UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT COLORADO STATE OFFICE 2850 YOUNGFIELD STREET LAKEWOOD, COLORADO 80215-7093

In Reply Refer To: 7250 (CO-932)

DEC 2 6 2007

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) and the Colorado Division of Wildlife (CDOW) are writing this letter to formally communicate their instream flow recommendation for Baldy Creek, located in Water Division 5.

Location and Land Status. Baldy Creek is tributary to Garfield Creek approximately four miles south of New Castle, Colorado. The creek is located within the lower Colorado River watershed. This recommendation covers the stream reach beginning at the headwaters and extending downstream to the headgate of the Murray and Yule Ditch. Approximately 77 percent of the 9.0-mile reach is located on federal and state lands, while the remaining 23 percent is located on private lands. The headwaters of the creek begin on BLM lands, and then the creek flows into the Garfield Creek State Wildlife Area. From there, the creek flows through a mixture of private and BLM lands before flowing into another CDOW parcel that is part of the Garfield State Wildlife Area.

Biological Summary. Baldy Creek is a high gradient stream, with large substrate size. The creek is often confined by a narrow canyon, and it has cut down to bedrock in numerous locations. The riparian community is very vigorous in the upper portions of the creek. The health of the riparian community is improving on the portions of the creek that are easily accessible for public use and livestock grazing. The creek provides good pool habitat, but low flows in late summer and fall are a limiting factor for the fish population. Fishery surveys indicate that the creek supports self-sustaining population of Colorado River Cutthroat Trout.

R2Cross Analysis. The data analysis, coordinated between BLM and CDOW, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree:

• 6.5 cubic feet per second is recommended during the snowmelt runoff period from April 1 through July 15. This recommendation is driven by the average depth and average velocity criteria. Because the creek is characterized by short riffles

between numerous plunge pools, it is very important to maintain adequate velocity and depth in the limited riffle habitat.

• 0.6 cubic feet per second is recommended for the base flow period from July 16 through March 31. This recommendation is driven by water availability. This flow rate does not meet any of the three instream flow criteria, but represents the average amount of water available in the creek. This flow rate will allow fish to survive in pool habitat during base flow periods.

Water Availability. There is one decreed diversion within the proposed instream flow reach, the Fairview Mesa Ditch. This water right is owned by CDOW and is currently not being operated.

BLM does not recommend using the historic U.S. Geological Survey (USGS) gage for Baldy Creek (09088000) that was operated from 1955 to 1961. This gage was located downstream from the Fairview Mesa Ditch, which is decreed for 10 cfs. This ditch was actively diverted during the period of record for the gage. These diversions resulted in very low flow measurements from mid-summer to fall, when the ditch was capable of sweeping the entire flow of the creek. As noted above, this ditch is not currently operating.

BLM recommends using the historic West Divide Creek gage to calculate water availability. This watershed has a very similar slope, aspect, and watershed size. The gage data needs to be adjusted to reflect diversions that occur within the West Divide Creek watershed.

Relationship to Management Plans. Genetic sampling indicates that the Colorado River Cutthroat Trout population is of high genetic quality. Accordingly, BLM will manage this creek to support a conservation population. Data sheets, R2Cross output, fishery survey information, and photographs of the cross sections were submitted with BLM's draft recommendation in February 2007.

We thank both the Water Conservation Board for its cooperation in this effort. If you have any questions regarding our instream flow recommendation, please contact Roy Smith, Water Rights Specialist, at 303-239-3940.

Sincerely,

Linda M. Anañia
Deputy State Director

Resources and Fire

cc: Jamie Connell, Grand Junction FO Tom Fresques, Glenwood Springs FO

FIELD DATA FOR **INSTREAM FLOW DETERMINATIONS**

CONSERVATION BOAR	D		LUC	AHC	יו אי	N F O I	' IVI A	AI IOI	4								
STREAM NAME: Ba	Idy Creek	egis.					·			· · · · · · · · · · · · · · · · · · ·				C	ROSS-	SECTIO	N NO.:
CROSS-SECTION LOCATION:	0,5 m		7.50	rea	m	b	ru	u Y	31	M-	- S	ta	de	100	- e	nd	any
									. 69								9
0.12-00		JOHES	· (2 8	S MA	1+6				- Line	<u>-</u>				PM:		1 .
DESCRIPTION	NE	ECTION:	7	<u>' "</u>	OWNSH				<u> </u>	RANGE	:: 	<u>_7</u>	0 E	(W)	4	Div	すと
COUNTY: Gardie	WATERSHE		<1€	* G	e ej	w	TER D	IVISION		The second			DOW V	VATER (CODE:	190	253
MAP(S):	ender MAn.	. 7.5	<i>,</i>					3	ij		02	85	<u>}</u>	26			
USFS:		1	Ú ON	dio	<u> </u>	7,6	30	१ १५				73		52			
			SU	PPLE	EME	NTA	L D	ATA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YES NO ME	ETER TYPE:	} ₹:	00	h -	M	$\wedge 1$	310	HC.	,			ŗ				i i
METER NUMBER:	DATE RATI	ED:		1	B/SPIN:	_		sec	TAPE V			9Y 6	ි. os/foot	****	E TENS		/ ピープ lbs
CHANNEL BED MATERIAL SIZ	ZE RANGE:	ples				РНОТ	OGRAF	PHS TAK	EN YE	S/NO		NUMB	ER OF I	РНОТО	GRAPH	S:	
			CH	ANN	FI D	ROF	II F	DAT	Δ				<u></u>				
			O117	71414				UA!									
STATION	DISTANCE FROM TAPE			D READ	<u>·</u>						(3				<u> </u>	LEGEND:
Tape @ Stake LB Tape @ Stake RB	0.0			Å β _A eg¢	Ţ		s -		23	<u></u>				<i>></i> ~		- SI	ake 🕱
1 WS @ Tape LB/RB	0.0			11.70°	př.	1	K E	•	$\langle \overline{0}$	Branch .	TAPE	Kon	-	(2)		- 1	ation (1)
				87/		_	СН		· W.		Ţ	R				P	hoto 🕠
WS Upstream WS Downstream	33.0'		<u> </u>	,9			-					4	-			- Dire	ction of Flov
<u> </u>	21.0'	.0 عـ	03	77	6	\dashv	ļ		í	ALC:	(<i>,</i>				
								11345	A D.V								****
		A	JUAI	110 8	AWI	·		UMM									
STREAM ELECTROFISHED:	YES/NO DISTANCI	E ELECTROFI:	SHED: _	f	t	f	ISH C	AUGHT:	(Es)N)		WATE	RCHE	JISTRY	SAMPL	.ED: YE	S/NO
SPECIES (FILL IN)	LENGTH	- FREQUENC	T	I	T -	Τ	Γ	T	T	<u> </u>	T	T	1	ĭ	1		Υ
SPECIES (FILE IN)		1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
					ļ												
AQUATIC INSECTS IN STREA	M SECTION BY COMMON	OR SCIENTIF	C ORD	FR NAM	(F)	<u> </u>					1	<u> </u>		l		İ	<u> </u>
maufly	caddist	<u> </u>		NO	<u> </u>	,											
· · ·		- f + -			OMM	IENI	- C										
Ph : 80					J IVI IV		3										····
TOS: 220	min a																
10 May - 17	<u> , , C </u>									· · · · · · · · · · · · · · · · · · ·		-		 -			
											········						

