Stream: Tabeguache Creek

Executive Summary

Water Division: 4 Water District: 60 HUC 140300030603

Segment: Confluence of North Fork Tabeguache down to Confluence with 47 Creek

Upper Terminus: Latitude: 38° 22' 44.4"N Longitude: 108° 27' 43.2"W

UTM 197554.539 Easting UTM 4253517.811 Northing

NAD 83 Zone 13N

SE1/4, SE1/4, Sec 36, T48N, R15W, NMPM

Lower Terminus: Latitude: 38° 22' 39.9"N Longitude: 108° 31' 4.8"W

UTM 192632.762 Easting UTM 4252650.81 Northing

NAD 83 Zone 13N

NE1/4, SE1/4, Sec 33, T48N, R15W, NMPM

Counties: Montrose Length: 3.67 miles

USGS Quad(s): Starvation Point

Big Bucktail Creek

Nucla

Forest Service Instream Flow Recommendation:

April 15 – June 30 = 3.5 cfs July 1 - April 14 = 3.0 cfs

Alternative Flow to meet water availability constraints and consistency with lower reach recommendations

April 1 – **June 30** = 4.75 cfs

July 1 - Oct 31 = 2.0 cfs

November 1 - March 31 = 1.6 cfs

Tabeguache Creek near Forest Boundary July 16, 2009 R2X Survey

Summary

The information contained in this report and the associated instream flow file folder forms the basis for staff's instream flow recommendation to be considered by the Board. It is staff's opinion that the information contained in this report is sufficient to support the findings required in Rule 5.40.

Colorado's Instream Flow Program was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (see 37-92-102 (3) C.R.S.). The statute vests the CWCB with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's Instream Flow Program, the statute directs the CWCB to request instream flow recommendations from other state and federal agencies. The United States Forest Service (USFS) has been interested in protection of instream flows on Tabeguache Creek since the early 1990's when the area was being considered for Wilderness designation. Formal Wilderness designation has not occurred, but the 1993 Colorado Wilderness Act specified that much of the Tabeguache basin was to be managed by the Forest Service to preserve its natural characteristics. Tabeguache Creek is being recommended for protection of instream flows because it has a natural environment that is dependent upon adequate streamflows to preserve both aquatic and riparian ecosystems and should be preserved to a reasonable degree. The USFS is very interested in protecting stream flows in Tabeguache Creek because it is a free flowing perennial stream which is supporting both

aquatic and riparian values on public land. Forest Service investigations conducted in 1993, 1994 and 2009 have suggested that this is a fully functioning aquatic system that is contributing towards the agency stewardship mission of sustaining aquatic ecosystems. This stream provides occupied habitat for both native and non-native species. It provides important refuge during periods of drought and elevated water temperatures. There are currently no withdrawals of water from Tabeguache Creek within the recommended reach. However, the Glencoe ditch does divert water from the stream approximately 8.86 river miles above the upper terminus.

In 2010 an instream flow appropriation was considered by the Board for Tabeguache Creek, beginning at Forty-seven Creek and continuing downstream to the headgate of Templeton ditch. This appropriation has been contested by a landowner and water user located along the stream. The recommended flow for the reach is:

```
4.75 cfs (April 1 – June 30)
1.9 cfs (July 1 – November 30)
1.6 cfs (December 1 – March 31)
```

The lands comprising the tributary area to Tabeguache Creek above its confluence with 47 Creek are primarily managed by the U.S. Forest Service. The drainage is located about midway along the Uncomphagre Plateau approximately 12 miles northeast of Nucla, Colorado. The upper terminus begins at the confluence with the North Fork Tabeguache Creek. Much of the flow in Tabeguache Creek during the baseflow period originates out of the North Fork, eventhough it is a smaller watershed that the mainstem above the confluence. Flow measurements were taken on both streams above the confluence on 7/16/2009. The North Fork was contributing .95 cfs while the mainstem above the confluence was only flowing at 0.75 cfs. The total drainage area of Tabeguache above 47 Creek, which is just below the Forest boundry is 70.3 square miles. (Exhibit 1 maps)

Instream Flow Recommendation(s)

Considerable field work has been conducted within the Tabeguache watershed for the purpose of determining in-stream flow protection needs. Field work was first initiated in 1993. Field study sites have been located at key sites along both the mainstem of Tabeguache Creek and the North Fork of Tabeguache Creek. Based upon a recommendation by the Grand Mesa, Uncomphagre and Gunnison National Forest to the CWCB a notice to appropriate was issued in early 2009.

The Forest Service is recommending a flow protection on the Mainstem of Tabeguache between the upper and lower terminus of Tabeguache during the spring and early summer (April 15^{th} – July 15^{th}) of 3.5 cfs based upon an average value for the three x-sections meeting 3 of 3 solution criteria. During the late summer through winter period (July 16^{th} – April 14^{th}) the recommendation is 3.0 cfs, which fulfills 2 of 3 criteria when the x-sections are averaged.

While it is unlikely that the Board would agree to a peak flow component for protection, our recommendation would be to have one that is based upon flows that meet or exceed 60% of bank full discharge for a period of at least 5 consecutive days during the period of April 15th thru June 15th. This rule of thumb comes from advice provided by Forest Service researchers who have conducted sediment transport studies in adjustable channels over the last 20 years. Stream systems need periodic high flows in order to accomplish scour and deposition of channel materials and floodplain inundation. This is an important function necessary to sustain the physical environment which in turns supports the biological values that we desire.

Providing protection for this reach would be important in order to provide some hydrologic linkage for flow protection for waters originating in the North Fork of Tabeguache and flowing down basin and linking with reaches previously recommended for protection beginning at the confluence with 47 Creek. Originally there was interest in also recommending protection for the reach of Tabeguache Creek above its confluence with the North Fork, but this reach is more significantly affected by water withdrawals and no recommendation will be coming from the U.S. Forest Service at this time.

Land Status Review

		Total Length	Land Ownership	
Upper Terminus	Lower Terminus	(miles)	% Private	% Public
Confluence of North Fork Tabeguache	Confluence with 47 Creek	3.67 miles	4%	96%

Biological Data

Fisheries surveys conducted on Tabeguache in 2008 indicate that the stream environment supports self-sustaining populations of native fish with some desirable non-native fish present in the upper portions of the reach. (See Exhibit 3) Low flows are common in the late summer and fall, and may be a limiting factor for fish production and movement during this time. The stream channel provides good pool habitat during summer and winter low flows. Despite these natural flow limitations in the summer and winter seasons, the stream does support a full-functional riparian community, and suitable fish habitat to support the long-term persistence of cold water fish.

Field Survey Data

USFS staff used the R2Cross methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. Surveys were first performed in 1993 and again in 2009. However, the data used to develop the recommendations contained within this report were all collected in July 2009. A two person crew used a pygmy meter and current meter digitizer to measure cross section velocities in the stream. Channel widths and depths were surveyed with a stadia rod, engineering level and fiberglass tape. Channel gradients were determined from rod, level and tape survey. The R2Cross method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should stream flow cease. This type of hydraulic data collection consists of surveying the stream channel geometry, determining channel roughness by collecting a representative sample of bed particles, and measuring the stream discharge. Three cross sections were established and surveyed on 7/16/2009. When run through the R2Cross model the 2009 data results were felt to be reasonable and representative of observed flows and channel morphological characteristics. Channel roughness was estimated by measuring 100 channel substrate particles and then calculating the D84 size particle. Mountain streams are difficult to get precise flow measurements, particularly during low flows, due to the highly variable velocity profiles that occur in streams with high roughness and channel complexity. Most likely measured flows under estimate the actual flows as a result of not capturing the volume of water moving through the channel bed materials.

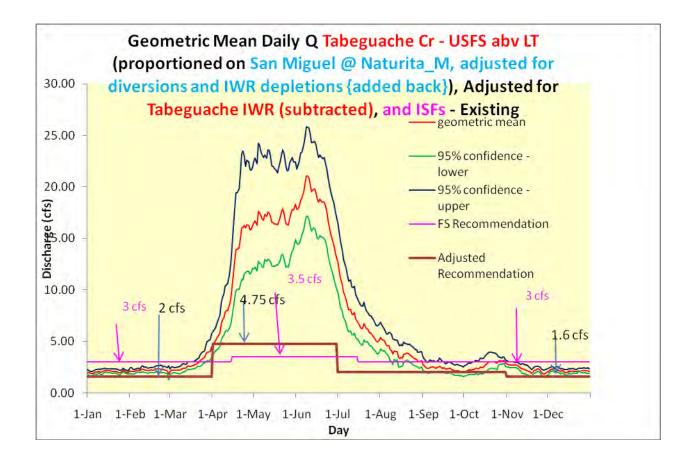
Biological Flow Recommendation

The CWCB staff relied upon the biological expertise of the cooperating agencies to interpret output from the R2Cross data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CWCB has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Espegren 1996).

For this segment of stream	three data sets were	collected with the results	shown in Table 1 below.	Table 1

Party	Х-	Date	Measured	40% -	Late Summer/Winter	Spring/Early
	sec		Q	250%	(2/3)	Summer (3/3)
USFS & CDOW	#5	10/5/1993	1.28 cfs	.5 – 3.2	Out of Range	Out of Range
USFS	#1	7/16/2009	1.86 cfs	.75 – 4.65 cfs	3.8 cfs	4.0cfs
USFS	#2	7/16/2009	1.73 cfs	.70 – 4.3 cfs	2.0 cfs	3.0 cfs
USFS	#3	7/16/2009	1.61 cfs	.60 – 4.0 cfs	3.2 cfs	3.5 cfs

shows who collected the data (Party), the date the data was collected (Date), the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's Equation (250% and 40% of Q), the summer flow recommendation based on meeting 3 of 3 hydraulic criteria and the winter flow recommendation based upon 2 of 3 hydraulic criteria. However, updates to the R2Cross program have the ability to vary Manning's n over a range of flows allowing for more accurate staging tables to be used in the prediction of hydraulic parameters. These changes allow for more accurate hydraulic modeling in periods outside of the typical accuracy range of R2Cross. For this exercise the USFS generated the Thorne-Zevenbergen staging table by supplying a D84 for use in setting Manning's roughness coefficient and also selected the Bathhurst formula for calculation of velocity and discharge in streams with high relative roughness.


