	
M7D50Y	0.0797	160	

StreamStats

Basin Characteristics Report

Juce: Tue Feb 13 2007 10:31:12

Latitude: 39.9953 Longitude: -105.5070

Parameter	Value
Area that drains to a point on a stream in square miles	5.64
Mean Basin Elevation in feet	9780
Mean basin slope in percent, computed from 10 m DEM	19.5
Mean annual precipitation in inches (unadjusted)	26.4
Mean basin slope determined using the grid-sampling method (dimensionless)	0.18
Mean annual precipitation in inches (adjusted)	24.5

Date: Mon Feb 12 2007 17:39:17

Site Location: Colorado Latitude: 40.0313 Longitude: -105.5373 Drainage Area: 2.08 mi2

Peak Flow Basin Characteristics			
100% Mountain Region Peak Flow (2.08	3 mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	2.08 (below min value 5.5)	5.5	945
Mean Basin Slope ft per ft (dimensionless)	0.17	0.126	0.554

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Low Flow Basin Characteristics			
100% Mountain Region Low Flow (2.08	3 mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	2.08	1	1150
Mean Basin Elevation (feet)	10700	8400	12200
Mean Annual Precipitation (inches)	27.5	17.5	39.4

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

		Standard Error	Equivalent	90-Percent Prec	liction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
PK2	30.8				
PK5	45.2				
PK10	55.1				
PK25	67				
PK50	76				
PK100	84.9				
PK200	93.6			- 1	2
PK500	105				

		Estimation Error	Equivalent	90-Percent Pred	diction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
Q1	0.3	49			
Q2	0.28	49			
Q3	0.32	43			
Q4	0.81	56			
Q5	6.04	58			
Q6	16.9	510			
Q7	6.19	63			
Q8	1.76	70			
Q9	1.04	63			
QA	3.32	43			
Q10	0.82	50			
Q11	0.52	43			
Q12	0.37	45			
Low-Flow Statist	ics				
M7D2Y	0.19	62			
M7D10Y	0.0989	100			
M7D50Y	0.0607	160			

Basin Characteristics Report

Date: Mon Feb 12 2007 17:38:45

Latitude: 40.0313 Longitude: -105.5373

Parameter	Value
Area that drains to a point on a stream in square miles	2.08
Mean Basin Elevation in feet	10700
Mean basin slope in percent, computed from 10 m DEM	18.7
Mean annual precipitation in inches (unadjusted)	29.7
Mean basin slope determined using the grid-sampling method (dimensionless)	0.17
Mean annual precipitation in inches (adjusted)	27.5

Q Cu bage

Date: Mon Feb 12 2007 17:42:33

Site Location: Colorado Latitude: 40.0333 Longitude: -105.5420 Drainage Area: 1.89 mi2

Peak Flow Basin Characteristics			
100% Mountain Region Peak Flow (1.89) mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	1.89 (below min value 5.5)	5.5	945
Mean Basin Slope ft per ft (dimensionless)	0.18	0.126	0.554

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Low Flow Basin Characteristics			
100% Mountain Region Low Flow (1.89) mi2)		
Parameter	Value	Min	Max
Drainage Area (square miles)	1.89	1	1150
Mean Basin Elevation (feet)	10800	8400	12200
Mean Annual Precipitation (inches)	27.7	17.5	39.4

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Streamflow St	tatistics				
		Standard Error	Equivalent	90-Percent Pred	diction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
PK2	29.8				
PK5	43.3				
PK10	52.6				
PK25	63.8				
PK50	72.2				
PK100	80.4				
PK200	88.5				
PK500	99.2				

10000		Estimation Error	Equivalent	90-Percent Pred	diction Interval
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum
Q1	0.29	49			
Q2	0.27	49			
Q3	0.29	43			
Q4	0.73	56			
Q5	5.58	58			
Q6	16.5	510		1 - 1	
Q7	6.24	63			
Q8	1.74	70			
Q9	1.02	63			
QA	3.18	43			
Q10	0.79	50			
Q11	0.49	43			,
Q12	0.35	45			
Low-Flow Statist	ics				
M7D2Y	0.19	62			
M7D10Y	0.0955	100			
M7D50Y	0.0593	160			