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	(Ja)	dy	reek			CROS	SS-SECTION	N NO.:	DATE:	SHEE	T OF
BEGINNING OF M		5605.054	VATER LOOKING (KE)	OOWNSTREAM	LEFT / RIG	HT Gage Re	ading:	0,2 T	IME: 12	145	
Stake (S) Grassline (G)	Distance From	Width	Total Vertical	Water Depth	Depth of	Revolutions		Velocity			
Stake (S) Grassline (W) Rock (R)	Initial Point (ft)	(ft)	Depth From Tape/Inst (ft)	(ft)	Obser- vation (ft)		Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
5	0.0		6.22								
S	10		639						ļ		ļ
	2.5		6.87 6.87 7.08	d							<u> </u>
	4.5		6.87 7.08	0.20			 -	1.78	 		
	5,5		7,13	0.25				rh			
	6,5		7.12	0.25				1.73	 		
 	7.89		7.09	0.20					 		
	85		7.08	0.70			 	0.59	 		<u> </u>
	9.5		7,00	0.10			 	0.76	 	 	
	10.5		7.07				 	0,48		 	
	11.5		7.16	0.20			 	1-36	 	<u> </u>	
12.	2.5	7 - 17	*** ***	0.45	10.45			2.22	12.28		
130	2.5 3.5	7.3Y)	7.36	0.5	(0.35		 	2.55	<u> </u>	<u> </u>	
	14,5		7. 22	0,35				1.65	†	 	
	15.5		7,14	0,3 <u>5</u> 0,25				1,360			
	16.5		7,19	0.2				0.11	<u> </u>		
	17.5		7.18	0,2				0.04			
	3.5		7,40	0.4				1.25	<u> </u>		
	<u>:9,5</u>		7,47	0.5			ļ	0,20	_		
<u> </u>	7 0.5		7.19	0.2			ļ	0,12	ļ		
	21.5		7.32	0.3				0.30			
	20.5		7,72	0,2				0.05			
	33.5 34.5		7.13	0.15				0.78			
	24,0		7, 0%	0.1			ļ	0.58	_	ļ <u>.</u>	
						·	ļ				
							<u> </u>		<u> </u>		-
											-
									 		
										1	
				<u> </u>							
 							<u> </u>				-
'w\	25.5		6 77							-	1
	21.5		6.81				<u> </u>		<u> </u>	 	
	290		6.99 6.81 6.47 5.81						 		
5	31.0		5,81								
									<u> </u>		
TOTALS:											
End of Measure	ement Tim	e: 1;20	Gage Reading	0.2	CALCULATI	ONS PERFORME	D BY:	CA	ALCULATIONS	CHECKED BY:	

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

CONSERVATION BOARD											-						
STREAM NAME:	1 Compa	Ç*					an in								ROSS-	SECTIO	N NO.: 2
CROSS-SECTION LOCATION:	0.3 110	ies	u	131	rec	7M	\int	rel	M	BL	M	<u> </u>	a	L	bs	NU	don
			1	•							,						0
DATE: OBSERVERS	* T, fre:	551U	cs,	¥		15											<u> </u>
LEGAL 1/4 SECTION: DESCRIPTION	NE SE	CTION:	7	TO	OWNSH	IP:	بنمين) N	(S)	RANGI	E: 	9	<i>O</i> E	./W	PM:	60	火
COUNTY: Carlela	WATERSHED):	4.550 d t	de		WA	TER DI	VISION	5				DOW V	VATER	CODE:	19	>53
USGS:	r Mdn.		51														
MAP(S): USFS:		- /															
			SU	PPLE	ME	NTA	L DA	TA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	ES/NO MET	TER TYPE	: 14 c	7 (\$.	h	ħ.	C 1). Si 1		(f							
METER NUMBER:	DATE RATE	D:			B/SPIN:			sec	- 1	्री VEIGHT		1	bs/foot	TAP	E TENS	SION:	lbs
CHANNEL BED MATERIAL SIZE RANGE	GE: (2)	J00		1	, =	РНОТО			EN: YE	>					GRAPH		<u>ーー</u> く
	Same Section Section	and the same								ara de						*	<u> </u>
			СН	ANN	EL P	ROF	ILE	DAT	Ά								
STATION	DISTANCE FROM TAPE (ft)		RO	D READ	ING (ft		Ī				(3 />					LEGEND:
Tape @ Stake LB	0.0		Sur	_	è		_ -				3	1	<u>) </u>			- s	take 🕱
Tape @ Stake RB	0.0		SWY	<u>`Ye¥</u>	ed		S K E		$\angle V$	مر ره	> #	1 6	- 4	9		Št	ation (1)
1) WS @ Tape LB/RB	0.0		7,41	*	1.41		T C			√	ΤAP		v			P	hoto 🗘
2 WS Upstream	26.0		6.3			_										_	
③ WS Downstream	26.0		8.4								C		Ĩ.			Dire	ection of Flow
SLOPE 2.06	/52.0 =	O,	0390	ø) 				
			AQUAT	ric s	AMF	LIN	G SI	JMN	IARY	,							
STREAM ELECTROFISHED: YES/NO	DISTANCE	ELECTRO	DFISHED:_	ft	1	F	ISH CA	UGHT:	YES/N)	T	WATE	R CHE	MISTRY	SAMPL	LED: YE	S/NO
	LENGTH -	FREQUE	NCY DIST	RIBUTIO	ON BY	DNE-IN	CH SIZ	E GRO	UPS (1.	0-1.9,	2.0-2.9	, ETC.)					
SPECIES (FILL IN)		1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
				<u> </u>							ļ		ļ	<u> </u>	 	 	
				 	-			<u> </u>						<u> </u>	 		
				†									<u> </u>		\vdash		
AQUATIC INSECTS IN STREAM SECT	ION BY COMMON O	R SCIEN	TIFIC ORD	ER NAM	E:								•				
SPONEFLY NYMOH	S, MAYFL	4 1	YMAPH	ر ک	1	W.T	· F	14	CAS	(Ir	65	- A	i De pre	den	+		
	,			CC	ММ	ENT	s										
Ph= 8.0																	
70S: 220																	
Jemp: 120																	
1															ميند		

