# Stream: Red Canyon Creek

**Executive Summary** 

Water Division: 4 Water District: 60 HUC 1403000302

Segment: Confluence with Big A Creek down to Confluence with Horsefly Creek

| <b>Upper Terminus:</b> | Latitude: 38°16'18.116''N    | Longitude: 108°12'18.583''W |
|------------------------|------------------------------|-----------------------------|
|                        | UTM 219602.4 Easting         | UTM 4240821.9 Northing      |
|                        | NAD 83 Zone 13N              |                             |
|                        | SW1/4, NW1/4, Sec 4, T46N, 1 | R12W, NMPM                  |
| Lower Terminus:        | Latitude: 38°14'22.518''N    | Longitude: 108°13'24.235''W |
|                        | UTM 217882.3 Easting         | UTM 4237313.2 Northing      |
|                        | NAD 83 Zone 13N              |                             |
|                        | NW1/4, SW1/4, Sec 17, T46N   | N, R12W, NMPM               |

Counties: Montrose Length: 2.68 miles

**USGS Quad(s):** Antone Spring and Sanborn Park

**Forest Service Instream Flow Recommendation:** 

November 1 – March 31 = 1.0 cfs April 1 – October 31 = 1.2 cfs

Alternative Flow to meet water availability constraints



Red Canyon Creek June 27, 2007 R2X Survey

#### **Summary**

The information contained in this report and the associated instream flow file folder forms the basis for staff's instream flow recommendation to be considered by the Board. It is staff's opinion that the information contained in this report is sufficient to support the findings required in Rule 5.40.

Colorado's Instream Flow Program was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (see 37-92-102 (3) C.R.S.). The statute vests the CWCB with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's Instream Flow Program, the statute directs the CWCB to request instream flow recommendations from other state and federal agencies. The United States Forest Service (USFS) recommended this segment of Red Canyon Creek to the CWCB for inclusion into the Instream Flow Program. Big Red Creek is being considered for inclusion into the Instream Flow Program because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right. The USFS is very interested in protecting stream flows in Red Canyon Creek because it is a free flowing perennial stream which is supporting both aquatic and riparian values on public land. Forest Service investigations conducted in 2006 and 2007 have suggested that this is a fully functioning aquatic system that is contributing towards the agency stewardship mission of protecting sustainable ecosystems. This stream provides occupied habitat for both native and nonnative trout species. It provides important refuge during periods of drought and elevated water temperatures.

right held by the CWCB in Horsefly creek (05CW215) which begins approximately 1.2 miles downstream of where Red Canyon Creek flows into Horsefly, at a point where Sheep Creek enters Horsefly Creek, and then continues downstream to its confluence with the San Miguel River (see map). The protection is 13 cfs from April 1 thru June 5.

Red Canyon Creek is located entirely on Federal lands administered by the U.S. Forest Service. The drainage begins on the south end of the Uncompahyre Plateau in Montrose County, at an elevation of approximately 9,400 feet (see attachment 1 map). The stream flows for approximately 5.9 miles before it joins Horsefly Creek. Horsefly Creek flows into the San Miguel River approximately 6.5 miles below the lower terminus of Red Canyon Creek. Horsefly Creek and its lower tributaries, which include Red Canyon Creek, is a relatively remote setting located in moderately deep canyons. There is no road access to either Red Canyon Creek or Lower Horsefly Creek. The total drainage area of Red Canyon Creek is approximately 13.2 square miles.

The subject of this report is a segment of Red Canyon Creek beginning at its confluence with Big A Creek (Latitude: 38°16'18.195"N; Longitude: 108°12'18.486"W), where sufficient perennial flow exists to support a cold water fishery and other associated aquatic values. From this point it flows in a southwesterly direction 2.68 miles to its confluence with Horsefly Creek (Latitude: 38°14'22.605"N; Longitude: 108°13'24.026"W). The proposed segment is located 8.5 miles northeast of Norwood, Colorado. The staff has received only one recommendation for this segment, from the USFS. The recommendation for this segment is discussed below.

### Instream Flow Recommendation(s)

Considerable field work has been conducted within the Horsefly watershed for the purpose of determining instream flow protection needs. Field work was initiated in 2006 and continued through 2007. Field study sites have been located on both Little Red Creek and Red Canyon Creek near their confluence with Horsefly Creek and also on Horsefly Creek near the Forest boundary. Based upon a recommendation by the Grand Mesa, Uncomphagre and Gunnison National Forest to the CWCB a notice to appropriate was issued in early 2009. At this time only Big Red Canyon Creek is being submitted as a recommendation by the agency for appropriation of instream flow rights under State statute.