Hydrologic Data

There are limited stream flow records for Tabeguache Creek. A USGS gage was operated in the headwaters of Tabeguache Creek from 1946 – 1953. The 16.9 square mile basin above the gaging station represents 24% of the total basin area at a point on the stream coinciding with the lower terminus. U.S. Forest Service hydrologists made several stream flow measurements on Tabeguache Creek near the Forest boundary during a one year period from 11/6/1991 to 11/9/1992. See Exhibit 2

CWCB staff developed a model which estimates mean daily flows at the lower terminus of Tabeguache Creek. It was derived by extrapolating flow records for the San Miguel River at Nucla based upon a comparison of basin area. Mean daily flow for the North Fork were estimated to be 16.87% of the flow at the gaged site for that same period. While this is a common and reasonable approach, USFS believes that it under represents the actual flows in the headwater streams particularly during the base flow period. Antidotal evidence by water resource specialists and managers would support the conclusion that the Uncompahgre Plateau tends to be "flashy" with very high peaks and very low baseflows. However, elevation and position within the watershed is not well accounted for and tends to ameliorate these extremes. The streams draining the Plateau are losing

systems. The source of water for streams, particularly the baseflow, is the headwaters above 8500 feet where snowpack accumulation occurs and water is stored in the soils beneath forested canopies and contributes to baseflows in the streams. Surface flows tend to diminish at lower elevations as groundwater aquifers are charged. Often during the baseflow periods there is more surface water found in channels higher in the watershed than down lower, where the gaging stations tend to be located. This assertion cannot be substantiated with site specific data and therefore the structure of Forest Service recommendation has been constrained by the physical water availability model provide by the State of Colorado.

The alternative recommendation appearing on page 1 was developed in response to the water availability data supplied by CWCB and to also get a reasonable consistent fit at the 47 Creek confluence reach break.

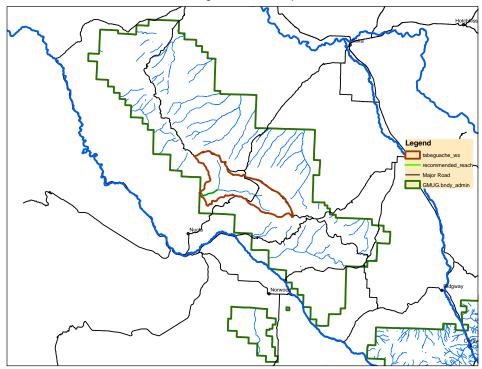
Existing Water Right Information

Staff has analyzed the water rights tabulation and consulted with the Division Engineer's Office (DEO) to identify any potential water availability problems. Records indicate that there is one surface water diversions on Tabeguache Creek upstream from the reach. The Glencoe Ditch has a 17 cfs direct flow right with a adjudication date of Nov. 1, 1939. While the right may be for 17 cfs that amount of water is rarely if ever diverted and the capacity of the ditch in some locations is less than 17 cfs. There are a number of small stockponds and spring developments tributary to the reach. Most of rights are very small and belong to the U.S. Forest Service.

Relationship to Management Plans and Forest Service Policy

The Grand Mesa, Uncompahgre, and Gunnison National Forests (GMUG NF) Land and Resource Management Plan provide land management direction for FS lands located in the Tabeguache watershed. Forest Plan direction for Fisheries, Threatened, Endangered, and Sensitive species suggest that land managers should among other things, maintain viable populations of native fish species, improve fish habitat conditions, and cooperate with state agencies to meet minimum flow needs to support fish populations. Additionally, agencies of the Colorado Division of Natural Resources and the Forest Service have signed agreements to assist in the conservation and protection of Colorado River cutthroat trout (CRCT River Cutthroat Trout Task Force 2006), and to work together to solve water issues in Colorado (Colorado DNR/USDA Forest Service MOU on water, 2004).

Tabeguache Creek is one of only a few perennial streams in the semi-arid landscape of the Uncompahgre Plateau. The stream is an important source of water for the lower reaches of Tabeguache Creek, since headwater diversions currently divert a significant source of the summer flows. Access into the lower reaches of Tabeguache on the National Forest is very limited, so fishing pressure, and other land management uses are minimal. The best way to access the area is via the Indian Trail, which is a Forest System maintained non-motorized trail that begins on Pinto Mesa to the south of Tabeguache and drops into the Canyon, parallels the stream for a short distance and then climbs back up to the northern rim. There is no motorized use within the canyon feature. As previously mentioned the Forest Service has been directed by Congress to manage these lands to preserve their natural character.


The FS requests that the Board recognize that this recommendation is based only upon the minimum flows necessary to support the cold-water fishery values. In the estimation of many Forest Service land managers and resource specialists the program as it currently exists does not provide sufficient flows throughout the year to insure that flow dependant resource values are sustained in the long term. The failure to incorporate at least a measure of periodic high flow into the protection strategy is a serious drawback. These fluvial systems require flows that are capable of transporting bedload, relocating course wood and providing periodic floodplain inundation. Given this shortcoming it is difficult to achieve a goal of "protecting the environment to a reasonable degree". However, the GMUG NF feels some minimal protection under Colorado water law does have a benefit to the resource and therefore operating within the constraints of the program is a acceptable reality. The agency has Congressional authority, in fact a responsibility under the Federal Land Management and Policy Act (FLPMA), to protect natural resources and the processes which sustain them. To the extent that those processes cannot be protected under state law and authority they must be address by the Federal Land management agency at a time when actions are proposed that might require a determination of effects and conditions imposed felt to be necessary to insure sustainability.

We thank both the Colorado Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

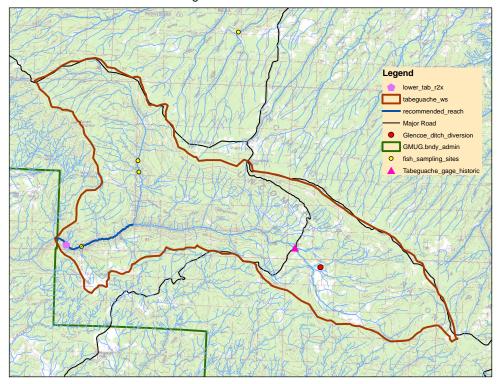

If you have any questions regarding our instream flow recommendation, please contact Clay Speas, Fisheries Biologist, at (970) 874-6650 or Gary Shellhorn, Watershed Program Manager, at (970) 874-6666.

Exhibit 1 – Project Area Maps

Tabeguache Area Map

Tabeguache Creek ISF Reach

	STREAM NA	AME:	Lower Tabegua	ache									
	XS LOCATI	ON:	Near Indian Tra	il xing								D84 Table	
	XS NUMBER	₹:	1				Thorne-Zevenb	ergen D84 Co	rection Applied			1-HeyD84	0.69
								User Su	pplied D84 =	0.66		BathurstD84	1.75
			GL = lowest C	Grassline elevat	ion corrected fo	or sag						3-Best Est	1.75
	STAGING T	ABLE	*WL* = Waterlin	ne corrected fo	r variations in fie	eld measured w	ater surface ele	vations and sag	9			4-User	0.66
									Bathurst Fo	rmula Velocity			
	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.	Bath	Hey	
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIN	RADIUS	FLOW	VELOCITY	VELOCITY		
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)	(FT/SEC)	(FT/SEC)	
GL	6.56	28.93	0.74	1.34	21.34	29.91	100.0%	0.71	76.49	3.58	-	3.1881206	
	6.58	28.33	0.73	1.32	20.71	29.31	98.0%	0.71	73.59	3.55		3.1466382	
	6.63	26.96	0.72	1.27	19.33	27.94	93.4%	0.69	67.43	3.49	3.4880813	3.0546951	
	6.68	25.60	0.70	1.22	18.02	26.57	88.8%	0.68	61.82	3.43	3.4312263	2.9664521	
	6.73	24.24	0.69	1.17	16.77	25.21	84.3%	0.67	56.75	3.38			
	6.78	23.29	0.67	1.12	15.59	24.25	81.1%	0.64	50.48	3.24	3.2380751	2.7546904	
	6.83	22.88	0.63	1.07	14.43	23.81	79.6%	0.61	42.76	2.96	2.9625761	2.5628128	
	6.88	22.46	0.59	1.02	13.30	23.37	78.1%	0.57	35.88	2.70	2.6975307	2.366823	
	6.93	22.05	0.55	0.97	12.19	22.93	76.7%	0.53	29.78	2.44	2.443293	2.1664799	
	6.98	21.63	0.51	0.92	11.10	22.49	75.2%	0.49	24.41	2.20		1.9615278	
	7.03	21.22	0.47	0.87	10.03	22.05	73.7%	0.45	19.74	1.97	1.9687921	1.7516993	
	7.08	20.80	0.43	0.82	8.97	21.62	72.3%	0.42	15.70	1.75	1.7493945	1.5367203	
	7.13	19.78	0.40	0.77	7.95	20.57	68.8%	0.39	12.76	1.60	1.6042652	1.3706123	
	7.18	18.41	0.38	0.72	7.00	19.18	64.1%	0.36	10.48	1.50	1.4977924	1.2343112	
	7.23	17.04	0.36	0.67	6.11	17.79	59.5%	0.34	8.52	1.39	1.3935381	1.0986313	
	7.28	15.60	0.34	0.62	5.30	16.34	54.6%	0.32	6.88	1.30		0.9707667	
	7.33	14.91	0.30	0.57	4.54	15.62	52.2%	0.29	5.17	1.14	1.1390987	0.7732009	
WL	7.38	14.13	0.27	0.52	3.81	14.77	49.4%	0.26	3.79	1.00	0.9956623	0.580722	
	7.43	13.34	0.23	0.47	3.12	13.93	46.6%	0.22	2.68	0.86	0.8579591	0.3818762	
	7.48	12.49	0.20	0.42	2.48	13.02	43.5%	0.19	1.81	0.73	0.7294918	0.1809631	
	7.53	11.50	0.16	0.37	1.87	11.97	40.0%	0.16	1.15	0.61	0.6122779	-0.01664	
	7.58	9.35	0.14	0.32	1.35	9.72	32.5%	0.14	0.71	0.52	0.5234289	-0.141303	
	7.63	6.99	0.14	0.27	0.95	7.28	24.3%	0.13	0.42	0.45	0.4451198	-0.231457	
	7.68	5.97	0.10	0.22	0.62	6.19	20.7%	0.10	0.21	0.35	0.3453854	-0.408319	
	7.73	4.52	0.08	0.17	0.36	4.67	15.6%	0.08	0.09	0.25	0.2541304	-0.551533	
	7.78	3.02	0.05	0.12	0.17	3.10	10.4%	0.05	0.03	0.17	0.1651189	-0.677464	
	7.83	1.72	0.03	0.07	0.05	1.75	5.8%	0.03	0.00	0.09	0.0869374	-0.765506	
	7.88	0.17	0.01	0.02	0.00	0.18	0.6%	0.01	0.00	0.00	0.0039318	-0.725221	