Basin Characteristics Report

Date: Mon Feb 12 2007 17:42:08

Latitude: 40.0333 Longitude: -105.5420

Parameter	Value
Area that drains to a point on a stream in square miles	1.9
Mean Basin Elevation in feet	10800
Mean annual precipitation in inches (unadjusted)	29.9
Mean annual precipitation in inches (adjusted)	27.7

http://ccc.atmos.colostate.edu/cgi-bin/mlydb.pl

2/12/2007

Feb Mar Apr May 1tation. 338 174 589 431 236 174 306 647 272 475 265 210 387 475 265 210 387 475 265 210 387 475 265 210 387 475 265 210 387 471 265 210 387 481 210 229 222 241 222 222 222 222 223 223 223 223 223 22							
tation. 338 149 340 316 174 589 431 236 475 265 210 387 493 272 493 272 493 272 493 272 493 272 493 272 493 272 493 272 493 272 493 273 273 292 292 292 292 292 2	Jun Jul	And	Sep	Oct	Nov	Dec	Annual
338 149 340 316 174 589 431 236 475 265 210 387 88 97 493 431 273 392 103 241 165 195 295 222 159 292 252 441 320 350 350 375 331 334 184 122 332 353 365 360 470 186 345 130 731 548 353 375 350 258 570 0							
174 589 431 236 475 265 210 387 88 97 493 431 273 392 103 241 165 195 295 222 159 292 252 441 311 314 184 122 320 350 302 375 321 351 479 232 203 133 807 186 203 133 807 186 320 350 305 341 211 531 214 305 350 350 258 570 0	83 18	3	120		16	M	2.8
171 306 647 272 88 97 493 431 273 392 103 241 159 292 252 441 311 314 184 122 320 350 302 375 321 351 479 232 130 350 365 350 350 375 351 21 538 361 231 646 310 0	9 25	0	71	4	169	173	0.8
475 265 210 387 88 97 493 431 273 392 103 241 165 195 295 222 159 292 252 441 311 314 184 122 320 350 375 321 351 479 232 130 470 186 341 211 531 807 186 350 350 353 341 211 531 548 353 350 350 258 570 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 28	0	1		3.1	~	8.9
88 97 493 431 165 392 103 241 165 195 295 252 1159 292 252 441 131 314 184 122 320 351 479 232 203 133 807 186 203 133 807 186 350 350 350 345 130 731 548 353 341 211 531 214 70 168 146 305 350 350 258 570 0	04 19	0	0		246	V	4.7
273 392 103 241 155 292 252 441 311 314 184 122 320 350 352 475 327 351 479 232 203 133 807 186 350 470 180 345 130 731 548 353 341 211 531 214 70 168 146 305 350 350 258 570 0	131 452	240	130	191	95	26	24.73
165 195 295 222 222 232 232 341 344 122 332 345 350 350 350 350 353 345 254 8 353 341 214 221 229 341 221 229 345 231 214 239 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99 66	4	1	0	28	55	2.8
159	26 41	94	-	9	305	6	i
311 314 184 122 320 350 375 203 133 807 186 2260 470 180 345 130 731 548 353 341 211 531 214 70 168 146 305 350 350 258 570 M M M 801 231 164 310 0	10 25	m	4	0	66	265	7.0
320 350 375 327 351 479 232 260 470 180 345 260 470 180 345 130 731 548 353 341 211 531 214 70 168 146 305 350 350 258 570 0	23 15	0	3	4	35	68	8
327 351 479 232 203 133 807 186 250 470 180 345 130 731 548 353 341 211 531 214 350 350 258 570 M M M M M M 801 231 164 310 0	6 43	228	-	N	154	131	3.8
203 133 807 186 250 470 180 345 130 731 548 353 341 211 531 214 70 168 146 305 350 350 258 570 0	64 14	1	0	m	62	64	7.1
260 470 180 345 130 731 548 353 341 211 531 214 70 168 146 305 350 258 570 M M M M M M 801 231 164 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 22	L	93	4	270	292	0.1
130 731 548 353 341 211 531 214 70 168 146 305 350 350 258 570 M M M M M 801 231 164 310 121 229 314 238 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11	219	136	CA	-	87	N
341 211 531 214 70 168 146 305 350 258 570 M M M M 801 231 164 310 0	33 28	78	H	0	5	145	m
70 168 146 305 M M M M 801 231 164 310 121 229 314 238 0	52 36	N	∞	13	274	4	6.4
350 350 258 570 M M M M 80I 231 164 310 0	81	4	220	0	4	47	27.99
M M M M M M M M M M M M M M M M M M M	96 22	0	H	S	10	8 21	5.2
801 231 164 310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M	116	113	132	178	204	
121 229 314 238 0 0 0 0 0 0 0 0	2 38	In	0	N	65	92	0.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52 19	65	0	0	0	IO	
0 0		0	0	0	0	IO	0
0 0		0	0	0	0	IO	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	0	0	0	IO	0
.98 2.43 2.78 2.42 .80 7.31 8.07 5.70 949 1944 1942 1947 .00 0.00 0.00 0.00 55+ 1955+ 1955+		0	0	0	0	IO	00.00
.98 2.43 2.78 2.42 .80 7.31 8.07 5.70 949 1944 1942 1947 .00 0.00 0.00 55+ 1955+ 1955+	0 114	387	4.7	131	299	Σ	
.80 7.31 8.07 5.70 949 1944 1942 1947 .00 0.00 0.00 0.00 55+ 1955+ 1955+	.06 2.3	0	i	i	3	H	o,
.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	.92 5.8	S	7.	5	4	4	6.4
.00 0.00 0.00 0.00 55+ 1955+ 1955+ 1955+	949 19	94	9	94	0	94	94
55+ 1955+ 1955+ 1955+	0.00 0.00	00.00	00.00	00.0	0.0	00.0	0.00
	955+ 1954	54	54	54	M	54	54
4 24 24	4		25	25		24	