The Forest Service is recommending flow protection on Red Canyon Creek for the period Nov  $1^{st}$  – April  $31^{st}$  of 1.0 cfs and the period May  $1^{st}$  – October  $31^{st}$  of 1.2 cfs. While it is unlikely that the Board would agree to a peak flow component for protection, our recommendation would be to have one that is based upon flows that meet or exceed 60% of bank full discharge for a period of at least 5 consecutive days during the period of April  $15^{th}$  thru May  $15^{th}$ . This rule of thumb comes from advice provided by Forest Service researchers who have conducted sediment transport studies in adjustable channels over the last 20 years. Stream systems need periodic high flows in order to accomplish scour and deposition of channel materials and floodplain inundation. This is an important function necessary to sustain the physical environment which in turns supports the biological values that we desire.

## Land Status Review

|                |                | Total Length | Land Ownership |          |  |  |
|----------------|----------------|--------------|----------------|----------|--|--|
| Upper Terminus | Lower Terminus | (miles)      | % Private      | % Public |  |  |
| Headwaters     | Spring Creek   | 2.68         | 0%             | 100%     |  |  |

### **Biological Data**

Fisheries surveys in the watershed indicate that the stream environment supports self-sustaining populations of native Colorado River cutthroat trout (CRCT) and mottled sculpin. A small rainbow trout population is also located near the mouth of the creek. Colorado River cutthroat trout are of limited distribution across the state of Colorado, particularly in the San Miguel River sub-basin, where Red Canyon Creek is one of only three populations that currently exist. Distribution of these genetically pure CRCT populations is limited to approximately 5-7% of their native distribution on the Grand Mesa, Uncompahgre, and Gunnison National Forests (GMUG NF) (James and Speas 2005). Electro-fishing surveys completed in 2005 indicate that there are approximately 40 adult fish per mile in Red Canyon Creek (USFS unpublished). Sampling was done again on July 6, 2009. Over a 188 ft sampling reach 27 CRCT were collected.

Low flows are common in the late summer and fall, and may be a limiting factor for fish production and movement during this time. The stream channel provides good pool habitat during summer and winter low flows. However, depth appears to limit movement and distribution of CRCT during this time. Low flows also limit aquatic insect production during this low period as well. Despite these natural flow limitations in the summer and winter seasons, the stream does support a full-functional riparian community, and suitable fish habitat to support the long-term persistence of native CRCT.

### **Field Survey Data**

USFS staff used the R2Cross methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. A two person crew used a pygmy meter and current meter digitizer to measure cross section velocities in the stream. Channel widths and depths were surveyed with a stadia rod, engineering level and fiberglass tape. Channel gradients were determined from rod, level and tape survey. The R2Cross method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should stream flow cease. This type of hydraulic data collection consists of surveying the stream channel geometry, determining channel roughness by collecting a representative sample of bed particles, and measuring the stream discharge. Three cross sections were established and surveyed on 7/25/2006. The flow measurements were extremely low during that visit and the R2Cross solutions were outside the acceptable range. Therefore a second set of measurements were collected at the previously established cross-sections on 6/27/2007. When run through the R2Cross model the 2007 data results were felt to be reasonable and representative of observed flows and channel morphological characteristics. Two of the three data sets collected in 2007 were used to develop a flow protection recommendation. Channel roughness was estimated by measuring 100 channel substrate particles and then calculating the D84 size particle. Mountain streams like Red Canyon Creek are difficult to get precise flow measurements, particularly during low flows, due to the highly variable velocity profiles that occur in streams with high roughness and channel complexity. Most likely measured flows under estimate the actual flows in the channel as a result of not capturing the volume of water moving through the channel bed materials.

### **Biological Flow Recommendation**

The CWCB staff relied upon the biological expertise of the cooperating agencies to interpret output from the R2Cross data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CWCB has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates.

For this segment of stream, three data sets were collected with the results shown in Table 1 below. Table 1 shows who collected the data (Party), the date the data was collected (Date), the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's Equation (240% and 40% of Q), the summer flow recommendation based on meeting 3 of 3 hydraulic criteria and the winter flow recommendation. However, updates to the R2Cross program have the ability to vary Manning's n over a range of flows allowing for more accurate staging tables to be used in the prediction of hydraulic parameters. These changes allow for more accurate hydraulic modeling in periods outside of the typical accuracy range of R2Cross. For this exercise the USFS generated the Thorne-Zevenbergen staging table by supplying a D84 for use in setting Manning's roughness coefficient and also selected the Bathhurst formula for calculation of velocity and discharge in streams with high relative roughness.