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Wak	ty cr	zek				CROSS	S-SECTION	INO.: ス	C)ATE:	SI	HEET OF
BEGINNING OF M	EASUREMEN	EDGE OF W	ATER LOOKING (OOWNSTREAM	LEFT / RIG	HT Ga	ge Rea	ıding:	.3 ₁₁	TIN	ΛE:	*	
o Stake (S)	Distance	Width	Total	Water	Depth	Revoluti	ons		Velo	city (ft/sec)		
Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	(ft)	Vertical Depth From Tape/Inst (ft)	Depth (ft)	of Obser- vation (ft)			Time (sec)	At Point		Mean in Vertical	Area (ft ²)	Discharge (cfs)
5	0.0		5.64						ļ			 	
<u>G</u>	1.5		6.38										
W	1.9		7.41										
-													
	-	····											
	2.5		7.83	0.40					0.50	5			
	3.5		8.00	0.60					0.75				
	4.5		7,72	0.50					1.2	0			
	5.5		7,81	0.40					1.34				
	6.5		7.60	0.20					0.64				
	7.5		7,63	6.20					0.00)			
	8.5		7,74	0.30				<u></u> -	1.04				
	9.5		7.62	0.30 0.20 0.25					1.41				
	10.5		7.67	0.25					1.93			-	
	11.5		7.77	0.35					0.31			 -	
	13.5		7.80	0.40					1.10			-	
	145		7.82	0.40	1				1.00				
16.0	15.5	/ -2 00	7,79	0.40	10,50				1,95	1	1.26		
100	16.5	(7,89)	7.76	0.35	\ U \				1.63	/	1 + (54/60		
	17.5		7.95	0.55					1.39				
	18.5		7,86	0.45					1.81				
	19.5		7,78	0.40					0.30				
_									ļ				
										-			
								· · · ·	 			 	
-													
									 				
W	Z0.0		7.41										
	22.0 25.0		7.11										
	25.0		6.95					 -					
<u>_</u> 6	29.0		6.38										
TOTALS:													
End of Measure	omost T	70: 7: 4=		وت ا	CALCULAT	IONS PERF	ORMED	BY:		CA	LCULATIONS	CHECKED	BY:
Life of Measur	ement Hr	116. 7:05	Gage Readin	g: 1_ 2 t						JA			

DATE OF SURVEY: 9/24/01

PAGE 02/05

Page 1_ cf 1_

CDOW STREAM SURVEY (1991 REVISION) LEVEL 2: FIELD SURVEY SUMMARY

STREAM: Baldy Creek

SĒC#:

WATER CODE: 19253

CDOW REGION: WE

SURVEYORS: Bill Elmblad, Kevin Chesney

SURVEY LOCATION: T 75

R 90W S 23 NE 3

ELEVATION:

STATION #:

UTM ZONE: 13 S UTM X: 0292048

UTM Y: 4367519 (lower end of sample reach)

STATION LENGTH: 265 (FEET)

LOCATION DESCRIPTION: at private land

STREAM FLOW PROFILE (Y or N):

IF YES-DATE AND TYPE:

IF YES-DATE AND TYPE:

HABITAT EVALUATION (Y or N):

FISH PRESENT (Y or N): Y, POP. EST. METHOD: Seber-LeCren

WATER CHEMISTRY ANALYSIS (Y or N): IF YES-ATTACH SEPARATE ANALYSIS SHEET

AVG, WIDTH: 2.3 (FEET)

TOTAL STATION AREA: 0.014 (ACRES)

FLOW (CFS) AT TIME OF SURVEY:

METHOD: Electrofishing

LIMITING FACTORS TO FISHERY: low stream flows.

COMMENTS: 28 fish taken in two population estimate passes but 23 were age 0 and excluded from estimate. 22 larger fish were taken in one beaver pond outside the population estimate reach and are not included in estimate, fin clips were taken from these fish for genetic analysis.

LENGTH FREQUENCY RECORD (CM)

	r									-																
SPECIES	0 1 2	2 1 4	4 1 6	8 1	8 J 10	10 1 12	12 14	14 ! 16	16 1 18	18 20	20 1 22	22 ! 24	21 1 26	2.5 1 2.8	28 i 30	33 (30	32 4 34	36 1 36	36 1 38	3 k 40	40 1 52	42 4 44	14 1 16	4 8	1 B 5 P	30 ; U 2
CSH			₹1		3,	2	ઇ	6	7	1	1	4														Ĺ
								- ***			,															
																						-				
																							*			
L	<u> </u>			L.,,	l	L.											ــــــــــــــــــــــــــــــــــــــ	<u></u>					L			<u> </u>

SUMMARY INFORMATION

SPECIES	NO, FISH CAUGHT	AVG. LENGTH (CM)	LENGTH RANGE (CM)	AVG. WEIGHT (Grams)	WEIGHT RANGE (Grams)	% TOTAL CATCH	810MASS lb/Acre	DENSITY No./AcreConf. In	
CRN	49	12-4	4.8-238	46.7	7-135	100	12	574	
	7.00								

Reason for survey: fish population survey, take fish tinsue for genetic purity analysis.