	STREAM N	AME:	Lower Tabega	uche Ck								
	XS LOCATI	ON:	215' below xs1									D84 Table
	XS NUMBE	R:	xs2				Thorne-Zevenb	ergen D84 Coı	rection Applied			1-HeyD84
								Bathurst F	ormula D84 =	0.57		BathurstD84
			GL = lowest (Grassline elevat	tion corrected for	or sag						3-Best Est
	STAGING T	ABLE	*WL* = Waterli	ne corrected fo	r variations in fi	eld measured v	vater surface ele	vations and sag	g			4-User
								Velo	city based on t	est of R/D84>1		
	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.	Bath	Hey
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIN	RADIUS	FLOW	VELOCITY	VELOCITY	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)	(FT/SEC)	(FT/SEC)
GL	5.12	15.11	0.54	1.13	8.12	16.18	100.0%	0.50	20.33	2.50	2.5048412	2.1713349
	5.15	14.50	0.53	1.10	7.68	15.56	96.1%	0.49	18.90	2.46	2.4619785	2.1208143
	5.20	13.47	0.52	1.05	6.98	14.50	89.6%	0.48	16.75	2.40	2.4000226	2.0409934
	5.25	12.44	0.51	1.00	6.33	13.45	83.1%	0.47	14.90	2.35	2.3534093	1.9686903
	5.30	11.41	0.50	0.95	5.73	12.40	76.6%	0.46	13.34	2.33	2.326901	1.9059429
	5.35	10.39	0.50	0.90	5.19	11.35	70.1%	0.46	12.08	2.33	2.3277643	1.8554908
	5.40	9.36	0.50	0.85	4.69	10.30	63.6%	0.46	11.11	2.37	2.3676302	1.8211056
	5.45	8.74	0.49	0.80	4.25	9.66	59.7%	0.44	9.54	2.25	2.2462082	1.7180728
	5.50	8.41	0.45	0.75	3.82	9.31	57.5%	0.41	7.63	2.00	1.998955	1.5561705
	5.55	8.07	0.42	0.70	3.41	8.96	55.4%	0.38	6.00	1.76	1.7629879	1.3904549
	5.60	7.74	0.39	0.65	3.01	8.61	53.2%	0.35	4.63	1.54	1.5387643	1.2206013
	5.65	7.40	0.36	0.60	2.63	8.26	51.0%	0.32	3.49	1.33	1.3268059	1.0462594
	5.70	7.08	0.32	0.55	2.27	7.91	48.9%	0.29	2.56	1.13	1.1268229	0.8663935
WL	5.75	6.78	0.28	0.50	1.92	7.57	46.8%	0.25	1.81	0.94	0.9394395	0.6798389
	5.80	6.71	0.24	0.45	1.59	7.44	46.0%	0.21	1.17	0.74	0.737613	0.4541576
	5.85	6.30	0.20	0.40	1.26	6.97	43.1%	0.18	0.75	0.59	0.5938674	0.2649019
	5.90	5.91	0.16	0.35	0.95	6.48	40.0%	0.15	0.44	0.47	0.466467	0.0724634
	5.95	5.41	0.12	0.30	0.67	5.86	36.2%	0.11	0.24	0.36	0.3575404	-0.11476
	6.00	4.11	0.10	0.25	0.42	4.41	27.2%	0.10	0.12	0.28	0.2751155	-0.236743
	6.05	2.97	0.08	0.20	0.24	3.15	19.5%	0.08	0.05	0.20	0.1977916	-0.356241
	6.10	1.64	0.08	0.15	0.13	1.70	10.5%	0.07	0.02	0.14	0.1392322	-0.423159
	6.15	1.08	0.06	0.10	0.06	1.10	6.8%	0.06	0.00	0.08	0.0815905	-0.549819
	6.20	0.69	0.03	0.05	0.02	0.70	4.3%	0.02	0.00	0.03	0.0331536	-0.655469
	6.25	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

	STREAM NA	 AME:	Lower Tabegau	uche								
	XS LOCATI	ON:	87' below xs2									D84 Table
	XS NUMBER		xs3				Thorne-Zevent	pergen D84 Co	rection Applied			1-HeyD84
									pplied D84 =	0.66		BathurstD84
			GL = lowest 0	Grassline elevat	ion corrected fo	or sag						3-Best Est
	STAGING T	ABLE					vater surface ele	evations and sa	9			4-User
									Bathurst Fo	rmula Velocity		
	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.	Bath	Hey
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIN	RADIUS	FLOW	VELOCITY	VELOCITY	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)	(FT/SEC)	(FT/SEC)
GL	4.05	18.80	0.77	1.49	14.54	19.68	100.0%	0.74	48.75	3.35	3.3521647	2.5711976
	4.08	18.59	0.75	1.46	13.92	19.45	98.8%	0.72	44.23	3.18	3.176684	2.4818064
	4.13	18.00	0.72	1.41	13.01	18.83	95.7%	0.69	39.17	3.01	3.0108598	2.3793321
	4.18	17.41	0.70	1.36	12.12	18.20	92.5%	0.67	34.52	2.85	2.8476386	2.2757954
	4.23	16.82	0.67	1.31	11.27	17.58	89.3%	0.64	30.28	2.69	2.6870655	2.1711379
	4.28	16.23	0.64	1.26	10.44	16.96	86.2%	0.62	26.41	2.53	2.5291889	2.0652946
	4.33	15.65	0.62	1.21	9.64	16.33	83.0%	0.59	22.90	2.37	2.3740607	1.9581932
	4.38	15.06	0.59	1.16	8.88	15.71	79.8%	0.56	19.72	2.22	2.2217371	1.8497531
	4.43	14.47	0.56	1.11	8.14	15.09	76.7%	0.54	16.87	2.07	2.0722793	1.7398833
	4.48	13.88	0.54	1.06	7.43	14.47	73.5%	0.51	14.31	1.93	1.9257541	1.6284813
	4.53	13.29	0.51	1.01	6.75	13.84	70.3%	0.49	12.03	1.78	1.7822359	1.5154308
	4.58	12.70	0.48	0.96	6.10	13.22	67.2%	0.46	10.02	1.64	1.6418074	1.4005989
	4.63	12.12	0.45	0.91	5.48	12.60	64.0%	0.43	8.24	1.50	1.5045623	1.2838329
WL	4.68	11.64	0.42	0.86	4.88	12.10	61.5%	0.40	6.58	1.35	1.346881	1.1488879
	4.73	11.03	0.39	0.81	4 32	11.47	58.3%	0.38	5.25	1.22	1.2167338	1.0265537
	4.78	10.42	0.36	0.76	Staging Ta		55.1%	0.35	4.12	1.09	1.0902988	0.9018409
		.37	0.35	0.71	Options	9.79	49.7%	0.34	3.41	1.04	1.0363844	0.8321808
	Home	Print .07	0.31	0.66	2.83	9.46	48.1%	0.30	2.48	0.88	0.8775474	0.670916
	4.93	7.85	0.31	0.61	2.41	8.22	41.8%	0.29	2.05	0.85	0.8485426	0.6235774
	4.98	7.45	0.27	0.56	2.03	7.79	39.6%	0.26	1.46	0.72	0.7187645	0.4773101
	5.03	7.27	0.23	0.51	1.67	7.58	38.5%	0.22	0.96	0.58	0.5759825	0.2990243
	5.08	6.46	0.20	0.46	1.32	6.74	34.3%	0.20	0.65	0.49	0.4915559	0.183415
	5.13	5.99	0.17	0.41	1.01	6.23	31.6%	0.16	0.40	0.39	0.3922303	0.031986
	5.18	5.52	0.13	0.36	0.72	5.71	29.0%	0.13	0.22	0.30	0.3020382	-0.123648
	5.23	4.42	0.11	0.31	0.47	4.57	23.2%	0.10	0.11	0.23	0.230629	-0.234431
	5.28	2.64	0.10	0.26	0.27	2.76	14.0%	0.10	0.05	0.17	0.1717542	-0.279295
	5.33	1.40	0.12	0.21	0.17	1.50	7.6%	0.12	0.03	0.15	0.1500559	-0.276224
	5.38	1.07	0.11	0.16	0.12	1.14	5.8%	0.10	0.01	0.11	0.1096058	-0.372816
	5.43	0.87	0.08	0.11	0.07	d.d2	4.7%	0.07	0.00	0.06	0.0644536	-0.504812
	5.48	0.68	0.04	0.06	0.03	0.70	3.6%	0.04	0.00	0.03	0.0302764	-0.618322
	5.53	0.19	0.00	0.01	0.00	0.19	1.0%	0.00	0.00	0.01	0.0052066	-0.458218

	STREAM NA		Lower Tabegau	uche								
	XS LOCATION		1/2 mile above									D84 Table
	XS NUMBER		5				Thorne-Zevent	pergen D84 Co	rrection Applied			1-HeyD84
								1	upplied D84 =	0.66		BathurstD84
			GL = lowest 0	Grassline elevat	ion corrected fo	or sag						3-Best Est
	STAGING T	ABLE	 				ater surface ele	evations and sa	a			4-User
									ř	rmula Velocity		
	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.	Bath	Hey
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIN	RADIUS	FLOW	VELOCITY	VELOCITY	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)	(FT/SEC)	(FT/SEC)
GL	4.00	27.33	1.89	3.00	51.54	28.60	100.0%	1.80	353.96	6.87	6.8680183	2.3485022
	4.98	23.12	1.16	2.02	26.83	23.89	83.5%	1.12	69.73	2.60	2.5990073	1.4955218
	5.03	22.72	1.13	1.97	25.68	23.47	82.1%	1.09	63.82	2.48	2.4848114	1.4560409
	5.08	22.31	1.10	1.92	24.56	23.05	80.6%	1.07	58.26	2.37	2.3723014	1.4161211
	5.13	21.91	1.07	1.87	23.45	22.63	79.1%	1.04	53.04	2.26	2.2615081	1.3757426
	5.18	21.50	1.04	1.82	22.37	22.21	77.7%	1.01	48.14	2.15	2.1524645	1.3348837
	5.23	21.03	1.01	1.77	21.30	21.73	76.0%	0.98	43.90	2.06	 	1.2970267
	5.28	20.50	0.99	1.72	20.26	21.19	74.1%	0.96	40.20	1.98	1.983939	1.2619078
	5.33	19.96	0.96	1.67	19.25	20.65	72.2%	0.93	36.74	1.91		1.2266011
	5.38	19.43	0.94	1.62	18.27	20.11	70.3%	0.91	33.50	1.83	1	1.1911034
	5.43	18.90	0.92	1.57	17.31	19.57	68.4%	0.88	30.47	1.76	 	1.1554118
	5.48	18.37	0.89	1.52	16.38	19.02	66.5%	0.86	27.64	1.69	 	1.1195232
	5.53	17.84	0.87	1.47	15.47	18.48	64.6%	0.84	25.01	1.62		1.0834347
ļ	5.58	17.31	0.84	1.42	14.59	17.94	62.7%	0.81	22.57	1.55		1.0471435
ļ	5.63	16.84	0.82	1.37	13.74	17.47	61.1%	0.79	20.13	1.46	 	1.0069988
	5.68	16.44	0.79	1.32	12.91	17.05	59.6%	0.76	17.74	1.37		0.9631836
	5.73	15.98	0.76	1.27	12.10	16.58	58.0%	0.73	15.65	1.29		0.9214475
	5.78	15.48	0.73	1.22	11.31	16.06	56.2%	0.70	13.83	1.22	 	0.8815944
-	5.83	14.98	0.70	1.17	10.55	15.55	54.4%	0.68	12.16	1.15	1	0.8413063
	5.88	14.48	0.68	1.12	9.81	15.04	52.6%	0.65	10.64	1.08	 	0.8005588
	5.93	14.10	0.65	1.07	9.10	14.64	51.2%	0.62	9.09	1.00		0.7527831
WL	5.98	13.83	0.61	1.02	8.40	14.35	50.2%	0.59	7.59	0.90		0.6984012
	6.03	13.48	0.57	0.97	7.72	13.99	48.9%	0.55	6.32	0.82	 	0.6464552
	6.08	13.08	0.54	0.92	7.05	13.56	47.4%	0.52	5.26	0.75	· · · · · · · · · · · · · · · · · · ·	0.5965004
-	6.13 6.18	12.60 12.05	0.51 0.48	0.87 0.82	6.41 5.80	13.06 12.49	45.7% 43.7%	0.49	4.37 3.63	0.68		0.5493735 0.5048132
	6.23	11.50	0.48	0.82	5.80	11.91	41.7%	0.46	2.98	0.63		0.4594443
-	6.28	10.95	0.45	0.77	4.64	11.34	39.6%	0.44	2.90	0.52		0.4594443
	6.33	10.40	0.42	0.72	4.11	10.77	37.6%	0.38	1.92	0.47		0.3659741
	6.38	9.85	0.40	0.62	3.60	10.19	35.6%	0.35	1.51	0.42		0.3039741
-	6.43	8.94	0.35	0.57	3.14	9.25	32.4%	0.34	1.23	0.39	 	0.2868389
	6.48	8.64	0.31	0.52	2.70	8.93	31.2%	0.30	0.90	0.33	0.3333744	†
	6.53	8.33	0.27	0.47	2.27	8.60	30.1%	0.26	0.63	0.28	 	0.1638243
-	6.58	8.02	0.23	0.47	1.86	8.26	28.9%		0.42		0.2272964	1
	6.63	7.77	0.19	0.37	1.47	7.99	27.9%		0.42			0.033001
	6.68	7.59	0.14	0.32	1.09	7.78	27.2%		0.15		0.1397928	†
	6.73	6.73	0.11	0.27	0.72	6.88	24.1%		0.08		0.1087362	·
	6.78	5.29	0.08	0.22	0.42	5.40	18.9%		0.03	0.08		
	6.83	2.99	0.07	0.17	0.22	3.06	10.7%	i	0.01		0.0538962	
	6.88	1.80	0.05	0.12	0.10	11.224	6.4%	i	0.00		0.0315396	T*************************************
	6.93	0.91	0.04	0.07	0.03	0.93	3.3%		0.00		0.0141474	· · · · · · · · · · · · · · · · · · ·
	6.98	0.29	0.01	0.02	0.00	0.29	1.0%		0.00		0.0025681	