http://ccc.atmos.colostate.edu/cgi-bin/mlydb.pl

2/12/2007

Can Feb Mar Apr May Jul Aug Sep Oct Nov Dec Annual 1cal monthly precipication. M A 219 332 96 398 34 120 15 18.32 1970 M M 67 219 332 96 398 34 120 15 17.27 1971 37 116 101 461 179 45 309 146 326 23 47 11.23 48 475 11.2 263 97 188 34 120 17.27 17.27 17.27 17.27 17.27 18.26 17.2 17.27 18.2 17.2 17.27 18.2 17.2 17.27 18.2 17.2 18.2 17.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2														
Manufally precipitation. March 67 219 332 96 398 34 120 15 17.2 133		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
70 M M 67 219 332 96 398 34 120 15 71 137 116 101 461 179 45 309 146 326 23 42 110 461 179 45 309 146 326 23 42 110 461 179 45 309 146 326 23 42 110 47 180 326 23 42 110 47 180 326 37 181 326 37 181 326 37 181 36 34 181 36 34 181 36 34 181 36 37 181 36 37 181 36 37 181 47 48 26 116 32 48 16 36 31 31 31 31 31 31 31 31 31 31 31 31 31 32 </td <td>Total mont</td> <td>thly pre</td> <td>cipitatio</td> <td>'n.</td> <td></td>	Total mont	thly pre	cipitatio	'n.										
71 37 116 101 461 179 45 309 146 326 23 42 47 18.3 73 133 40 79 65 165 192 116 244 199 121 306 67 17.2 73 65 115 248 7 184 265 116 149 121 306 67 17.2 76 67 115 248 7 184 265 116 149 121 306 67 17.2 76 67 115 248 7 180 187 243 116 149 221 84 156 167 131 167 308 167 17.2 167 131 187 476 189 149 221 89 146 26 139 146 26 139 166 131 181 164 184 184 184 <	1970	M	Σ		Σ	29	1	C	0	a	24	100	u	
72 133 40 79 65 165 192 116 244 199 121 306 67 175 74 76 6 113 385 475 117 263 97 185 76 93 200 20.9 74 76 6 113 385 475 117 263 116 149 221 36 47 180 180 175 26 180 20 <	16		-	101	461	179	4	0	1 4	10	4 60	0 4	47	a
73 85 6 113 385 475 117 263 97 185 76 93 200 20.26 74 70 65 115 248 7 184 265 116 149 221 86 34 15.6 75 73 55 129 130 152 192 343 116 149 221 86 34 15.6 77 12 65 72 221 102 106 303 197 21 89 72 16.4 440 6 15.0 16.7 131 355 202 48 48 22 194 16 13.9 16.4 48 25 16.4 16.5 11.3 13.1 13.5 202 48 48 22 194 16 13.1 13.1 440 6 13.9 15.0 15.0 13.1 13.1 13.1 13.1 13.1 13.1 <td>10</td> <td>m</td> <td>40</td> <td>79</td> <td>62</td> <td>165</td> <td>01</td> <td></td> <td>4</td> <td>10</td> <td>10</td> <td>306</td> <td>67</td> <td>0.0</td>	10	m	40	79	62	165	01		4	10	10	306	67	0.0
74 70 74 70 74 70 74 70 74 70 74 70 74 70<	1973		9	113	3.85	475	-	10	- OJ	00	1	0) C	0
75 73 55 129 1301 252 192 343 116 119 64 145 26 16.4 76 63 45 103 167 180 137 221 167 323 138 45 16.4	1974	70	67	115	248	7	8	0	1	4	N	86	1	1 10
76 63 49 103 167 180 137 221 167 323 138 45 49 167 77 12 65 72 221 106 303 197 21 89 72 51 13.1 78 39 20 167 131 355 202 48 48 22 194 16 13 13.1 166 13 106 31 106 13.2 194 16 113 13.5 13.5 13.6 190 14 381 106 33 219 21 13.1 13.3 13.3 13.9 440 6 139 150 106 31 106 31 13.3 13.3 18.4 47 8 123 19.6 19.6 19.9 13.1 19.6 19.9 19.6 19.9 19.6 19.9 19.6 19.6 19.6 19.6 19.6 19.6 19.6	1975			129	130I	252	0	4	1	H	10	A.	26	4. 6