Table 1: Stream flow data and R2Cross outputs from three cross sections located on Red Canyon Creek near confluence with Horsefly Creek.

| Party | X-sec | Date      | Measured<br>Q | 40%-250%     | Summer (3/3) | Winter (2/3) | Used |
|-------|-------|-----------|---------------|--------------|--------------|--------------|------|
| USFS  | #1    | 6/27/2007 | 1.3 cfs       | .5 – 3.3 cfs | 1.2 cfs      | 1.2 cfs      | Yes  |
| USFS  | #2    | 6/27/2007 | 2.08 cfs      | .8 – 5.2 cfs | .98 cfs      | .52 cfs      | No   |
| USFS  | #3    | 6/27/2007 | 1.11 cfs      | .4 – 2.8 cfs | 1.2 cfs      | .99 cfs      | Yes  |

USFS = U.S. Forest Service

Outputs from cross sections 1 and 3 were used to develop a spring/summer and winter flow recommendations. The summer flow recommendation is 1.2 cfs and winter flow recommendation is 1.0 cfs. Xsection #2 was not utilized because it was judged to be markedly different than the results from #1 and #2 and therefore not representative.

## Hydrologic Data

CWCB staff developed a model which estimates mean daily flows at the lower terminus of Red Canyon Creek. It was derived by extrapolating flow records for Cottonwood Creek near Nucla that was operated by the USGS from 1942 - 1951. While this is a common and reasonable approach, the U.S. Forest Service believes that it under represents the actual flows in the headwater streams particularly during the base flow winter period. The very low flows (< 0.1 cfs) during the winter period are likely a result of a frozen gage that did not accurately report actual flows. It is unlikely that the self sustaining fishery found in Big Red Creek could exist if the flows were really that low.

Antidotal evidence by water resource specialists and managers would support the conclusion that the Uncompahgre Plateau tends to be "flashy" with very high peaks and very low baseflows. However, elevation and position within the watershed is not well accounted for and tends to ameliorate these extremes. The streams draining the Plateau are losing systems. The source of water for streams, particularly the baseflow, is the headwaters above 8500 feet where snowpack accumulation occurs and water is stored in the soils beneath forested canopies and contributes to baseflows in the streams. Surface flows tend to diminish at lower elevations as groundwater aquifers are charged. Often during the baseflow periods there is more surface water

found in channels higher in the watershed than down lower, where the gaging stations tend to be located. This assertion cannot be substantiated with site specific data and therefore the structure of Forest Service recommendation has been modified but not completely constrained by the physical water availability model provide by the State of Colorado.

The alternative recommendation appearing on page 1 was developed in response to the water availability data supplied by CWCB.



### Chart with Calculated Water Availability and ISF Protection

## **Existing Water Right Information**

Staff has analyzed the water rights tabulation and consulted with the Division Engineer's Office (DEO) to identify any potential water availability problems. Records indicate that there are no surface water diversions on Red Canyon Creek. A conditional right was awarded on the Red Canyon Ditch in 1974 for 5 cfs That right was abandon by order of the Court in 1983 (83CW43).

### **Relationship to Management Plans**

The Grand Mesa, Uncompany and Gunnison National Forests (GMUG NF) Land and Resource Management Plan provide land management direction for FS lands located in the Red Canyon watershed. Forest Plan direction for Fisheries, Threatened, Endangered, and Sensitive species suggest that land managers should among other things, maintain viable populations of native fish species, improve fish habitat conditions, and cooperate with state agencies to meet minimum flow needs to support fish populations. Additionally, agencies of the Colorado Division of Natural Resources and the Forest Service have signed agreements to assist in the conservation and protection of Colorado River cutthroat trout (CRCT River Cutthroat Trout Task Force 2006), and to work together to solve water issues in Colorado (Colorado DNR/USDA Forest Service MOU on water, 2004).

The Red Canyon stream segment is important to the FS because it is one of only three CRCT populations that currently exist in the San Miguel River. Red Canyon provides important spawning and rearing habitat for a self-sustaining Colorado River cutthroat trout fishery. Additionally, Red Canyon Creek is one of only a few perennial streams in the semi-arid landscape of the Uncompander Plateau. The stream is an important source of water for the lower reaches of Horsefly Creek, since headwater diversions currently divert a significant source of the summer flows for irrigation and small domestic use. Access into Red Canyon is very limited, so fishing pressure, and other land management uses are is minimal, so stream level protection would be an important tool in maintaining aquatic values in this area of the Uncompander Plateau.

The FS requests that the Board recognize that this recommendation is based only upon the minimum flows necessary to support the cold-water fishery values. In the estimation of many Forest Service land managers and resource specialists the program as it currently exists does not provide sufficient flows throughout the year to insure that flow dependant resource values are sustained in the long term. The failure to incorporate at least a measure of periodic high flow into the protection strategy is a serious drawback. These fluvial systems require flows that are capable of transporting bedload, relocating course wood and providing periodic floodplain inundation. Given this shortcoming it is difficult to achieve a goal of "protecting the environment to a reasonable degree". However, the GMUG NF feels some minimal protection under Colorado water law does have a benefit to the resource and therefore operating within the constraints of the program is an acceptable reality. The agency has Congressional authority, in fact a responsibility under the Federal Land Management and Policy Act (FLPMA), to protect natural resources and the processes which sustain them. To the extent that those processes cannot be protected under state law and authority they must be address by the Federal Land management agency at a time when actions are proposed that might require a determination of effects and conditions imposed felt to be necessary to insure sustainability.