Exhibit 2 – Stream Flow Data

Station ID: 09176500

Station Name: Tabeguache Creek near Nucla

Latitude: 38 22 08 Longitude: 108 20 42 Basin Area: 16.9 sq-mi Mean basin elev:. 8,010 ft

Annual Mean Discharge: 11.2 cfs

Period of Operation: 04/01/1946 to 09/30/1953

Station 09	176500 Tab	eguache Cr	eek near Nu	ıcla								
			Monthly me	an discharg	e, in cubic f	eet per sec	ond, and ran	king for eac	ch month, by	ywateryear		
Water	October	November	December	January	February	March	April	May	June	July	August	September
year	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge	Discharge
1946							32.50	30.30	3.26	0.22	0.09	0.15
1947	0.61	0.48	0.40	0.30	0.40	0.60	21.50	38.30	4.49	0.73	0.98	0.79
1948	4.40	4.50	3.20	3.80	6.00	8.00	79.80	104.60	12.30	0.27	0.08	0.04
1949	0.25	0.50	0.50	0.50	0.40	0.60	37.80	102.10	37.70	2.21	0.04	0.07
1950	0.59	0.63	0.62	0.60	0.80	1.70	78.10	63.30	10.90	0.20	0.00	0.03
1951	0.39	1.01	0.29	0.30	0.30	0.40	6.16	41.40	6.23	0.03	0.12	0.00
1952	0.07	0.06	0.19	0.30	0.30	0.30	47.10	123.50	25.10	0.42	0.17	0.05
1953	0.07	0.15	0.20	0.30	0.30	1.01	9.89	31.50	7.24	0.27	0.68	0.02
Mean	0.91	1.05	0.77	0.87	1.21	1.80	39.11	66.88	13.40	0.54	0.27	0.14

Stream flow measurement made by U.S. Forest Service Hydrologists on Tabeguache Creek at the Forest Boundary

11/5/1991	1.5
3/27/1992	13.8
5/18/1992	66.08
6/4/1992	61.69
6/16/1992	17.12
7/17/1992	3.88
8/3/1992	1.05
8/10/1992	1.86
8/31/1992	1.7
10/6/1992	1.5
10/19/1992	1.11
11/9/1992	3.68

Date

Flow

Exhibit 3 – Fish Survey Data

Tabeguache Creek

Date: July 29, 2008 County: Montrose State: Colorado

Forest: GMUG NF, Norwood Ranger District

Drainage: Tabeguache Creek/San Miguel River/Dolores River

Reach 1:

Location: At Indian Trail (FST 500) crossing.

Time: 1100 hours

Water Temperature: 20c Air Temperature: 29c

The stream is low gradient and with moderate sinuosity. Riparian habitat is diverse with willows, cottonwoods, ponderosa pine, and oak scrub. The vegetation in the surrounding canyon shifts from oak scrub and pine in the bottom and lower slopes to pinon juniper forest on the upper slopes

. There is no evidence of cattle grazing in the drainage.

There was close to an even ratio of pools to riffles. Larger pools occurred at the tail of steeper riffles/drops and often went into long runs before tailing out. There were a few sections of step pools and various pockets of cover among larger boulders. The substrate was largely polished sandstone of boulder and cobble size. There were also many sections with numerous finer substrates, particularly sand. There was not much in channel woody debris and pools seemed limited in cover. Visual observation of cobbles revealed a variety of caddis fly larvae and mayfly nymphs. Additionally, there was a variety of diptera larvae.

There were no cutthroat captured in this reach; the only trout captured were RBT. The warm water temperatures likely limit distribution this far down in the drainage. There was a diversity of native warmer water species. The sample was dominated by speckled dace in a wide range of sizes. To a lesser degree there were also blue head sucker and mottled sculpin.

Water: Tabeguache Cr

Date: 7/29/08

Location: Indian Trail (FST#500) Crossing

Drainage: San Miguel

Water Code:43480 UTM Zone: 12S

UTM X: 0718152 UTM Y: 4249138

Station Length = 140.8 ft Station Width = 15.34ft Crew: Adams, Much, Olson

Notes: Air Temp: 20c; Water Temp: 17C; Pass 1 Effort: 1346sec; Pass 2 Effort: 1000; 11 Mortalities

			Weight				
Species	Count	Length (mm)	(g)	Status	Mark	TagID	
RBT	1	336	365	1			mortality
RBT	1	238	137	1			mortality
RBT	1	187	115	1			mortality
BHS	1	147	33	1			mortality
BHS	1	236	136	1			
BHS	1	208	93	1			
BHS	1	185	64	1			
BHS	1	232	120	1			
BHS	1	195	75	1			
BHS	1	202	93	1			
BHS	1	177	52	1			
BHS	1	205	91	1			
BHS	1	225	109	1			
BHS	1	187	65	1			
BHS	1	187	69	1			
BHS	1	181	55	1			
BHS	1	146	33	1			
BHS	1	164	49	1			
BHS	1	145	28	1			
BHS	1	196	71	1			
BHS	1	139	30	1			
BHS	1	144	33	1			
BHS	1	166	49	1			
BHS	1	120	22	1			
BHS	1	149	32	1			
BHS	1	120	20	1			
BHS	1	143	29	1			
BHS	1	130	24	1			
BHS	1	129	22	1			
BHS	1	127	22	1			
BHS	1	127	22	1			
SPD	1	107	11	1			
SPD	1	77	6	1			
SPD	1	73	4	1			
SPD	1	73	4	1			
SPD	1	73	4	1			
SPD	1	73	4	1			
SPD	1	79	5	1			
SPD	1	79	5	1			
SPD	1	88	7	1			
SPD	1	100	10	1			
SPD	1	74	4	1			
SPD	1	74	4	1			
SPD	1	83	6	1			
SPD	1	83	6	1			
SPD	1	69	3	1			
SPD	1	69	3	1			
SPD	1	69	3	1			
SPD	1	47	1	1			
SPD	1	47	1	1			
	-	••	•	•			

SPD	1	49	1	1			
			Weight				
Species	Count	Length (mm)	(g)	Status	Mark	TagID	
SPD	1	46	1	1		•	
SPD	1	48	1	1			
SPD	1	58	2	1			
SPD	1	58	2	1			
SPD	1	77	4	1			
SPD	1	77	4	1			
SPD	1	77	4	1			
SPD	1	70	3	1			
SPD	1	70	3	1			
SPD	1	70	3	1			
SPD	1	60	2	1			
SPD	1	60	2	1			
SPD	1	60	2	1			
SPD	1	76	4	1			
SPD	1	76	4	1			
SPD	1	68	3	1			
SPD	1	68	3	1			
SPD	1	68	3	1			
SPD	1	64	3	1			
SPD	1	64	3	1			
SPD	1	64	3	1			
SPD	1	64	3	1			
SPD	1	76	4	1			
SPD	1	66	3	1			
SPD	1	66	3	1			
SPD	1	66	3	1			
SPD	1	67	3	1			mortality
SPD	1	67	3	1			
SPD	1	67	3	1			
SPD	1	67	3	1			
SPD	1	67	3	1			
SPD	1	67	3	1			
SPD	1	65	3	1			
SPD	1	65	3	1			
SPD	1	65	3	1			
SPD	1	81	5	1			
SPD	1	76	4	1			
SPD	1	76	4	1			
SPD	1	76	4	1			
SPD	1	76	4	1			
SPD	1	76	4	1			
SPD	1	76	4	1			
SPD	1	75	4	1			
SPD	1	75 	4	1			
SPD	1	75 	4	1			
SPD	1	75 	4	1			
SPD	1	74	4	1			
SPD	1	74	4	1			
SPD	1	78	4	1			