Conclusions: only cutthroat trout present. Mean Wr for 130-199mm - 79.7 and mean Wr for 200-299mm - 87, condition relatively poor.

Management implications: possible Colorado River sutthmost trout conservation population. Few adult fish in this stream but good reproduction Adults mainly in one beaver pond in the sample area.

LEV99139V STE

WATER:	Baldy Creek			COUNTY:	Garfield		
DATE: CODE: LOCATION: UTM X:	MM/DD/YY 19253 at private land 13 S 0292048		STATION LENG STATION WIDT mean	HS (ft)::	264	1st PASS: 2nd PASS: Capture P:	8 0 1.00
UTM Y: CREW: NOTES: T7S, R90W,	4367519 XXXXX		station size acres hectares			Popn Estimate: 95% Cl (+/-):	\$ 0
Sec. 23 NE 1/4	, 0 0 0		MIN SIZE (mm)	90			_
SPECIES:	CUTTHROAT	FROUT	NUMBER/ACR LBS/ACRE NUMBER/HA KG/HA	574 42 1418 47		95%CI (+/-): 95%CI (+/-): 95%CI (+/-): 95%CI (+/-):	0 0
LENGTH	WEIGHT PASS		Length (mm)		-	Weight (g)	
49 59 48 53 51 48 55 60 63 57 105 126 62 58	12 15	T T T T T T T T T T T T T T T T T T T	2	141 15 1915 100 237 8 30		Mean Standard Error Variance Minimum Maximum Count 95% Cl	33 15 1837 7 136 8 30
50 61 54 128 155 237	1 4 35	1 :	2 10	15 20 25 LE	5 30 38 ENGTH (cm)	40 45 50	55
121 61 56		1 2 2 2 2	ЭРРАТРИС Д			(1) (2) (1) (1) (1) (1) (1) (1)	
61 51 50		2 2 2	NUMBER/MILE LBS/MILE NUMBER/KM KG/KM	160 12 99 3		95%Cl (+/-): 95%Cl (+/-): 95%Cl (+/-): 95%Cl (+/-):	0 0 0
			0-8 inches 8-14 Inches >14 Inches	Captured 27 1 0		0-8 inches 8-14 inches >14 inches	Percent 96 4 0

02/26/2007	08:02	-1 ⁹⁷⁰⁹⁴⁷²	2829 /	YUW	, SK. C	GSFO CJ, NE	14		ŕ	04/05 \
			•					24/0	of_	- Maria San San San San San San San San San Sa
<u>\$</u>	GEAR	destro	12/	EFFO	RT	OC	NO		- - [Hor.
all fish from one Branton	SF		WT	MARK		SP	LGTH	WT	MARK	
10	Tak	N 145 238	31		1	CRN	59	-		
\$		173	45		1		48	-		
٤		195	62				53	-		
3	 	1143	25		4		51	-		
	-	225	35		1		175	-		
* \		154	35	 	1		60	-		
		188	60]		63	-		1/2
8		158	32				57	•		1 St Palls
		131	17		4		105	113	<u> </u>	_D<
		165	37		1		126	15		(\$
		175	47		1		58			~
1		234	132		1		156	35		
	ļ	171	41				100	7		
		182	45		1		50	-		
		154	42		}		5+	-	7	
	<u> </u>	144	26				128	14		l d
. \		179	50				128	35	,	1
		130	21				237	136		
		-					121	12		
	-									
•	1									
						-				
		61	i							
-> 3/	<u> </u>	56	• .	, ,					<u> </u>	
Park		5				-				
		50								
	Re-th A	-	/ -		F-19	7	A		L L PARLING SEAR	
•	GP:	5 13	5 (242	048	人人	ele M	both =	88 m	×0.75m
**************************************			ų.	-367	519	÷				_

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM N	AME:
----------	------

Baldy Creek

XS LOCATION:

0.5 mile upstream from BLM-state boundary

XS NUMBER:

. .

DATE:

12-Jun-06

OBSERVERS:

A Smith, T Fresques

1/4 SEC: SECTION: NE

TWP:

7N

FIANGE:

90W Slxth

COUNTY:

Garfield Colorado

WATERSHED: DIVISION:

COIOIR

DOW CODE:

5 19253

USGS MAP:

Center Mtn. 7.5

USFS MAP:

0

SUPPLEMENTAL DATA

*** NOTE ***

Leave TAPE WT and TENSION at defaults for data collected

with a survey level and rod

TAPE WT:

0.0106

TENSION:

99999

CHANNEL PROFILE DATA

SLOPE:

0.0377

INPUT DATA CHECKED BY:	DATE
A COLONIED TO	DATE

XS LOCATION: XS NUMBER:

Baidy Creek 0.5 mile upstream from BLM-state boundary

DATA POINTS=

30

VALUES COMPUTED FROM RAW FIELD DATA

	# .	DATA POINTS	i=	30	VALUES COMP	UTED PROM R	AVV FIGURE DA		
FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	WETTED PERIM.	WATER	AREA (Am)	(Qm)	% Q CELL
	0.00	5,22			0.00		0.00	0.00	0.0%
S	0.00				0.00		0.00	0.00	0.0%
G	1.00 2.50	6.39 6.80			0,00		0,00	0.00	0.0%
360	7.7	6.89			0.00		0.00	0.00	0.0%
W	3,50 4,50	7.08	0.20	1.78	1.02	0.20	0.20	0.36	6.4%
			0.25	0.00	1.00	0.25	0.25	0.00	0.0%
	5,50	7.13	0.25	1.73	1,00	0.25	0.25	0,43	7.8%
	8.50	7,12	0.20	0.59	1.00	0.20	0.20	0.12	2.1%
	7.50	7.09		0.36	1.00	0.20	0.20	0.07	1.3%
	8.50	7.08	0.20	0.76	1.00	0.10	0.10	80,0	1.4%
	9.50	7.00	0.10	0.48	1.00	0.20	0.20	0.10	1.7%
	10.50	7.07 7.16	0.25	1.36	1.00	0.25	0.25	0.34	6.1%
	11.50		0.45	2.22	1,02	0.45	0.34	0.75	13.5%
	12.50	7.34	0.45	2,28	0.50	0.45	0.23	0.51	9.2%
	13.00	7.34 7.36	0.50	2.55	0.50	0.50	0.38	0.96	17.2%
	13.50	7.22	0.35	1.65	1.01	0.35	0.35	0.58	10.4%
	14.50 15.50	7.14	0.35	1.36	1.00	0.25	0,25	0.34	6.1%
	16.50	7.19	0.20	0.11	1.00	0.20	0.20	0.02	0.4%
	17.50	7.18	0.20	0.04	1.00	0.20	0.20	0.01	0.1%
	18.50	7.40	0.40	1.25	1.02	0.40	0.40	0.50	9.0%
	19.50	7.47	0.50	0.20	1.00	0.50	0.50	0.10	1.8%
	20.50	7.19	0,20	0.12	1.04	0.20	0,20	0.02	0.4%
	21.50	7.32	0.30	0.30	1.01	0.30	0.30	0.09	1.6%
	22.50	7.22	0.20	0.05	1.00	0,20	0.20	0.01	0.2%
	23.50	7.13	0.15	0.78	1.00	0.15	0.15	0.12	2,1%
	24.50	7.08	0.10	0.58	1.00	0.10	0.10	0.06	1.0%
W	25.50	6.98	9,12	9100	1.00	27.7.20	0.00	0,00	0.0%
VV	27.50	6.81			0.00		0.00	0.00	0.0%
G	29.00	6.47			0.00		0.00	0.00	0.0%
G S	31.00	5.81			0,00		0.00	0.00	0.0%
3	31.00	5.01			3,00		40.50	100	
T	DTALS	**********			22.15	0.5	5,44	5,56	100.0%

TOTALS -----

Manning's n = Hydraulic Radius=

(Max.)

0.1107 0.245511413

Baldy Creek

XS LOGATION:

0.5 mile upstream from BLM-state boundary

XS NUMBER:

1

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	5.44	5.25	-3.5%
6.69	5.44	11.35	108.8%
6.71	5.44	10.84	99.3%
6.73	5.44	10.32	89.9%
6.75	5.44	9.81	80.5%
6.77	5.44	9.31	71.1%
6.79	5.44	8.80	61.9%
6.81	5.44	8.30	52.7%
6.83	5.44	7,81	43.6%
6.85	5.44	7.32	34.7%
6.87	5.44	5.85	25.9%
6.89	5.44	5.38	17.39
6.90	5.44	6.15	13.19
6.91	5.44	5.92	8.99
6.92	5.44	5.69	4.79
6.93	5.44	5.47	0.69
6.94	5.44	5.25	-3.59
6.95	5.44	5.02	-7.69
6.96	5.44	4.80	-11.79
8.97	5.44	4.58	-15.79
6.98	5.44	4.37	-19.79
6.99	5.44	4,15	-23.79
7.01	5.44	3,73	-31.59
7.03	5.44	3.32	-39.09
7.05	5.44	2.93	-46.29
7.07	5.44	2.55	-53.19
7.09	5.44	2.20	+59.69
7.11	5.44	1.89	-65.39
7.13	5.44	1,62	-70,39
7.15	5.44	1.37	-74.79
7.17	5.44	1.15	-78.89
7.19	5.44	0,96	-82.49

WATERLINE AT ZERO AREA ERROR =

6.931

Baldy Creek

XS LOCATION:

0.5 mile upstream from BLM-state boundary

XS NUMBER:

Constant Manning's n

GL = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

-	DIST TO WATER (FT)	TOP WIDTH (FT)	AVG. DEPTH (FT)	MAX. DEPTH (FT)	AREA (SQ FT)	WETTED PERIM. (FT)	PERCENT WET PERIM (%)	HYDR RADIUS (FT)	FLOW (CFS)	AVG. VELOCITY (FT/SEC)
				1.00	17,25	27,95	100.0%	0.62	32.60	1.89
GL.	6.47	27.71	0.62	0.99	16.94	27.85	99.7%	0.61	31.68	1.87
	6.48	27.62		0.94	15.57	27.44	98.2%	0.57	27.80	1.79
	6.53	27.21	0,57	0.89	14.22	27.02	96.7%	0.53	24,14	1.70
	6.58	26.81	0.49	0.84	12.89	26.61	95.2%	0.48	20.71	1.61
	6.63	25.40	0.45	0.79	11.58	26.19	93.7%	0.44	17.50	1.51
	6.88	26.00	0.40	0.74	10.29	25.78	92.2%	0.40	14.53	1.41
	6.73	25.60	0.36	0.69	9.02	25.36	90.7%	0.38	11.79	1.31
	6.78	25.19		0.64	7.77	24.57	87.9%	0.32	9,40	1.21
	6.83	24.41	0.32	0.59	6.58	23.45	83.9%	0.28	7.35	1.12
	6.88	29.30 22,43		0.54	5.44	22.68	90.8%	0.24	W 5.48	4.01
.Mr.	6.93		0.24	0.49	4.34	21.75	77.8%	0.20	3.86	0.89
	6.98	21.81 19.95	0.16	0.44	3.29	20.08	71.9%	0.16	2.57	D.78
	7.03	3. 4.5.4.4.	0.13	0.39	2.35	17.79	63.7%	0.13	1.58	0.67
	7.08	17.67	0.13	0.34	1.60	12.42	44.4%	0.13	1.06	0.66
	7.13	12.30	0.11	0,29	1.04	9.92	35.5%	0.10	0.60	0.58
	7.18	9.82	0.10	0.24	0.64	6.79	24.3%	0,09	0.35	0.54
	7.23	6.71	0.07	0.19	0.36	4.84	17.3%	0.07	0.16	0.46
	7.28	4,78	0.05	0.14	0.17	3.09	11.1%	0.05	0.06	0,37
	7.33	3.06	0.05	0.09	0.07	1.42	5.1%	0.05	0.02	0.35
	7.38 7.43	0.69	0.02	0.04	0.01	0.70	2.5%	0.02	0.00	0.19