We thank both the Colorado Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Clay Speas, Fisheries Biologist, at (970) 874-6650 or Gary Shellhorn, Watershed Program Manager, (970) 874-6666.





|      | STREAM NAM                | 1E:   | Red Canyon C  | Creek           |                 |                  |                   |                  |               |          |           |             |
|------|---------------------------|-------|---------------|-----------------|-----------------|------------------|-------------------|------------------|---------------|----------|-----------|-------------|
|      | XS LOCATION               | 1:    |               |                 |                 |                  |                   |                  |               |          |           | D84 Table   |
|      | XS<br>NUMBER <sup>.</sup> |       | 1             |                 |                 |                  | Thorne-Zevenbe    | rgen D84 Corre   | ction Applied |          |           | 1-HeyD84    |
|      | HOMDER.                   |       |               |                 |                 |                  |                   |                  | #REF!         | 0.58     |           | BathurstD84 |
|      |                           |       | *GL* = lowest | Grassline elev  | ation correcte  | ed for sag       |                   |                  |               |          |           | 3-Best Est  |
|      | STAGING TAE               | BLE   | *WL* = Waterl | ine corrected f | or variations i | in field measure | d water surface e | levations and sa | g             |          |           | 4-User      |
|      |                           |       |               |                 |                 |                  |                   |                  |               | #REF!    |           |             |
|      | DIST TO                   | TOP   | AVG.          | MAX.            |                 |                  | PERCENT           | HYDR             |               | AVG.     | Bath      | Неу         |
|      | WATER                     | WIDTH | DEPTH         | DEPTH           | AREA            | WETTED<br>PERIM. | WET PERIM         | PADILIS          | FLOW          |          | VELOCITY  | VELOCITY    |
|      | (FT)                      | (FT)  | (FT)          | (FT)            | (SQ FT)         | (FT)             | (%)               | (FT)             | (CFS)         | (FT/SEC) | (FT/SEC)  | (FT/SEC)    |
|      |                           |       |               |                 |                 |                  |                   |                  |               |          |           |             |
|      |                           | 0     | #DIV/0!       | 0               | 0               | 0                | #DIV/0!           | #DIV/0!          | #REF!         | #REF!    | #REF!     | #REF!       |
| *GL* | #REF!                     | 8.91  | 0.69          | 1.27            | 6.12            | 9.75             | 100.0%            | 0.63             | 19.40         | 3.17     | 4.9976012 | 3.169497868 |
|      | 0.00                      | 9.76  | 0.97          | 1.63            | 9.46            | 10.94            | 112.2%            | 0.86             | 42.38         | 4.48     | 9.8408998 | 4.479672095 |
|      | 0.00                      | 9.62  | 0.93          | 1.58            | 8.98            | 10.76            | 110.4%            | 0.83             | 38.72         | 4.31     | 9.111514  | 4.313694003 |
|      | 0.00                      | 9.50  | 0.89          | 1.53            | 8.50            | 10.60            | 108.7%            | 0.80             | 35.17         | 4.14     | 8.3607547 | 4.13836353  |
|      | 0.00                      | 9.39  | 0.86          | 1.48            | 8.03            | 10.43            | 107.0%            | 0.77             | 31.78         | 3.96     | 7.6419455 | 3.959357581 |
|      | 0.00                      | 9.27  | 0.82          | 1.43            | 7.56            | 10.27            | 105.3%            | 0.74             | 28.55         | 3.78     | 6.9553405 | 3.776468157 |
|      | 0.00                      | 9.16  | 0.78          | 1.38            | 7.10            | 10.11            | 103.6%            | 0.70             | 25.48         | 3.59     | 6.3011817 | 3.589469506 |
|      | 0.00                      | 9.04  | 0.73          | 1.33            | 6.64            | 9.94             | 102.0%            | 0.67             | 22.58         | 3.40     | 5.679696  | 3.398116086 |
|      | 0.00                      | 8.93  | 0.69          | 1.28            | 6.19            | 9.78             | 100.3%            | 0.63             | 19.84         | 3.20     | 5.0910915 | 3.20214023  |
|      | 0.00                      | 7.80  | 0.74          | 1.23            | 5.77            | 8.59             | 88.1%             | 0.67             | 19.41         | 3.36     | 6.0622226 | 3.361956473 |
|      | 0.00                      | 7.43  | 0.73          | 1.18            | 5.39            | 8.20             | 84.1%             | 0.66             | 17.58         | 3.26     | 5.8695046 | 3.260754785 |
|      | 0.00                      | 7.07  | 0.71          | 1.13            | 5.03            | 7.82             | 80.2%             | 0.64             | 15.91         | 3.16     | 5.6949867 | 3.162657214 |
|      | 0.00                      | 6.71  | 0.70          | 1.08            | 4.69            | 7.44             | 76.3%             | 0.63             | 14.38         | 3.07     | 5.5409213 | 3.068240351 |
|      | 0.00                      | 6.34  | 0.69          | 1.03            | 4.36            | 7.05             | 72.3%             | 0.62             | 12.98         | 2.98     | 5.410238  | 2.978198738 |
|      | 0.00                      | 5.99  | 0.68          | 0.98            | 4.05            | 6.68             | 68.5%             | 0.61             | 11.71         | 2.89     | 5.2902599 | 2.889931374 |
|      | 0.00                      | 5.86  | 0.64          | 0.93            | 3.75            | 6.51             | 66.8%             | 0.58             | 17.84         | 4.75     | 4.7520772 | 2.709358165 |
|      | 0.00                      | 5.73  | 0.60          | 0.88            | 3.47            | 6.35             | 65.1%             | 0.55             | 14.69         | 4.24     | 4.2406657 | 2.524242167 |
|      | 0.00                      | 5.60  | 0.57          | 0.83            | 3.18            | 6.19             | 63.5%             | 0.51             | 11.95         | 3.76     | 3.7564687 | 2.334242503 |