SPD	1	78	4	1			
SPD	1	78	4 Weight	1			
Species	Count	Length (mm)	(g)	Status	Mark	TagID	
SPD	1	75	4	1			
SPD	1	71	3	1			
SPD	1	71	3	1			
SPD	1	71	3	1			
SPD	1	71	3	1			
SPD	1	71	3	1			
SPD	1	71	3	1			
SPD	1	71	3	1			
SPD	1	71	3	1			
SPD	1	78	4	1			
SPD	1	78	4	1			
SPD	1	86	6	1			
MTS	1	66	4	1			mortality
SPD	1	85	6	1			,
SPD	1	85	6	1			
SPD	1	82	5	1			
SPD		71	3	1			
	1						
SPD	1	71	3	1			
SPD	1	68	3	1			
SPD	1	70	3	1			
SPD	1	69	3	1			
SPD	1	69	3	1			
SPD	1	69	3	1			
SPD	1	59	2	1			
SPD	1	59	2	1			
SPD	1	59	2	1			
SPD	1	59	2	1			
SPD	1	59	2	1			
SPD	1	81	5	1			
SPD	1	81	5	1			
SPD	1	50	1	1			
SPD	1	60	2	1			
SPD	1	80	5	1			
SPD	1	80	5	1			
SPD	1	78	4	1			
SPD	1	95	8	1			
SPD	1	84	6	1			
SPD	1	84	6	1			
MTS	1	61	3	1			
SPD	1	85	8	1			
MTS	1	56	3	1			
SPD	1	72	4	1			
SPD	1	62	3	1			
SPD	1	55	2	1			
SPD	1	53	2	1			
SPD	1	53	2	1			
SPD	1	45	1	1			
SPD	1	45	1	1			

SPD	1	45	1	1			
SPD	1	61	2	1			mortality
SPD	1	61	2	1			
	0 1		Weight	0		T 10	
Species	Count	Length (mm)	(g)	Status	Mark	TagID	
SPD	1	62	2	1			
SPD	1	63	2	1			. 19
MTS	1	60	3	1			mortality
MTS	1	62	3	1			mortality
SPD	1	57	3	1			mortality
SPD	1	43	1	1			mortality
SPD	1	40	1	1			
RBT	1	196	75	2			
RBT	1	149	30	2			
BHS	1	191	74	2			
BHS	1	210	94	2			
BHS	1	153	49	2			
BHS	1	156	41	2			
BHS	1	162	49	2			
BHS	1	123	20	2			
BHS	1	137	30	2			
BHS	1	142	28	2			
SPD	1	132	21	2			huge dace
BHS	1	132	26	2			
BHS	1	131	24	2			
BHS	1	154	36	2			
BHS	1	133	25	2			
BHS	1	135	27	2			
MTS	1	78	7	2			mortality
BHS	1	99	12	2			•
SPD	1	82	50	2			
SPD	1	82	50	2			
MTS	1	87	8	2			mortality
SPD	1	68	4	2			·
SPD	1	68	4	2			
SPD	1	68	4	2			
SPD	1	75	4	2			
SPD	1	75	4	2			
SPD	1	86	6	2			
BHS	1	120	17	2			
SPD	1	65	4	2			
SPD	1	65	4	2			
SPD	1	65	4	2			
SPD	1	65	4	2			
SPD	1	65	4	2			
SPD	1	65	4	2			
SPD	1	71	4	2			
SPD	1	71	4	2			
SPD	1	71	4	2			
SPD	1	71	4	2			
SPD	1	71	4	2			
SPD	1	71	4	2			
-	•		•	_	1.0		

SPD	1	71	4	2			
SPD	1	83	5	2			
SPD	1	70	4	2			
SPD	1	81	5	2			
U. U	•	•	Weight	_			
Species	Count	Length (mm)	(g)	Status	Mark	TagID	
SPD	1	81	5	2		J	
SPD	1	85	6	2			
SPD	1	85	6	2			
SPD	1	87	6	2			
SPD	1	87	6	2			
SPD	1	72	4	2			
SPD	1	72	4	2			
SPD	1	72	4	2			
SPD	1	72	4	2			
SPD	1	72	4	2			
SPD	1	72	4	2			
SPD	1	72	4	2			
SPD	1	55	3	2			
SPD	1	70	4	2			
SPD	1	70 70	4	2			
SPD	1	70 70	4	2			
SPD	1	70	4	2			
		70	4				
SPD	1			2			
SPD	1	70	4	2			
SPD	1	70	4	2			
SPD	1	70	4	2			
SPD	1	69	4	2			
SPD	1	69	4	2			
SPD	1	69	4	2			
SPD	1	69	4	2			
SPD	1	69	4	2			
SPD	1	69	4	2			
SPD	1	69	4	2			
SPD	1	106	12	2			
SPD	1	67	4	2			
SPD	1	77	5	2			
SPD	1	77	5	2			
SPD	1	77 	5	2			
SPD	1	77	5	2			
SPD	1	78	5	2			
SPD	1	78	5	2			
SPD	1	79	5	2			
SPD	1	79	5	2			
SPD	1	79	5	2			mortality
SPD	1	76	5	2			
SPD	1	76	5	2			
SPD	1	73	4	2			
SPD	1	59	3	2			
SPD	1	90	6	2			
SPD	1	67	4	2			
SPD	1	67	4	2			

SPD	1	82	5	2			
SPD	1	58	3	2			
SPD	1	58	3	2			
SPD	1	74	4	2			
SPD	1	61	3	2			
			Weight				
Species	Count	Length (mm)	(g)	Status	Mark	TagID	
SPD	1	66	4	2			
SPD	1	80	5	2			
SPD	1	68	4	2			
SPD	1	60	3	2			
SPD	1	75	5	2			
SPD	1	65	4	2			
SPD	1	65	4	2			
SPD	1	43	1	2			
SPD	1	64	4	2			
SPD	1	48	1	2			mortality
MTS	1	59	3	2			mortality
SPD	1	54	3	2			
SPD	1	63	3	2			
MTS	1	59	3	2			