3 of 3 = 6.88 cfs 2 of 3 = 5.35 cA

Baldy Creek

XS LOCATION: XS NUMBER: 0.5 mile upstream from BLM-state boundary

7

SUMMARY SHEET

MEASURED FLOW (Qm)=	5.56 cfs	RECOMMENDED INST	REAM FLOW:
CALCULATED FLOW (Qc)=	5.48 cfs		
(Qm-Qc)/Qm * 100 =	1.3 %		
directed in 100 -		FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLM)=	6.94 ft		
CALCULATED WATERLINE (WLc)=	6.93 ft		
(WLm-WLc)/WLm * 100 =	0.1 %		
(AATW-AACE)\AAFW 100 =	3.1 A		
MAX MEASURED DEPTH (Dm)=	0.50 ft		
MAX CALCULATED DEPTH (Dc)=	0.54 R		
	-7.7 %		
(Dm-Dc)/Dm * 100	-7.7 78		
MEAN VELOCITY=	1.01 ft/sec		
MANNING'S N=	0.111		
The Art Commence of the Commen	0.0377 ft/ft		
SLOPE=	G.GOTT IDIC		
4 * Qm =	2.2 cls		
2.5 ° Qm=	13.9 cfs		
=63m(4312511111212222222222222222222222222222			
	-		
	-		
	-		
RECOMMENDATION BY:	AGENCY		DATE:
CWCB REVIEW BY:	American research and commences		DATE:
CWCB REVIEW BY:			DATE:

ChartMin 0 ChartMinY -7.5 ChartMax 35 ChartMaxY -5.5

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:

XS LOCATION:

XS LOCATION:	0.3 miles u	pstream from BLM-state boundary
XS NUMBER:	2	
DATE:	12-Jun-06	
OBSERVERS:	10 2250 22	Fresques
1/4 SEC:	NE	
SECTION:	7	
TWP:	78	
RANGE:	90 W	
PM:	Sixth	
COUNTY:	Garfield	
WATERSHED:	Colorado	
DIVISION:	5	
DOW CODE:	19253	
USGS MAP:	Center Mtn	. 7.5'
USFS MAP:	0	
SUPPLEMENTAL DATA		*** NOTE ***
		Leave TAPE WT and TENSION
		at defaults for data collected
TAPE WT:	0.0106	with a survey level and rod
TENSION:	99999	
CHANNEL PROFILE DATA	<u>.</u> ,	
SLOPE:	0.0396	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO		DATE
AGGIGNED TO:		UA) E

Baldy Creek

Baldy Creek

XS LOCATION: XS NUMBER: 0.3 miles upstream from BLM-state boundary

DATA POINTS=

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% C
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
S	0.00	5.64			0.00		0.00	0.00	0.0%
I G	1.50	6.38			0.00		0.00	0.00	0.0%
W	1.90	7.41			0.00		0.00	0.00	0.0%
	2.50	7.83	0.40	0.50	0.73	0.40	0.32	0.16	2.2%
	3.50	8.00	0.60	0.75	1.01	0.60	0.60	0.45	6.3%
	4.50	7.92	0.50	1.26	1.00	0.50	0.50	0.63	8.8%
	5.50	7.81	0.40	1.34	1.01	0.40	0.40	0.54	7.5%
	6.50	7.60	0.20	0.64	1.02	0.20	0.20	0.13	1.8%
	7.50	7.63	0.20	0.00	1.00	0.20	0.20	0.00	0.0%
	8.50	7.74	0.30	1.04	1.01	0.30	0.30	0.31	4.3%
	9.50	7.62	0.20	1.41	1.01	0.20	0.20	0.28	3.9%
	10.50	7.67	0.25	1.92	1.00	0.25	0.25	0.48	6.7%
	11.50	7.77	0.35	0.31	1.00	0.35	0.35	0.11	1.5%
	12.50	7.90	0.50	0.50	1.01	0.50	0.50	0.25	3.5%
	13.50	7.80	0.40	1.10	1.00	0.40	0.40	0.44	6.1%
	14,50	7.82	0.40	1.00	1.00	0.40	0.40	0.40	5.6%
	15.50	7.79	0.40	1.95	1.00	0.40	0.30	0.59	8.2%
	16.00	7.89	0.50	1.26	0.51	0.50	0.25	0.32	4.4%
	16.50	7.76	0.35	1.63	0.52	0.35	0.26	0.43	6.0%
	17.50	7.95	0.55	1.39	1.02	0.55	0.55	0.76	10.7%
	18.50	7.86	0.45	1.81	1.00	0.45	0.45	0.81	11.4%
	19.50	7.78	0.40	0.30	1.00	0.40	0.30	0.09	1.3%
W	20.00	7.41			0.62	31.45	0.00	0.00	0.0%
	22.00	7.11			0.00		0.00	0.00	0.0%
	25.00	6.95			0.00		0.00	0.00	0.0%
S&G	29.00	6.38			0.00		0.00	0.00	0.0%
TO	TALS				18.49	0.6	6.73	7.17	100.0%

Manning's n = Hydraulic Radius=

(Max.)

0.1415 0.364206559

XS LOCATION:

Baldy Creek 0.3 miles upstream from BLM-state boundary

XS NUMBER:

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	6.73	6.75	0.3%
7.16	6.73	11.50	70.8%
7.18	6.73	11.10	64.9%
7.20	6.73	10.71	59.0%
7.22	6.73	10.71	53.2%
7.24	6.73	9.93	47.5%
7.26	6.73	9.55	41.8%
7.28	6.73	9.55	36.1%
7.20			
	6.73	8.78	30.5%
7.32	6.73	8.41	24.9%
7.34	6.73	8.04	19.4%
7.36	6.73	7.66	13.8%
7.37	6.73	7.48	11.1%
7.38	6.73	7.30	8.4%
7.39	6.73	7.11	5.7%
7.40	6.73	6.93	3.0%
7.41	6.73	6.75	0.3%
7.42	6.73	6.57	-2.4%
7.43	6.73	6.39	-5.1%
7.44	6.73	6.21	-7.8%
7.45	6.73	6.03	-10.4%
7.46	6.73	5.85	-13.1%
7.48	6.73	5.49	-18.4%
7.50	6.73	5.13	-23.8%
7.52	6.73	4.78	-29.0%
7.54	6.73	4.42	-34.3%
7.56	6.73	4.07	-39.6%
7.58	6.73	3.71	-44.8%
7.60	6.73	3.36	-50.1%
7.62	6.73	3.02	-55.2%
7.64	6.73	2.70	-59.9%
7.66	6.73	2.39	-64.5%