| 2.138985123  | 3.2999486 | 3.30              | 9.59              | 0.48 | 61.8%              | 6.02 | 2.91 | 0.78 | 0.53              | 5.47 | 0.00 |
|--------------|-----------|-------------------|-------------------|------|--------------------|------|------|------|-------------------|------|------|
| 1.938060931  | 2.871584  | 2.87              | 7.57              | 0.45 | 60.1%              | 5.86 | 2.63 | 0.73 | 0.49              | 5.34 | 0.00 |
| 1.731025448  | 2.4718659 | 2.47              | 5.86              | 0.42 | 58.4%              | 5.70 | 2.37 | 0.68 | 0.45              | 5.21 | 0.00 |
| 1.517726309  | 2.1020267 | 2.10              | 4.44              | 0.38 | 56.7%              | 5.53 | 2.11 | 0.63 | 0.42              | 5.08 | 0.00 |
| 1.304498114  | 1.7754372 | 1.78              | 3.31              | 0.35 | 54.8%              | 5.35 | 1.86 | 0.58 | 0.38              | 4.93 | 0.00 |
| 1.084030592  | 1.4750868 | 1.48              | 2.39              | 0.31 | 53.0%              | 5.16 | 1.62 | 0.53 | 0.34              | 4.78 | 0.00 |
| 0.855811426  | 1.2016565 | <mark>1.20</mark> | <mark>1.67</mark> | 0.28 | <mark>51.1%</mark> | 4.98 | 1.39 | 0.48 | 0.30              | 4.62 | 0.00 |
| 0.619437688  | 0.9558619 | <mark>0.96</mark> | <mark>1.11</mark> | 0.24 | <mark>49.2%</mark> | 4.79 | 1.16 | 0.43 | 0.26              | 4.47 | 0.00 |
| 0.387336032  | 0.7495433 | 0.75              | <mark>0.70</mark> | 0.21 | 46.7%              | 4.56 | 0.94 | 0.38 | <mark>0.22</mark> | 4.26 | 0.00 |
| 0.180555004  | 0.5911644 | 0.59              | <mark>0.44</mark> | 0.18 | 42.9%              | 4.19 | 0.74 | 0.33 | <mark>0.19</mark> | 3.90 | 0.00 |
| -0.063533295 | 0.4303392 | 0.43              | 0.23              | 0.14 | 40.6%              | 3.96 | 0.55 | 0.28 | 0.15              | 3.70 | 0.00 |
| -0.31025174  | 0.296695  | 0.30              | 0.11              | 0.10 | 38.4%              | 3.74 | 0.37 | 0.23 | 0.10              | 3.51 | 0.00 |
| -0.467997414 | 0.2025164 | 0.20              | 0.04              | 0.07 | 28.9%              | 2.82 | 0.21 | 0.18 | 0.08              | 2.62 | 0.00 |
| -0.61240716  | 0.1206427 | 0.12              | 0.01              | 0.05 | 19.6%              | 1.91 | 0.10 | 0.13 | 0.06              | 1.78 | 0.00 |
| -0.720947973 | 0.0479683 | 0.05              | 0.00              | 0.04 | 8.4%               | 0.82 | 0.03 | 0.08 | 0.04              | 0.77 | 0.00 |
| -0.73758716  | 0.0084598 | 0.01              | 0.00              | 0.01 | 2.7%               | 0.27 | 0.00 | 0.03 | 0.01              | 0.25 | 0.00 |