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

- ---

AND SECTION LOCATION NOS. SECTION LOCATION NOS. SECTION LOCATION NOS. SECTION NOS. SECTION NOS. SECTION NOS. SECTION NOS. SECTION NOS. SECTION SECTION SECTION NOS. SECTION	CONSERVATION BOARD)			LUC	AII	ON II	NFO:	HMA	IIIOI	N								100
ANS SECTION LOCATION IN A SECTION BY COMMON OR SCIENTIFIC ORDER NAME SCARRIES SECTION LOCATION BY COMMON OR SCIENTIFIC ORDER NAME AND STATES SECTION STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME AND STATES SECTION STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME AND STATES STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS AND READ STATES OF STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS AND READ STATES OF SCIENCE OF STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS ACCOMMENTS ACCOMMENTS ACCOMMENTS ACCOMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS SPECIAL DESCRIPTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS SPECIAL DESCRIPTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS CO	STREAM NAME: LOGUE	che C	reek	a	borg	e F	-oses	4 }	0~	de	4	٠				C	ROSS	SECTION	NO.:
SUPPLEMENTAL DATA GIVE SECTION SECTION SET 1/2 SECTION DISCUSSIVE DISCUSSIVE	BOSS-SECTION LOCATION	,	1	_	-	1	>	_	-	_	_	- 7	/	1 :	-		12		
GUNTY. WASKASSED TOWN JUSCES SUPPLEMENTAL DATA GIVES ECTION SAME AS VESTOD WATER TYPE JOSEPH STEEN NUMBER GIVES SUPPLEMENTAL DATA GIVES SCHOOL SAME AS VESTOD WATER TYPE JOSEPH STEEN NUMBER JOSEPH STEEN NUMBER		pp x	- 35		0		2	100		-	000	2	, ace	100	- / 1	rail		,)
GUNTY. WASHINGTON JUSCES WASHINGTON JUSCES SUPPLEMENTAL DATA GIANE SECTION SAME AS VESTNO WASHINGTON JUSCES SUPPLEMENTAL DATA GIANE SECTION SAME AS VESTNO METER TYPE JUSCES SUPPLEMENTAL DATA GIANE SECTION SAME AS VESTNO METER TYPE JUSCES SUPPLEMENTAL DATA GIANE SECTION SAME AS VESTNO METER TYPE JUSCES WASHINGTON MATER ROOM AND SECTION THE NUMBER JUSCES JUSCES WASHINGTON JUSTIANCE JUSCES JUS	ATE - // / G OBSE	RVERS. A	+ <	1 -	+	_	1 <	70	-<				-				-		
SUPPLEMENTAL DATA GIAPE SECTION SAME AS VES (NO) WETER TYPE DATA GIAPE SECTION SAME AS VES (NO) WETER TYPE DATA GIAPE SECTION SAME AS VES (NO) WETER TYPE DATA GIAPE SECTION SAME AS VES (NO) WETER TYPE DATA GIAPE SECTION SAME AS VES (NO) WETER TYPE DATA GIAPE SECTION SAME AS VES (NO) WETER TYPE DATA GIAPE SECTION SAME AS VES (NO) WETER TYPE DATA CHANNEL PROFILE DATA STATON DOTTING WE PROTOGRAPHS TAKEN VES (NO) WUMBER OF PROTOGRAPHS. STATON PROMISE OF PROTOGRAPHS. STATON PROMISE OF PROTOGRAPHS TAKEN VES (NO) WUMBER OF PROTOGRAPHS. STATON PROMISE OF PROTOGRAPHS. STATON PROTOGRAPHS TAKEN VES (NO) WUMBER OF PROTOGRAPHS. STATON WED OF THE WEST (NO) WUMBER OF PROTOGRAPHS. STATON WED OF THE WEST (NO) WUMBER OF PROTOGRAPHS. THEAN ELECTROPISHED VES (NO) DISTANCE ELECTROPISHED ON WITHOUT VES (NO) WUMBER OF PROTOGRAPHS. THEAN ELECTROPISHED VES (NO) DISTANCE ELECTROPISHED ON WORLDOWN TO THE CHEMISTRY SAMPLED VES (NO) LENGTH PROTOGRAPHS TO THE WEST (NO) WUMBER OF PROTOGRAPHS TO THE WEST (NO) WUMBER OF PROTOGRAPHS. THEAN ELECTROPISHED VES (NO) DISTANCE ELECTROPISHED ON WORLDOWN TO THE CHEMISTRY SAMPLED VES (NO) LENGTH PROTOGRAPHS TO THE WEST (NO) WUMBER OF PROTOGRAPHS. COMMENTS COMMENTS SECURATE OF THE WEST OF THE WEST (NO) WUMBER OF THE WEST (NO) STATON THE WEST (NO) WEST (NO) WET (NO) WE NOT THE WEST (NO) WORLDOWN TO THE WEST (NO) WORLDOWN TO THE WEST (NO) WORLDOWN TO THE WEST (NO) WE NOT THE WEST (NO	GAL SECT	110h 1/1	SECTIO		110-	-	IOWNSH		2		10	RANGI	Ŀ				PM;	-	
SUPPLEMENTAL DATA GIAPE SECTION SAME AS VES/RO METER TYPE CHANGE SECTION SAME AS VES/RO ONE RATED.	OUNTY.	WAT	ERSHED	7				T w	TER D				-				ODE		
SUPPLEMENTAL DATA GIAPE SECTION SAME AS VESTOR METER TYPE EXCHARGE SECTION GIAPE SECTION SAME AS VESTOR DATE AND METER TYPE PYSTOTIC AUGUST TO SAME AS VESTOR MANNEL RED MATERIAL SITE RANGE AMONEL RED MATERIAL SITE RANGE CHANNEL PROFILE DATA STATION STATION FIGURE SISTAN BERNO DISTANCE WIR ROD RECOME UN FIGURE SISTAN BERNO TAGON TARE HE DO SISTAN BERNO MIS DEMANTISM MIS DEMA	Luca	170	spane	che						4									
SUPPLEMENTAL DATA G. IMPESICION BANKE AS GENERAL SECTION BANKE AS GENERAL SECTION BANKE AS DATE RATED. D	IAPIS)						44												1
GENER SECTION SAME AS SCHARGE SECTION GENERATURE CHARGE SECTION AND SET ALLERS THREE CHARGES SECTION AND SET ALLERS THREE STATION	usrs.					_			_			_		-		_			
DATE RATED THE RESIDENT THE RESIDENT TOTAL THE RESIDENT T					SU	PPL	EME	NTA	LDA	ATA									
THE NUMBER OALE RATED OALERSON NUMBER OF PHOTOGRAPHS. LEGEND OTHER PROPERTY IN STANCE THE RANGE THE ROD READING IN THE TENSION OF PHOTOGRAPHS. LEGEND OTHER PROPERTY THE NUMBER OF PHOTOGRAPHS. LEGEND OTHER PROPERTY THE DATA STANCE BY STANCE THE TENSION OF PHOTOGRAPHS. LEGEND OTHER PROPERTY THE OALE STANCE THE TENSION OF PHOTOGRAPHS. OTHER PROPERTY THE OALE STANCE THE TENSION OF PHOTOGRAPHS. OTHER PROPERTY THE OALE STANCE THE TENSION OF THE TENSION OF PHOTOGRAPHS. OTHER PROPERTY THE OALE STANCE THE TENSION OF THE TENSION	G TAPE SECTION SAME AS	VES NO	METER T	VPE.	Py	5 m	7	-		_				-		-			
ADMAILED MATERIAL SIZE PANCE TO CHANNEL PROFILE DATA CEGENO STATION DISTANCE 1/8 ROD READING 1/8 TAGE STATION TAGE STA		DAI	E RATED.	in	1	10	1	-	+							T			
CHANNEL PROFILE DATA STATION DISTANCE FROM TAPE #8 ROD READING #8 STANCE STANCE FROM TAPE #8 ROD READING #8 STANCE STANCE STANCE FROM TAPE #8 ROD READING #8 STANCE AQUATIC SAMPLING SUMMARY AQUATIC SAMPLING SUMMARY AQUATIC SAMPLED VESINO DISTANCE ELECTROFISHED T FISH CAUGHT VESINO WATER CHEMISTRY SAMPLED VESINO DISTANCE ELECTROFISHED T FISH CAUGHT VESINO WATER CHEMISTRY SAMPLED VESINO LENGTH-FREQUENCY DISTANCE FLECTROFISHED LENGTH-FREQUENCY DISTANCE FLECTROFISHED TO BE STANCE COMMENTS SPECIAL DISCONSINE STANCE COMMENTS SPECIAL DISCONSINE STANCE COMMENTS SPECIAL DISCONSINE STANCE COMMENTS SPECIAL DISCONSINE STANCE TO BE STANCE COMMENTS SPECIAL DISCONSINE STANCE TO BE STA	ANNEL BED MATERIAL SIZE	RANGE	1/1207	1	111	CAE	18/SPIN						7			_	_		ths
STATION DISTANCE IN ROOM TAPE IN ROOM READING IN STANCE STANCE STANCE STANCE OF STANCE STANC	1000 leve	se gravel	14010	66	900	_		PHOTO	GRAP	HS TAK	EN YES	S/NO							
STATE OF STA	9010 60	sider			CH	ANN	ELP	ROF	ILE	DAT	A								
STADE AS STADE LB O.O J. 28 STADE LB O.O J. 29 J. 25 DISTANCE ELECTROFISHED VES/NO DISTANCE ELECTROFISHED LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO LENGTH- FREDUENCY DISTANBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) DISTANCE ELECTROFISHED VES/NO WATER CHEMISTRY SAMPLED VES	STATION	DISTANCE FROM TA	CE HA	T	ROI	D REAL	DING IN	, T	T			_	6	2		-	-	1	EGENO:
SISHON O SIS	Tape W Stake LB				3	.28	3		1_					9	1			_	0
WIS DUALIFORM WIS DUALIFORM WIS DUALIFORM WIS DUALIFORM WIS DUALIFORM WIS DUALIFORM WATER CHEMISTRY SAMPLED VES/NO LENGTH-FREDUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1 0-1.9, 2.0-2.9, ETC.) PECIES IFILL IN I Z 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 TOTAL DUALIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS SPECIFIC ACC. Rainbow Tout & Blocked Sockers Observed WILL AS O USE Clectro Fishing clate from 2008 Survey Stream Temp 65 F @ 1149 Various Lend Common Acc. Rainbow Acc. Will Day Ponderasa fine, Camble Oat) Tape w Slake RB	0.0			4	.82			S									-	_
WS DUATICEMEN WS DOWNSTIVEN WS DOWNSTIVEN WS DOWNSTIVEN AQUATIC SAMPLING SUMMARY AQUATIC SAMPLING SUMMARY AQUATIC SAMPLING SUMMARY FISH CAUGHT VES/NO LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9. 2.0-2.9. ETC.) PECIES IFILLINN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 TOTAL DUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS Speckle Dace, Kambow Typet Blue head Sockers Observed W. I also use electro-fishing date from 2008 Survey Stream Temp 65° F @ 1149 Ye Name of Comments of the Common of the Comm) WS @ Tape LB/RB	737 0.0		187	29	17	25	RB	E				a de	1					
AQUATIC SAMPLING SUMMARY AQUATIC SAMPLING SUMMARY TREAM ELECTROFISHED VES/NO DISTANCE ELECTROFISHED) WS Upstream		- 15	T		3.	.00		4			e	` -	13	>			Pr	010
AQUATIC SAMPLING SUMMARY TREAM ELECTROFISHED VES/NO DISTANCE ELECTROFISHED		- 1	F	1	11 15	2	7	\dashv	1-	-	-						-	- Direc	tion of Flo
AQUATIC SAMPLING SUMMARY TREAM ELECTROFISHED VES/NO DISTANCE ELECTROFISHED	SLOPE	144			11.1/	/	221	000	22		1		10	9	K	वा			
COMMENTS Speckle Dace Rainbow Trunt Blockers Observed Unit also use electro-fishing date from 2008 survey Strom Temp 65° F @ 1149 1 PISHCAUGHT VES/NO WATER CHEMISTRY SAMPLED VES/NO WATE									1				(2/	1		1	-	1	
LENGTH-FREQUENCY DISTRIBUTION BY ONE-INCN SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) PECIES IFILL IN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15 TOTAL DUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME COMMENTS Specific Dace, Rainbow Trant "Blue head Sockers Observed" U.I also use electro-fishing date from 2008 survey Stream Temp 65°F @ 1149 12 3 4 5 6 7 8 9 10 11 12 13 14 15 > 15 TOTAL COMMENTS Specific Dace, Rainbow Trant "Blue head Sockers Observed" U.I also use electro-fishing date from 2008 survey Stream Temp 65°F @ 1149				AC	IUAI	IIC:	SAMI	LIN	GSI	JMM	ARY			12	10'	*			
COMMENTS Speckle Dace, Rainbow Trant Blue head Sockers Observed U.II also use electron-fishing claic from 2008 survey Strum Temp 65°F @ 1149 Yarsow leaf Cotton wood, At deer, Willow Ponderosa Pire, Gamble Oat	TREAM ELECTROFISHED Y	ES/NO DIS	STANCE ELEC	TROFIS	SHED _		n	*	ISHCA	UGHT	YES/NO			WATE	RCHEN	ISTRY	SAMPL	ED YES	/NO
COMMENTS Speckle Dace Rainbow Trant Blue head sockers Observed Will also use electro-fishing clab from 2008 survey strum Temp 65°F @ 1149 The Navyow leaf Cotton wood, At deep, Willow Ponderosa Pine, Gamble Oat		LE	NGTH - FRE	DUENC	V DISTI	RIBUTI	OM BA	ONE-IN	CH \$12	E GRO	UPS (1.	0-1.9. 2	.0-2.9.	ETC.)					
Speckle Dace, Rainbow Trant Blue head sockers Observed Will also use electro-fishing clabe from 2008 survey strum Temp 65°F @ 1149 y: Narrow leaf Cotton wood, At dee, Willow Ponderosa Pire, Gamble Oat	PECIES IFILL IN		,	2	3	4	5	5	7	8	9	10	11	12	13	14	15	>15	TOTAL
Speckle Dace, Rainbow Trant Blue head sockers Observed Will also use electro-fishing clabe from 2008 survey strum Temp 65°F @ 1149 y: Narrow leaf Cotton wood, At dee, Willow Ponderosa Pire, Gamble Oat			-	-	-	-					-		-	-	-		-		
Speckle Dace, Rainbow Trant Blue head sockers Observed Will also use electro-fishing clabe from 2008 survey strum Temp 65°F @ 1149 y: Narrow leaf Cotton wood, At dee, Willow Ponderosa Pire, Gamble Oat	-		_		1	1	1												
Speckle Dace, Rainbow Trant Blue head sockers Observed Will also use electro-fishing clabe from 2008 survey strum Temp 65°F @ 1149 y: Narrow leaf Cotton wood, At dee, Willow Ponderosa Pire, Gamble Oat																			
Speckle Dace, Rainbow Trunt Blue head Sockers Observed Will also use electro-fishing clate from 2008 survey strum Temp 65°F @ 1149 y: Narrow leaf Cotton wood, At des , Willow Ponderosa Pire, Gamble Oat	DUATIC INSECTS IN STREAM	SECTION BY COM	MON OR SC	IENTIFI	C CRO	ERNA	WE												
Speckle Dace, Rainbow Trunt Blue head Sockers Observed Will also use electro-fishing clate from 2008 survey strum Temp 65°F @ 1149 y: Narrow leaf Cotton wood, At des , Willow Ponderosa Pire, Gamble Oat																- 3			
Speckle Dace, Rainbow Trunt Blue head Sockers Observed Will also use electro-fishing clate from 2008 survey strum Temp 65°F @ 1149 y: Narrow leaf Cotton wood, At des , Willow Ponderosa Pire, Gamble Oat						C	OMM	ENT	S										
strum Temp 65°F @ 1149 y: Narsow leaf Cotton wood, Alder, Willow Ponderosa Pire, Gamble Oat	soull.	Nece 1	2-1-6		-		- 45		_	01-1	1	201		al	(0.6	0-0	-	3	
istrum Temp 65°F @ 1149' y: Narsowleaf Cotton wood, Alder , Willow Ponderosa Pie, Gamble Oat	1.11		1 1	10 -	Lie	6	5 0	0-1	- 4	-	2.								
y: Navion leaf Cotton wood, Alder , Willow Ponderosa Pire, Gamble Oat	- 1 7		LEO E	0	11:	19	10	ale	7 7	ra	_	20	00	201	7		-		
		1101	2) -	1	A	1	- 1	1:11	2/4)	P	. 1	1	7	5.	1		66	0-1	
	7		N WOOD	7	116 0	iei	9	1		10	nove	1050		12	, 0	un	JE	Jul	
				_		_	_												