77 12 65 72 221 102 106 303 197 21 89 72 51 131 335 197 21 89 72 51 131 335 131 22 194 16 93 219 86 21.4 48 22 194 46 190 114 381 106 93 219 46 190 114 381 106 33 197 219 413 35 210 66 139 106 105 31 219 86 21.4 31 210 31 210 48 22 194 48 22 194 48 21 31 210 18 31 410 272 280 209 263 263 167 18 354 477 477 477 477 477 477 477 471 477 471 477 471 477 471 4	-			103	167	180	m	CA	9	O	3	4	4 9	4. 6
78 39 20 167 131 355 202 48 48 22 194 16 13 13.5 79 53 37 213 181 476 190 114 381 106 93 219 86 21.4 80 152 411 77 319 440 6 139 150 105 31 53 219 6 15.1 86 21.4 87 106 32 219 6 15.1 10 10 329 118 25.1 19.6 19.3 19.1 19.6 19.3 219 6 19.1 19.2 19.6 19.3 19.2 19.6 19.3 19.2 19.6 19.3 19.3 19.3 19.3 19.6 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3 <td< td=""><td>1977</td><td></td><td>65</td><td>72</td><td>221</td><td>102</td><td>0</td><td>0</td><td>9</td><td>N</td><td>00</td><td></td><td>51</td><td>3.7</td></td<>	1977		65	72	221	102	0	0	9	N	00		51	3.7
79 53 37 213 181 476 190 114 381 106 93 219 86 21.4 80 152 411 77 319 440 6 139 150 105 31 53 219 86 21.4 81 18 45 191 73 440 6 139 150 105 31 28 29 190.6 19.3 28 29 234 370 188 354 477 10 329 1181 25.5 19.9 19.3 19.3 19.3 19.3 19.9	1978		20	167	m	355	0	48	48	N	0	-	1	3
80 152 411 77 319 440 6 139 150 105 31 53 0 15.1 81 18 45 191 73 410 272 280 209 263 123 28 52 19.6 82 19 45 191 73 469 308 200 316 48 25 19.6 83 11 43 330 234 370 188 354 477 87 10 329 1181 25 19.6 84 30 92 73 139 156 1071 313 20 283 88 157 17 21 25 19.6 48 17 41 14.6 89 86 25 413 260 226 212 121 17 14 14.6 14.6 14.6 48 14.6 14.6 48 14.6 14.6 </td <td>1979</td> <td></td> <td>37</td> <td>-</td> <td>∞</td> <td>476</td> <td>0</td> <td>H</td> <td>8</td> <td>0</td> <td>01</td> <td>-</td> <td>00</td> <td>1.4</td>	1979		37	-	∞	476	0	H	8	0	01	-	00	1.4
81 18 45 191 73 410 272 280 209 263 123 28 52 19.6 82 29 32 59 731 469 308 200 316 196 48 25 19.6 83 111 43 330 234 370 188 354 477 87 10 329 1181 25.5 84 30 92 141 270 62 112 312 4371 110 244 12 23 18.4 85 35 92 73 139 156 1071 313 20 283 85 117 41 14.6 86 25 M 59 413 260 226 212 1221 167 174 205 55 87 45 169 M 183 341 198 178 284 72 69 106 153 88 59 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.51 1.52 1.69 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.51 1.980 1987 1983 1971 1979 1982 1983 1970 1984 1980 1371 1.51 1.52 1.69 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.11 1.52 1.69 1987 1984 1980 1978 1985 1973 1984 1980 1971 1.53 1973 1984 1980 1971 18 18 18 18 18 18	1980		H	77	319	440	9	3	N	0	31	TL)	0	2
82	1981	18		Q.		410	272	8	0	6	N	28	52	1 6
83 11 43 330 234 370 188 354 477 87 10 329 1181 25.5 84 30 92 141 270 62 112 312 4371 110 244 12 23 18.4 85 36 92 73 139 156 1071 313 20 283 85 117 41 4.6 86 25 M 59 413 260 226 212 1221 167 174 205 55 87 45 169 M 183 341 198 178 284 72 69 106 153 88 59 35 163 227 339 M M M M M M M M M 0.54 0.59 1.29 2.18 2.69 1.67 2.39 2.01 1.74 1.02 1.12 0.73 17.7 1.52 1.69 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.5 1980 1987 1983 1971 1979 1982 1983 1970 1984 1983 1973 198 1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 1971 1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 1977 1 18 18 18 1	1982		32		73I	469	308	0	-	9	4	25	0	6