STREAM NAME: Red Canyon Creek

|      | XS LOCATION: 0 |       |               |                 |                 |                  |                 | D84 Table         |               |          |           |                 |
|------|----------------|-------|---------------|-----------------|-----------------|------------------|-----------------|-------------------|---------------|----------|-----------|-----------------|
|      | XS             |       | 3             |                 |                 |                  | Thorne-Zeve     | nbergen D84 Co    | prrection App | lied     |           | 1-HeyD84        |
|      | NUMBER:        |       |               |                 |                 |                  |                 |                   | #REF!         | 0.58     |           | BathurstD8      |
|      |                |       | *GL* = lowest | Grassline elev  | ation correcte  | ed for sag       |                 |                   |               |          |           | 4<br>3-Best Est |
|      | STAGING TAE    | BLE   | *WL* = Waterl | ine corrected f | or variations i | n field measur   | ed water surfac | ce elevations and | d sag         |          |           | 4-User          |
|      |                |       |               |                 |                 |                  |                 |                   |               | #REF!    |           |                 |
|      | DIST TO        | TOP   | AVG.          | MAX.            |                 |                  |                 | HYDR              |               | AVG.     | Bath      | Hey             |
|      | WATER          | WIDTH | DEPTH         | DEPTH           | AREA            | WETTED<br>PERIM. | PERCENT<br>WET  |                   | FLOW          |          | VELOCITY  | VELOCITY        |
|      | (FT)           | (FT)  | (FT)          | (FT)            | (SQ FT)         | (FT)             | (%)             | (FT)              | (CFS)         | (FT/SEC) | (FT/SEC)  | (FT/SEC)        |
|      |                |       |               |                 |                 |                  |                 |                   |               |          |           |                 |
| *GL* | #REF!          | 9.40  | 0.53          | 1.04            | 4.96            | 10.12            | 100.0%          | 0.49              | 17.14         | 3.46     | 3.4554276 | 2.6912772       |
|      | 0.00           | 10.70 | 1.01          | 1.62            | 10.76           | 11.98            | 118.3%          | 0.90              | 56.96         | 5.30     | 11.775318 | 5.2961482       |
|      | 0.00           | 10.56 | 0.97          | 1.57            | 10.22           | 11.79            | 116.5%          | 0.87              | 52.19         | 5.11     | 10.919497 | 5.1050312       |
|      | 0.00           | 10.42 | 0.93          | 1.52            | 9.70            | 11.60            | 114.6%          | 0.84              | 47.63         | 4.91     | 10.094053 | 4.9103749       |
|      | 0.00           | 10.30 | 0.89          | 1.47            | 9.18            | 11.44            | 113.0%          | 0.80              | 43.19         | 4.70     | 9.250807  | 4.704092        |
|      | 0.00           | 10.19 | 0.85          | 1.42            | 8.67            | 11.28            | 111.5%          | 0.77              | 38.92         | 4.49     | 8.4183357 | 4.4888876       |
|      | 0.00           | 10.09 | 0.81          | 1.37            | 8.16            | 11.13            | 110.0%          | 0.73              | 34.85         | 4.27     | 7.6272192 | 4.2691107       |
|      | 0.00           | 9.98  | 0.77          | 1.32            | 7.66            | 10.98            | 108.4%          | 0.70              | 30.98         | 4.04     | 6.8774838 | 4.044512        |
|      | 0.00           | 9.88  | 0.73          | 1.27            | 7.16            | 10.82            | 106.9%          | 0.66              | 27.33         | 3.81     | 6.1691194 | 3.8148214       |
|      | 0.00           | 9.77  | 0.68          | 1.22            | 6.67            | 10.67            | 105.4%          | 0.63              | 23.89         | 3.58     | 5.5020752 | 3.5797458       |
|      | 0.00           | 9.67  | 0.64          | 1.17            | 6.19            | 10.52            | 103.9%          | 0.59              | 20.66         | 3.34     | 4.8762555 | 3.3389667       |
|      | 0.00           | 9.56  | 0.60          | 1.12            | 5.71            | 10.36            | 102.4%          | 0.55              | 24.49         | 4.29     | 4.291514  | 3.0921377       |
|      | 0.00           | 9.46  | 0.55          | 1.07            | 5.23            | 10.21            | 100.9%          | 0.51              | 19.60         | 3.75     | 3.74765   | 2.838881        |
|      | 0.00           | 9.09  | 0.52          | 1.02            | 4.76            | 9.81             | 96.9%           | 0.49              | 16.30         | 3.42     | 3.4232977 | 2.6506463       |
|      | 0.00           | 8.36  | 0.52          | 0.97            | 4.33            | 9.07             | 89.6%           | 0.48              | 14.58         | 3.37     | 3.3701018 | 2.5646592       |
|      | 0.00           | 7.64  | 0.51          | 0.92            | 3.93            | 8.34             | 82.4%           | 0.47              | 13.17         | 3.36     | 3.3552484 | 2.4935076       |
|      | 0.00           | 7.13  | 0.50          | 0.87            | 3.56            | 7.82             | 77.2%           | 0.46              | 11.36         | 3.19     | 3.1922181 | 2.366221        |
|      | 0.00           | 6.76  | 0.47          | 0.82            | 3.21            | 7.42             | 73.3%           | 0.43              | 9.41          | 2.93     | 2.9301666 | 2.197516        |
|      | 0.00           | 6.40  | 0.45          | 0.77            | 2.88            | 7.03             | 69.4%           | 0.41              | 7.70          | 2.67     | 2.6725673 | 2.0250535       |
|      | 0.00           | 6.29  | 0.41          | 0.72            | 2.57            | 6.88             | 67.9%           | 0.37              | 5.77          | 2.25     | 2.2508199 | 1.7650395       |
|      | 0.00           | 6.18  | 0.36          | 0.67            | 2.25            | 6.73             | 66.5%           | 0.33              | 4.21          | 1.87     | 1.8679226 | 1.4968548       |
| *WL* | 0.00           | 6.04  | 0.32          | 0.62            | 1.95            | 6.54             | 64.6%           | 0.30              | 2.99          | 1.54     | 1.5378571 | 1.2302773       |