DISCHARGE/CROSS SECTION NOTES

STREAM NAME	Tesegua					4.000 d	SS-SECTION		7/16/1	SHEET	20r2
EGINNING OF	MEASUREMENT	EDGE OF 10.0 AT ST	WATER LOOKING (MAJATZHWO	LEFT AK	Gage R	eading.	None 11 TI	ME 1130		
State (S)	Distance From	Width	Total Vertical	Water Depth	Depth	Revolutions		Velocity	(ft/sec)		
Stake (S) Grassline (G) Waterine (W) Rock (R)	Install Point (h)	(N)	Depth From Tape/Inst (h)	(74)	Observation (ft)	7 7	Time (sec)	At Point	Mean in Vertical	Area (tt ²)	Oscharge (cfs)
			2.3							1	
45	0		3.28						-		
	2		3.51 -							- 1	
	2+6"		4,29				-				
	5'		5.11				-			-	
1	7+4		5.78				-		9.		
GL			6.75								
	15		7.10					21-31			
LEW	20		7,29								
	21		757	0,2				6			+)
	22		7.63	0.2	1			0.123			
+1	23		7.53	0.2				0,155			
	24		7.82	0.42				0.351			
	25	-	7.66	0,3			01	0.450			
	26		777	0.3		-		0.45			
	27		7.90	0,5				0.283			
R	28		7,32	0				0			
	29		5.80	0.4				1.024			
	29+6		7.60	0.25				10.737			
	30		7.53	0.1				.0.826			
	30+6		7.83	0.45				17731			
	3		2.88	2/11-				0.952	-	-	
	31+6		+	0.45				10.100	1	-	
			7.85	0.45			-	1:09			
	70		7,76	0.30			-	0.63	-		-
	32+6	-	7.53	0.18				0.363		-	-
	33		7,63	0.20	nol4 -		-	0			-
	33+6		7.3	0.05	ralt ?			0.605			-
	34		7,46	0.05			-	0.605		-	
DELL	34+6		7.54	0.2			-	0.140	-	-	
REW	35+5		7.25		_		+			-	-
RBF	36936		6.76				+			-	-
	44		5.94			-	-		-		-
,0,1	47					-	-		-	-	-
RS	52		5.18				-		-	-	-
1	10		7.00								
							1				
							1	1		1	1
					777						
							+			-	1
TOTALS							N.				
			-			IONS PERFORM		Name and Address of the Owner, where the Party of the Owner, where the Party of the Owner, where the Owner, which is the Owner, which	LCULATIONS	1	

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER

LOCATION INFORMATION

DATE 7/16/09 OBSER		de mos	84		olc.	5	las	SIC	H	()	-				-	-			
EGAL % SECTION)N·	. / !	ECTIO	N N	2/1		OWNSH	IP		N/	/S	RANG	E:	-	F	/W	PM;	131	
COUNTY.		WATERSHI		. 1.				W	TER DI	VISION-				T		WATER	CODE		-
usgs:		Tabl	D	iene	-	_	_			/		-	-				_		
USFS:	ā			-		-	-		-	-			-	-					
					SU	PPLE	EME	NTA	L DA	TA				_		-			
AG TAPE SECTION SAME AS	VES/	(6) M	ETER T	YPE (049	00.14				_		-		-	_	-			
ETER NUMBER.		DATE RAT	ED.		79	1				T				-		T	_	-	-
HANNEL BED MATERIAL SIZE		1	15	-	0	CALI	SPIN	-			TAPE Y		Ī		ER OF	_	GRAPH		ibs
25% large gras	45	0/0 Co	ple	;25	10.	boy	ldv	PHOTO	GRAPI	S TAKE	N VE	S/NO							
					CHA	NN	EL P	ROF	ILE	DAT	A								
STATION		ISTANCE OM TAPE	4	T	ROI	PEAD	ING the	T	T				6	9				T	LEGENO
Tage . Stake LB	,	0.0		1					-	•								_	6
Tape w Stake AB		0.0							S								٠		ake (X
WS @ Tape LB/RB		0.0		1		over-et-		- 1	E		4	->	APE			4	E		ahon (1
2) WS Upstream	92	L			2.	5R			C H		W	-	_					,,,,	noto ()
3) WS Downstream	177	1		4		32		ヿ	-	-			-				-	- Orre	ction of F
SLOPE	20		. 11	-	<			一					. (10	
		.02	75	AC	TAU	IC S	AME	LIN	G SI	ММ	ARY		4	>			_		
STREAM ELECTROFISHED YES	/NO	DISTANCE			-	, c		_	-	JGHT			_	WATE	BCUE	dis Tow	C44400		
			_	-	_			_		_	_	_			n Chek	MISTRY	SAMPL	ED YES	5/NO
SPECIES IFILL IN		LENGTH	,	2	3	4	5	6	7	E GROL	9	10	11	ETC.)	13	14	15	1	
														-	13	1	1.3	>15	TOTAL
															- 1				
QUATIC INSECTS IN STREAM S	ECTION	SY COMMON	OR SCI	ENTIFE	C OROI	RNAM	Ε												
			-								-	-	-	-	_	-			
						CC	MM	ENT	S										
										-		-	-	_					-

FORM #ISF FD 1-85

STREAM	NAME 7	obeque	eche	Crk.			CROS	SS-SECTION	NO	DATE /6/	09 SHEE	12 or 2
BEGINNI	NG OF ME	ASUREMENT	EDGE OF 10.0 AT ST	WATER LOUKING D	OWNSTREAM	LEFT RIGI	Gage Re	eading.	lone "	TIME 12		
Stake	ısı	Distance	Width	Total	Water	Depth	Revolutions		Veloc	ity (ft/sec)	T	
Grass	nine (G) rine (W) (R)	From instal Point (ft)	(F)	Vertical Depth From Tape/Inst (ft)	Depth (N)	Observation	* 11	Time (sec)	At Point	Mean in Vertical	Area (tt²)	Oscharge (cfs)
										-		-
15		0		2.82								-
		1,5		2.80 -				-		-		+
		2,5		3.42				-	-	+	-	-
		7.4		4.15				-		+	+	
										+	-	
				-				-		-	-	-
	12	2,0		3.84				-			-	-
		3.5		3.80				-	-	-		+
		4.9		4.68				1		-	_	+
7		5.9		4.55				-	-	-	-	+
17		8.2		4.94				-		+	+	+
		9.7		5.0	**			-	-	-	-	+
6		7.3		5.42				1	-	-	-	-
EFV		7.1		5.12	-			-	24 - 6 7		+	+
		7.5		5.75		0.05		1	8.468	**		1
_		7.9		6.10		B.32		1	0.971	1	-	1
TIT		8.3		6,63		0.25			0.85			
		8.7		5.88		0.15			B. 55	1		
		9.1		6.04	4	0.32			0.741			
		9,5		6.12		0.32			15.95	1		
	6	7.9		5.95		6,20			1,021	1		-
		30.3		1/ 12	_	0.32		1	1.221	+		+
T		30.7		6.12		0.46			11.103			+
		31,1		6.25		1.50		+	8.918			
8		1,5		6.20		0.45	1-4		1.08			
		1,9	_	5.94	YES	03.20			1,197			1
		32,3		6.10		0.30			0.58	7		
		32.7		5.86		0.15			1.103			
	- 3	33.1		5.82	19 -	0.15	TOO IT VALUE	900	0.44	9		
	- 3	33.4		6.12		0,32			9.75			
		3.8		6.00		0.25			0.64	8		
	3	34.2		5.40		0.25			00			
I bear	7) 3	4.3		e49				-		-	-	-
25		36,6		4,44							1	+
52	-+	06,6		1,77				-			-	+
		+			-			,	-		1 1	+
								-	+		+	-
								1				
-								-		-		+
TOTA	us			1				1				
	Measurer	ment Tim		4			ONS PERFORM		1		NZ CHECKED B.	

209 73,32

67 PS

<u> -</u>---

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER
CONSERVATION BOARD

LOCATION INFORMATION

CROSS-SECTION LOCATION (Lower	X-50		8	7 :	bele	Luc.	X	-Se	e'	#	2	or,	F L				
ATE 7/16/09 OBSER	HLL	ny, 5	trut	h	8	Sp	cas						1.7	, 8				
EGAL % SECTION	ON-	/ SECTIO	N		1	OWNSH	IP		N	/S	RANG	E:	a.,	E	E/W	PM:		
COUNTY.	WA	TERSHED	que	ch			W	TER DI	VISION	4			-	DOW	WATER	CODE		-
USGS: USFS:			0										_				-	
				SU	PPLI	EME	NTA	L DA	TA									
AG TAPE SECTION SAME AS	VES/ (O)	METER T	YPE.	0.					_			-	-	-	-	-	_	-
SCHARGE SECTION: ETER NUMBER.		TE RATED.	7.4	194	m					-	+		-4-1-		T		5	
HANNEL BED MATERIAL SIZE		130	11	1 -	CALI	B/SPIN	=		sec	TAPE V		T		ER OF	TAP	GRAPH		ibs
177	mely	10% 0	bh.	u.			PHOTO	GRAPI	HS TAK	EN VE	ONIZ							
40% boulde			A. 1.	CHA	NN	EL P	ROF	ILE	DAT	A		Us	ds	Ber	s C	u pari	G	4 7
STATION	DISTAN			ROI	DREAD	ING th	T	T		0.7	4	6	9				T	LEGEND:
Tape & Stake LB	0.0	100	\$ 6					-	7 epr -		1							🛇
Tape in Stake RB	0.0	1/2	A.					S										ake 🛞
) wS ⊕ Tape LB/RB	0.0							7		3>		TAPE	4	-(i)				noto ()
) WS Upstream	112			7,00	0			-			***							1010
) WS Downstream	116	1		6.6	5			1-					33.5				Dire	ction of Flo
228'		Y	-4	1.60	5							. 6	9				5	
,0	203		AC	TAU	IC S	AMP	LIN	G SI	JMM	ARY	4.5	3						
TREAM ELECTROFISHED YES		STANCE ELEC	TROFIS	H€0 _			F	ISH CA	UGHT	YES/NO	>		WATE	RCHEA	AISTRY	SAMPL	ED YE	S/NO
	· u	ENGTH- FREC	UENC	DISTR	HBUTIC	ON BA C	NE-IN	CH SIZ	E GRO	UPS (1.	0-1.9, 2	2.0-2.9.	ETC.)				,	- 100
PECIES IFILL IN		,	2.	3	4	5	6	7	8	9	10	11	12	13	14	115	>15	TOTAL
					-				-			-		_	-		_	
*			-								-				-		-	
			1-						-		+			-	-	-		- /
QUATIC INSECTS IN STREAMS	ECTION BY CO	MMON OR SC	ENTIFIC	CORO	RNAM	E								-				21
7																		,
	1 4	-		-	CC	MMC	ENT	S				-						
*		-		_	_					-		-		_			3	
			-		-							-		-		*	-	
-			- No.				_		موست						7 3			
					And annual of													