WATERLINE AT ZERO AREA ERROR =

7.411

XS LOCATION:

Baldy Creek 0.3 miles upstream from BLM-state boundary

XS NUMBER;

Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag
WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO WATER (FT)	TOP WIDTH (FT)	AVG. DEPTH (FT)	MAX. DEPTH (FT)	AREA (SQ FT)	WETTED PERIM. (FT)	PERCENT WET PERIM (%)	HYDR RADIUS (FT)	FLOW (CFS)	VELOCITY (FT/SEC)
-			7:	7.7	(54,1)	1.17	1707	11.17	(010)	(11/320)
GL*	6.38	27.50	1.11	1.62	30.45	28.66	100.0%	1.06	66.25	2.18
	6.41	27.27	1.09	1.59	29.60	28.40	99.1%	1.04	63.57	2,15
	6.46	26.90	1.05	1.54	28.25	28.00	97.7%	1.01	59.37	2.10
	6.51	26.53	1.01	1.49	26.91	27.59	96.3%	0.98	55.30	2.05
	6.56	26.16	0.98	1.44	25.59	27.18	94.8%	0.94	51.37	2.01
	6.61	25,79	0.94	1.39	24.29	26.77	93.4%	0.91	47.58	1.96
	6.66	25.42	0.91	1.34	23.01	26.36	92.0%	0.87	43.92	1.91
	6.71	25.05	0.87	1.29	21.75	25.96	90.6%	0.84	40.40	1.86
	6.76	24.68	0.83	1.24	20.51	25.55	89.1%	0.80	37.01	1.80
	6.81	24.31	0.79	1.19	19.28	25.14	87.7%	0.77	33.76	1.75
	6.86	23.94	0.76	1.14	18.08	24.73	86.3%	0.73	30.65	1.70
	6.91	23.57	0.72	1.09	16.89	24.32	84.9%	0.69	27.67	1.64
	6.96	23.07	0.68	1.04	15.72	23.79	83.0%	0.66	24.93	1.59
	7.01	22.11	0.66	0.99	14.59	22.79	79.5%	0.64	22,65	1.55
	7.06	21.15	0.64	0.94	13.51	21.80	76.1%	0.62	20,52	1.52
	7.11	20.21	0.62	0.89	12.48	20.82	72.7%	0.60	18.53	1.49
	7.16	19.86	0.58	0.84	11.48	20.43	71.3%	0.56	16.32	1.42
	7.21	19.50	0.54	0.79	10.49	20.04	69.9%	0.52	14.24	1.36
	7.26	19.15	0.50	0.74	9.53	19.65	68.6%	0.48	12,28	1.29
	7.31	18.80	0.46	0.69	8.58	19.26	67.2%	0.45	10.45	1.22
	7.36	18.45	0.41	0.64	7.65	18.87	65.8%	0.41	8.75	1.14
WL*	7.41	18.10	0.37	0.59	6.73	18.48	64.5%	0.36	7.17	1.07
	7.46	17.96	0.32	0.54	5.83	18.31	63.9%	0.32	5.68	0.97
	7.51	17.82	0.28	0.49	4.94	18.14	63.3%	0.27	4.33	0.88
	7.56	17.68	0.23	0.44	4.05	17.97	62.7%	0.23	3.13	0.77
	7.61	17.12	0.19	0.39	3.17	17.38	60.6%	0.18	2.13	0.67
	7.66	14.67	0.16	0.34	2.38	14.88	51.9%	0.16	1.46	0.62
	7.71	12.83	0.13	0.29	1.69	13.00	45.3%	0.13	0.91	0.54
	7.76	11.44	0.10	0.24	1.09	11.56	40.3%	0.09	0.47	0.43
	7.81	8.38	0.07	0.19	0.57	8.46	29.5%	0.07	0.20	0.35
	7.86	4.76	0.05	0.14	0.25	4.80	16.7%	0.05	0.07	0.29
	7.91	2.24	0.04	0.09	0.09	2.26	7.9%	0.04	0.02	0.23
	7.96	0.72	0.02	0.04	0.01	0.72	2.5%	0.02	0.00	0.15

XS LOCATION: XS NUMBER:

Baldy Creek
0.3 miles upstream from BLM-state boundary
2

SUMMARY SHEET

MEASURED FLOW (Qm)=	7.17	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	7.17	cfs	***********	
(Qm-Qc)/Qm * 100 =	0.0	%		
Desarran (Village) (Village) (Village)			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	7.41			========
CALCULATED WATERLINE (WLc)=	7.41	ft		
(WLm-WLc)/WLm * 100 =	0.0	%		
MAX MEASURED DEPTH (Dm)=	0.60			
MAX CALCULATED DEPTH (Dc)=	0.59			
(Dm-Dc)/Dm * 100				
(biii-bc)/biii 100	1.8	%		_
MEAN VELOCITY=	1.07	ft/sec		
MANNING'S N=	0.142		-	
SLOPE=	0.0396	ft/ft		
.4 * Qm =	2.9	cfe		
2.5 * Qm=	17.9			
#######################################				
	-			
RECOMMENDATION BY:		AGENCY		DATE:
CWCB REVIEW BY:				
STOREST WILLIAM CONTRACTOR CONTRA		*******************		DAIE'

DATE OF SURVEY: 9/24/01

PAGE 02/05

Page 1_ cf 1_

CDOW STREAM SURVEY (1991 REVISION) LEVEL 2: FIELD SURVEY SUMMARY

STREAM: Baldy Creek

SĒC#:

WATER CODE: 19253

CDOW REGION: WE

SURVEYORS: Bill Elmblad, Kevin Chesney

SURVEY LOCATION: T 75

R 90W S 23 NE 3

ELEVATION:

STATION #:

UTM ZONE: 13 S UTM X: 0292048

UTM Y: 4367519 (lower end of sample reach)

STATION LENGTH: 265 (FEET)

LOCATION DESCRIPTION: at private land

STREAM FLOW PROFILE (Y or N):

IF YES-DATE AND TYPE:

IF YES-DATE AND TYPE:

HABITAT EVALUATION (Y or N):

FISH PRESENT (Y or N): Y, POP. EST. METHOD: Seber-LeCren

WATER CHEMISTRY ANALYSIS (Y or N): IF YES-ATTACH SEPARATE ANALYSIS SHEET

AVG, WIDTH: 2.3 (FEET)

TOTAL STATION AREA: 0.014 (ACRES)

FLOW (CFS) AT TIME OF SURVEY:

METHOD: Electrofishing

LIMITING FACTORS TO FISHERY: low stream flows.

COMMENTS: 28 fish taken in two population estimate passes but 23 were age 0 and excluded from estimate. 22 larger fish were taken in one beaver pond outside the population estimate reach and are not included in estimate, fin clips were taken from these fish for genetic analysis.

LENGTH FREQUENCY RECORD (CM)

	r									-																
SPECIES	0 1 2	2 1 4	4 1 6	8 1	8 J 10	10 1 12	12 14	14 ! 16	16 1 18	18 20	20 1 22	22 ! 24	21 1 25	2.5 1 2.8	28 i 30	32 (30	32 4 34	36 1 36	36 1 38	3 k 40	40 1 52	42 4 44	14 1 16	4 8	1 B 5 P	30 ; U 2
CSH			₹1		3,	2	ઇ	6	7	1	1	4														Ĺ
								- ***			,															
																						-				
													·										*			
L	<u> </u>			L.,,	l	L.								<u> </u>			ــــــــــــــــــــــــــــــــــــــ	<u></u>					<u> </u>			<u> </u>

SUMMARY INFORMATION

SPECIES	NO, FISH CAUGHT	AVG. LENGTH (CM)	LENGTH RANGE (CM)	AVG. WEIGHT (Grams)	WEIGHT RANGE (Grams)	% TOTAL CATCH	810MASS lb/Acre	DENSIT No./AcreConf. I	
CRN	49	12-4	4.8-238	46.7	7-135	100	12	574	
						<u> </u>			

Reason for survey: fish population survey, take fish tinsue for genetic purity analysis.

Conclusions: only cutthroat trout present. Mean Wr for 130-199mm - 79.7 and mean Wr for 200-299mm - 87, condition relatively poor.

Management implications: possible Colorado River sutthmost trout conservation population. Few adult fish in this stream but good reproduction Adults mainly in one beaver pond in the sample area.

LEV99139V STE

WATER:	Baldy Creek			COUNTY:	Garfield		
DATE: CODE: LOCATION: UTM X:	MM/DD/YY 19253 at private land 13 S 0292048		STATION LENG STATION WIDT mean	HS (ft)::	264	1st PASS: 2nd PASS: Capture P:	8 0 1.00
UTM Y: CREW: NOTES: T7S, R90W,	4367519 XXXXX		station size acres hectares			Popn Estimate: 95% Cl (+/-):	\$ 0
Sec. 23 NE 1/4	0		MIN SIZE (mm)	90			_
SPECIES:	CUTTHROAT	FROUT	NUMBER/ACR LBS/ACRE NUMBER/HA KG/HA	574 42 1418 47		95%CI (+/-): 95%CI (+/-): 95%CI (+/-): 95%CI (+/-):	0 0
LENGTH	WEIGHT PASS		Length (mm)		-	Weight (g)	
49 59 48 53 51 48 55 60 63 57 105 126 62 58 156 100 50	12 15 35 7	MBER SAMPLED	2	141 15 1915 100 237 8 30		Mean Standard Error Variance Minimum Maximum Count 95% Cl	33 15 1837 7 136 8 30
61 54 128 155 237	1 4 35	1	2 10	15 20 25 LE	5 30 35 ENGTH (cm)	40 45 50	55
121 61 56	12	1 2 2 2 2	ОРРАЗВІВЕТ			and the state of the	•
61 51 50		2 2 2	NUMBER/MILE LBS/MILE NUMBER/KM KG/KM	160 12 99 3		95%Cl (+/-); 95%Cl (+/-); 95%Cl (+/-); 95%Cl (+/-);	0 0
			0-8 inches 8-14 Inches >14 Inches	Captured 27 1		0-8 inches 8-14 inches >14 inches	Percent 96 4 0

02/26/2007	08:02	-1 ⁹⁷⁰⁹⁴⁷²	2829 /	YUW	SKC.	KJ, NE	_14		ŕ	04/05 \
			•					24/0	of_	- Marin Charles Bo
\$	GEAF	Destro	12	EFFO	RT	O	N NO		- - [Hor
all fish from one Branton	SI		WT	MARK		SP	LGTH	WT	MARK	
10	1 CIK	N 145 238	31			CRN	59	-		
\$		173	45		1		48	-		
٤		195	62				53	-		
\$		1143	25		1		51	-		
		225	35	 			148	-		
* \		154	35	 	1		60	-		
		188	60]		63	-		1/2
8		158	32				57	•		St Pale
		131	17		-		1105	13		_D<
		165	37		1		126	15		1 \$
		175	47		1		58	-		~
1		234	132		1		156	35		
/	ļ	171	41				100	7		
	-	182	45		1		50	<i>*</i>		
	-	154	42				5+	-	7	Ì
	<u> </u>	144	26				128	14		,
. \		179	50				128	35	1	1
		130	21				237	136		
	 	-					121	12		
	-									
•										
	. [
	-	61	i							
-> 3\	 	156	•						·	
Part S		5								
		50					9			
	R-LLA	-	/ -		F-19	0		<u> </u>	1. L. DARLING COR.	
	GP:	5 13	> (1242	048	及	PLE M	back =	88 m	×0.75m
	•		ď	-367	519	•			•	