| 0.00 | 5.76 | 0.29 | 0.57              | 1.65 | 6.23 | 61.6%              | 0.27 | 2.12              | 1.28              | 1.2815321 | 0.9895614  |
|------|------|------|-------------------|------|------|--------------------|------|-------------------|-------------------|-----------|------------|
| 0.00 | 5.31 | 0.26 | 0.52              | 1.37 | 5.72 | 56.5%              | 0.24 | <mark>1.51</mark> | <mark>1.10</mark> | 1.1012401 | 0.7947253  |
| 0.00 | 4.81 | 0.23 | 0.47              | 1.12 | 5.16 | <mark>51.0%</mark> | 0.22 | <mark>1.06</mark> | <mark>0.94</mark> | 0.9419128 | 0.6078414  |
| 0.00 | 4.34 | 0.21 | 0.42              | 0.89 | 4.62 | <mark>45.7%</mark> | 0.19 | <mark>0.70</mark> | 0.79              | 0.7863252 | 0.4118366  |
| 0.00 | 4.11 | 0.17 | 0.37              | 0.68 | 4.36 | 43.0%              | 0.16 | 0.40              | 0.59              | 0.5924625 | 0.1417872  |
| 0.00 | 3.12 | 0.16 | 0.32              | 0.50 | 3.33 | 32.9%              | 0.15 | 0.26              | 0.51              | 0.5140291 | 0.0409005  |
| 0.00 | 2.65 | 0.13 | 0.27              | 0.36 | 2.84 | 28.0%              | 0.13 | 0.14              | 0.39              | 0.3930452 | -0.1524874 |
| 0.00 | 2.36 | 0.10 | <mark>0.22</mark> | 0.23 | 2.53 | 25.0%              | 0.09 | 0.06              | 0.26              | 0.262085  | -0.4009053 |
| 0.00 | 1.50 | 0.09 | <mark>0.17</mark> | 0.14 | 1.64 | 16.2%              | 0.08 | 0.03              | 0.19              | 0.1865848 | -0.5136597 |
| 0.00 | 1.18 | 0.05 | 0.12              | 0.06 | 1.28 | 12.6%              | 0.05 | 0.01              | 0.10              | 0.0992914 | -0.7205663 |
| 0.00 | 0.53 | 0.03 | 0.07              | 0.02 | 0.58 | 5.7%               | 0.03 | 0.00              | 0.03              | 0.0333518 | -0.8410347 |
| 0.00 | 0.14 | 0.01 | 0.02              | 0.00 | 0.15 | 1.5%               | 0.01 | 0.00              | 0.00              | 0.0040501 | -0.824781  |