84 30 92 141 270 62 112 312 4371 110 244 12 23 18.4 85 36 92 73 139 156 1071 313 20 283 85 117 41 14.6 86 25 M 59 413 260 226 212 1221 167 174 205 55 87 45 169 M 183 341 198 178 284 72 69 106 153 88 59 35 163 227 339 M M M M M M M M M M O.54 0.59 1.29 2.18 2.69 1.67 2.39 2.01 1.74 1.02 1.12 0.73 17.7 1.52 1.69 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.5 1980 1987 1983 1971 1979 1982 1983 1970 1984 1983 1973 1983 1973 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 1971 1 18 17 17 17 18 18 18 18 18 18 18	1983			330	234	370	188	10	1	00	10	O	0	י ת
85 36 92 73 139 156 107I 313 20 283 85 117 41 14.6 86 25 M 599 413 260 226 212 122I 167 174 205 55 87 45 169 M 183 341 198 178 284 72 69 106 153 88 59 35 163 227 339 M M M M M M M M M M M M M 0.54 0.59 1.29 2.18 2.69 1.67 2.39 2.01 1.74 1.02 1.12 0.73 17.7 1.52 1.69 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.5 1980 1987 1983 1971 1979 1982 1983 1983 1970 1984 1983 1973 1984 0.11 0.06 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1973 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 1977 1 18 17 17 18 18 18 18 18 18 18 18 18	1984		92	4	270	62	112	H	37	-	4	-	10	9 4
86 25 M 59 413 260 226 212 1221 167 174 205 55 81 87 88 87 45 169 M 183 341 198 178 284 72 69 106 153 88 88 59 35 163 227 339 M M M M M M M M M M M M M M M M M M	98		92		3	156	1071	-	C	00	00	-	4.1	
87 45 169 M 183 341 198 178 284 72 69 106 153 88 59 35 163 227 339 M M M M M M M M M M M M M M M M M M	8		Σ	59	413	260	226	-	22	10	1	1 0	4 14	
0.54 0.59 1.29 2.18 2.69 1.67 2.39 2.01 1.74 1.02 1.12 0.73 17.7 1980 1987 1983 1972 1974 1982 1985 1977 1985 1977 1983 1973 1973 1980 1981 1972 1974 1980 1978 1980 1977 1989 1978 1980 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1977 1981 1980 1977	9		169	Σ	00	341	198	-	28	1	10	0) IL	
0.54 0.59 1.29 2.18 2.69 1.67 2.39 2.01 1.74 1.02 1.12 0.73 17.7 1.52 1.69 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.5 1980 1987 1983 1971 1979 1982 1983 1970 1984 1983 1973 1973 1986 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1973 1986 1972 1974 1980 1978 1985 1977 1983 1984 1980 197 1985 1971 18 18 18 18 18	8			6	N	339	M	M	Μ	M	Σ			
1.52 1.69 3.30 4.61 4.76 3.08 3.54 4.77 3.98 2.44 3.29 2.00 25.5 1980 1987 1983 1971 1979 1982 1983 1970 1984 1983 1973 198 0.11 0.06 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 197 c 18 17 17 17 18 18 18 18 18 18 18 18 18 18	d)	0.54	0.59	1.29	7	9	9	3	0	7	0	Υ.	1	7 7
1980 1987 1983 1971 1979 1982 1983 1970 1984 1983 1973 198 0.11 0.06 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 197 C 18 17 17 18 18 18 18 18 18 18 18 18 18 18	×	1.52	1.69	3.30	10	7.	0	5	7	0	4	C	C	n.
0.11 0.06 0.59 0.65 0.07 0.06 0.48 0.20 0.21 0.10 0.12 0.00 13.1 1983 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 197	ar	1980	1987	1983	1971	16	98	98	98	97	98	98	16	198
1983 1973 1986+ 1972 1974 1980 1978 1985 1977 1983 1984 1980 197 c 18 17 17 18 18 18 18 18 18 18 18 18 18 1	d	1.	90.0	0.59	0.65	0.	0	4	S	C	7	-	C	1 6
18 17 17 18 18 18 18 18 18 18 18 18 18 1	ar	98	1973	986	1972	16	98	97	98	16	98	98	. 6	197
	int				18	19	18	Н	H	H	H	1	1	1