STREAM N	AME.					CA	OSS-SECTIO	N NO	DATE/16/	9 SHEE	7 Z or -
BEGINNING	OF MEASUREMENT	EDGE OF 10.0 AT ST	WATER LOOKING	G DOWNSTREAM	LEFTIN	GHT Gage F	Reading.	Men		5 pr	
State Greenin	(S) Distance	Width	Total	Water	Depth	Revolutions		Velocit	y (ft/sec)	1	1
Greatine Waterine Rock	(G) From Indust Point Print	(77)	Venical Death From Tape/Inst (N)	Depth (M)	Observation My		Time (sec)	At Point	Mean in Vertical	Area (M2)	Discharg (cfs)
10	1.0	-	0 00	-			-			-	
60	3.3		2.98				-				
	7.0		3.30	-			-				
6	8.0	_	4.05	-	-	-	-				
LFW	9,3		1			-	-				
	11,0		1100			-	-				
-			4.82	0.15				0			
-	11.5		4,95	9,20				0.151			
	17.0		4.89	\$.20				0.153			
	12,5		4,90	0.30				0.250			
	13.0		5,22	0.50				000			
	13.5		5.04	6.30				0.152			
	14.0		5.68	0.40			1			-	-
- X	14.5		5.24	0,50			-	0.151			-
	15,0		5.70	0.60			+	0.409			
	15.5		5.76	8.60			-	0.201			
	16.0		5.30	0.60			-	0.398			
	16.5		5.34	0.65			-	0.210			
	17.0		5.28	0.50				0,444			
	17.5		5.76	Ø.66			1	0.487			
	18.6							0.605			
			5,52	0.86				0.249			
_	18,5		5.54	0.80	- July 18			0.447			
_	19.0		5.28	0.60			-	0,222			7.17
-	19.5		5.28	0.65				0,651			
_	20.0		5,02	0.30				0,446			
	20.5		4.80	0.20	-			0.467			
	21.0		4.00	0.20				0.434			
REW	21.2		4.67					0,457			
	23,0		4.68								
,	24,5	-	4.64								
15	27,0		4.00								
5	29.2	1	2.36								
-											
- 4											
		-		-							
											-
									-		
					-						
TOTALS							-			-	_
d of Measu	rement Time:	1	Gage Reading			NS PERFORMED		* =	CULATIONS CH		

- ·

.

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The USDA Forest Service (FS) is writing this letter to formally communicate its instream flow recommendation for Tabeguache Creek, located in Water Division 4.

Location and Land Status. The FS is recommending stream flow protection under the CWCB Stream and Lake Protection program for 11 miles of Tabeguache Creek starting at an unnamed tributary located in Section 31 and terminating at the National Forest boundary. Tabeguache Creek is a tributary to the San Miguel River located approximately 12 miles northeast of Nucla, in Montrose County. The stream reach covered by the surveys conducted on FS lands starts at the Forest Service boundary and encompasses a large portion of the upper Tabeguache Creek watershed. The proposed reach is entirely located on NFS lands. Several water rights are located upstream of the reach, including the Glenco Ditch.

Biological Summary. Fisheries surveys in the watershed indicate that the stream environment supports self-sustaining populations of native fish species such as bluehead suckers, speckled dace, and mottled sculpin. A rainbow trout population is also located in this reach. Bluehead suckers are listed as a sensitive species by the Forest Service, and also listed by the state of Colorado as species of concern. Population estimates bluehead suckers and rainbow trout have been estimated at 2,215 and 150 fish/mile, respectively.

Low flows create later summer and winter fish habitat constraints, and may be a limiting factor for fish production and movement during this time. The stream channel provides good pool habitat during summer and winter low flows. Low flows also limit aquatic insect production during this low period as well. Despite these natural flow limitations in the late summer and winter seasons, the stream does support a full-functional riparian community, and suitable fish habitat to support the long-term persistence of native bluehead suckers, rainbow trout, and other native fish fauna.

R2Cross Analysis. Five cross sections were collected on Tabeguache Creek in October 1993 and used to quantify instream flow protection using R2Cross procedures outlined by the Colorado Water Conservation Board (CWCB 1996). However, R2Cross failed to provide suitable staging tables from any of the cross sections. Therefore, summer flow recommendations could not be derived using the R2Cross staging tables. One cross section was used to derive a winter flow recommendation for Tabeguache Creek. Based on FS professional knowledge of the site, the summer flow recommendation was based on the use of Tennant method (1976). The FS chose a narrative flow category of "fair or degrading" as described by Tennant (1976). The FS believes that in the case of Tabeguache Creek, that the use of Tennant provides a more accurate instream flow recommendation than R2Cross. Therefore, based on the combination of Tennant method and R2Cross, the data indicates that the following flows are needed to preserve the fishery and natural environment to a reasonable degree.

- A minimum flow of 6.2 cubic feet per second (cfs) is recommended from April 1st to July 31st. 6.2 cfs was derived using the Tennant method (1976) for the category of "fair or degrading" as describe by Tennant. This category protects 30% of the mean annual flow during spring and summer flow regimes. Instream flow protection during the receding period of the hydrograph during the months of June and July are important for the protection and maintenance of flows during the spawning and incubation periods for bluehead suckers and rainbow trout. The FS believes that this level of protection is needed in order to "preserve the native fishery and natural environment to a reasonable degree."
- A minimum flow of 1.0 cfs is recommended from August 1st to March 31st. 1.0 cfs is based on R2Cross outputs required to maintain the two of the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter. Based on the FS observations of this stream during base flow periods, the protection of flows below 1.0 cfs is needed to protect existing fish habitat, fish migration, and juvenile rearing periods for bluehead suckers and rainbow trout. Water use and development during low flow periods would have severe detrimental effects on adult recruitment, summer and fall distribution and migration patterns, and aquatic food abundance in a stream system where these fisheries habitat and food requirements are already strained by naturally occurring low flows.

Water Availability

In the absence of gage data from Tabeguache Creek, a hydrograph was constructed using a natural flow estimation model developed by Kircher et al (1985). The southwest regional equation was used to predict annual water yield and mean annual discharge for the basin area of Tabeguache Creek above the FS boundary. A review of USGS Tabeguache Creek gage (1946-53) was used to develop monthly streamflow characteristics for Tabeguache Creek. Monthly water yield estimates were eventually converted to mean monthly discharge numbers to construct an annual hydrograph (Table 1). Annual yield was estimated at 15,044 acre-feet, with 93% of the annual yield occurring in April-June.

Relationship to Management Plans. The Grand Mesa, Uncompanyer, and Gunnison National Forests (GMUG NF) Land and Resource Management Plan provide land management direction for FS lands located in the Tabeguache Creek watershed. Forest Plan direction for Fisheries, Threatened, Endangered, and Sensitive species suggest that land managers should among other things, maintain viable populations of native fish species, improve fish habitat conditions, and cooperate with state agencies to meet minimum flow needs to support fish populations. Additionally, agencies of the Colorado Division of Natural Resources and the Forest Service have signed an agreement to work together to solve water issues in Colorado (Colorado DNR/USDA Forest Service MOU on water, 2004).

The Tabeguache Creek stream segment is important to the FS because it is one of the few streams on the Forest where native bluehead suckers reside. Additionally, the stream provides important spawning and rearing habitat for a self-sustaining rainbow trout, and several other native fish. Tabeguache Creek is one of only a few perennial streams in the semi-arid landscape

of the Uncompander Plateau. The stream is an important source of water for the lower reaches of the San Miguel River, where diversions currently divert a significant source of the summer flows for irrigation and small domestic use. Access into Tabeguche Creek is very limited, so fishing pressure, and other land management uses are is minimal, so stream level protection would be an important tool in maintaining aquatic values in this area of the Uncompander Plateau.

The FS requests that the Board recognize that this recommendation is based only upon the minimum flows necessary to support the cold-water fishery values. FS may wish to work with the Board and/or through the Colorado water rights system to appropriate flows to optimally protect fish values and to protect other water-dependent values specified in FS resource management plans.

Table 1. Mean monthly hydrograph for Tabeguache Creek (above the FS boundary) developed using southwest regional equations developed by Kircher et al (1985) and intermittent gage from Tabeguache Creek.

Drainage Area (square miles):	70
Mean Basin Elevation (ft):	7500
Mean Basin Elev5000 ft/1000 ft:	7500
Mean basin Elev5000 (V 1000 ff;	2.5

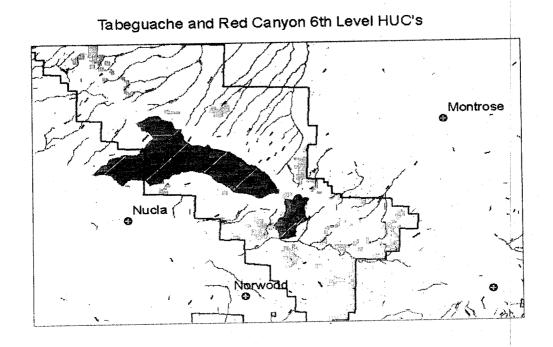
Mean Annual Flow (cfs):	20.77947
Mean Annual Yield in Acre-Feet (AF):	15043.65

Month	%of flow	AF/Month	AF/Day	Mean Monthly flow (cfs)
January	0.01	103.11	3.33	1.68
February	0.01	143.41	4.95	2.50
March	0.01	213.33	6.88	3.48
April	0.31	4634.10	154.47	78.02
May	0.51	7624.51	245.95	124.22
June	0.11	1646.83	54.89	27.72
July	0.01	124.17	4.01	2.02
August	0.01	116.24	3.75	1.89
September	0.01	114.38	3.81	1.93
October	0.01	107.85	3.48	1.76
November	0.01	124.45	4.15	2.10
December	0.01	91.26	2.94	1.49

Data sheets, R2Cross output, fishery survey information, hydrology and water yield techniques, and photographs of the cross section are enclosed to support this recommendation. We thank both the Colorado Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Christopher James, Fisheries Biologist, at (970) 240-5421 or John Almy, Forest Hydrologist, at (970) 874-6656.

4 Enclosures


cc: Pauline Adams, GMUG NF, Water Rights Coordinator Polly Hayes, Regional Office, Water Program Manager Scott Ludwig, Regional Office, Water Rights Coordinator

Literature Cited

Colorado Water Conservation Board 1996. Development of instream flow recommendations in Colorado using R2Cross. By Greg Espegren, Senior Water Resource Specialist. January 1996.

Kircher, J.E., A.F. Choquette, and B.D. Richter, 1985. Estimation of Natural Streamflow Characteristics in Western Colorado. Water Resources Investigations Report 85-4086, 1985. U.S. Geological Survey, Prepared in Coordination with the Bureua of Land Management.

Tennant, D.L. 1976. Instream flow regimes for fish, wildlife, recreation, and related environmental resources. Fisheries, Vol. 1, No. 4.