2/12/2007

	Annual				18.10	26.25	1.2					18.82	U	1965	N	96	
	Dec		26	45		24	58	IO	M	M	M			1964		1967	
	Nov		M	80	125	18	0	125	98	27	Σ	0.57	1.25	1967+	00.0	1966	
	Oct		Σ	43	15	0	8.7	0	0	441	Σ	0.84	4	1969	00.0	8	
	Sep		M	254	110	211	4	TU	0	Σ	Σ	1.46	2.54	1963	0	9	
- 8360	Aug			579	5.0	O	178	355	0	0	M	1.84	5.79	96	00.0	1969+	
1970 Elevation	Jul		M	236	261	844	159	245	149	0	Σ	2.71		1965	00.0	9	C
	Jun		M	Σ	1	376	140	458	70	0	X	2.03	4.58	1961	00.00	9	
ior years 1962 itude - 10531	May		M	75	m	142	96	296	0	771	Σ	2.47	7.71	1969	00.00	1968	-
(1)	Apr		M	0	185	220	120	89	146	153	Σ	1.30	2.20	1965	00.00	1963	t
- 4000	Mar	1.	Σ	150	135	159	0	112	73	83	M	1.02	1.59	1965	00.00	1966	I
aca ror Latitude	Feb	pitation	M	72	140	8.1	120	76	109	1.4	6.8	0.88	1.40	1964	0.14	1969	
= 51342 I	Jan	hly preci	M	173	28I	430	22	57	13	47	0	96.0	4.30	1965	00.00	1970	c
Station - 51342 Latitude - 4000 Long		Total monthly precipitation.	1962	1963	1964	1965	1966	1967	1968	1969	1970	Ave	Max	Year	Min	Year	tailor