| Water: Bi  | g Red Ca      | anyon      |          |        |      |       |
|------------|---------------|------------|----------|--------|------|-------|
| Location:  | 0/09          |            |          |        |      |       |
| Ducing and |               |            |          |        |      |       |
| Drainage   | : San wig     | juei       |          |        |      |       |
|            | ae.           |            |          |        |      |       |
|            | 0.120         |            |          |        |      |       |
|            | 123<br>144560 |            |          |        |      |       |
| 011VI A. 7 | 44509         |            |          |        |      |       |
| UTM Y· 4   | 239436        |            |          |        |      |       |
| m          |               |            |          |        |      |       |
| Station Lo | ength = 2     | 22 ft      |          |        |      |       |
| Station W  | /idth =       |            |          |        |      |       |
| 9 ft       |               |            |          |        |      |       |
| Crew: Fo   | rest Serv     | ice        |          |        |      |       |
| Notes:     |               |            |          |        |      |       |
| Air Temp   | : 75F         |            |          |        |      |       |
| Water Te   | mp:           |            |          |        |      |       |
| 58F        |               |            |          |        |      |       |
| Efforts: 1 | st pass=1     | 653sec 2nd | pass=129 | 8sec   |      |       |
|            | _             | Length     | Weight   | _      |      |       |
| Species    | Count         | (mm)       | (g)      | Status | Mark | TagID |
| CRN        | 1             | 95         | 9        | 1      |      |       |
| CRN        | 1             | 192        | 67       | 1      |      |       |
| CRN        | 1             | 186        | 59       | 1      |      |       |
| CRN        | 1             | 96         | 8        | 1      |      |       |
| CRN        | 1             | 92         | 7        | 1      |      |       |
| CRN        | 1             | 103        | 11       | 1      |      |       |
| CRN        | 1             | 98         | 9        | 1      |      |       |
| CRN        | 1             | 106        | 11       | 1      |      |       |
| CRN        | 1             | 105        | 10       | 1      |      |       |
| CRN        | 1             | 88         | 6        | 1      |      |       |
| CRN        | 1             | 101        | 10       | 1      |      |       |
| CRN        | 1             | 81         | 6        | 1      |      |       |
| CRN        | 1             | 91         | 7        | 1      |      |       |
| CRN        | 1             | 101        | 9        | 1      |      |       |
| CRN        | 1             | 100        | 9        | 1      |      |       |
| CRN        | 1             | 199        | 71       | 1      |      |       |
| CRN        | 1             | 90         | 7        | 1      |      |       |
| CRN        | 1             | 83         | 6        | 1      |      |       |
| CRN        | 1             | 96         | 9        | 1      |      |       |
| CRN        | 1             | 98         | 9        | 1      |      |       |
| CRN        | 1             | 106        | 10       | 1      |      |       |
| CRN        | 1             | 99         | 10       | 1      |      |       |
| CRN        | 1             | 106        | 11       | 1      |      |       |
| CRN        | 1             | 156        | 33       | 1      |      |       |
| CRN        | 1             | 89         | 7        | 1      |      |       |
| CRN        | 1             | 145        | 27       | 1      |      |       |
| CRN        | 1             | 85         | 6        | 1      |      |       |
| CRN        | 1             | 96         | 7        | 1      |      |       |
| CRN        | 1             | 76         | 4        | 1      |      |       |
| CRN        | 1             | 94         | 7        | 1      |      |       |
| CRN        | 1             | 96         | 8        | 1      |      |       |
| CRN        | 1             | 99         | 9        | 1      |      |       |
| CRN        | 1             | 80         | 4        | 2      |      |       |

I

| 1 | 94                                             | 9                                                                                                                                                                       | 2                                                    |
|---|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1 | 102                                            | 10                                                                                                                                                                      | 2                                                    |
| 1 | 96                                             | 1                                                                                                                                                                       | 2                                                    |
| 1 | 84                                             | 5                                                                                                                                                                       | 2                                                    |
| 1 | 106                                            | 12                                                                                                                                                                      | 2                                                    |
| 1 | 91                                             | 8                                                                                                                                                                       | 2                                                    |
| 1 | 189                                            | 62                                                                                                                                                                      | 2                                                    |
| 1 | 203                                            | 69                                                                                                                                                                      | 2                                                    |
| 1 | 94                                             | 9                                                                                                                                                                       | 2                                                    |
| 1 | 94                                             | 7                                                                                                                                                                       | 2                                                    |
| 1 | 153                                            | 39                                                                                                                                                                      | 2                                                    |
| 1 | 138                                            | 24                                                                                                                                                                      | 2                                                    |
|   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | $\begin{array}{cccc} 1 & 94 \\ 1 & 102 \\ 1 & 96 \\ 1 & 84 \\ 1 & 106 \\ 1 & 91 \\ 1 & 189 \\ 1 & 203 \\ 1 & 203 \\ 1 & 94 \\ 1 & 94 \\ 1 & 153 \\ 1 & 138 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| Water:<br>Date:<br>Location:<br>Drainage:<br>Water Code:<br>UTM Zone:<br>UTM Zone:<br>UTM X:<br>UTM Y:<br>Station Length =<br>Station Width =<br>Crew: | Big Red C<br>7/6/2009<br>Off FS Rd<br>San Migue<br>42452<br>12S<br>744344<br>m<br>4239322 r<br>188 ft<br>9 ft<br>Forest Set | anyon (<br>. 512.1F<br>əl<br>m | Creek<br>1 |          |        |      |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|----------|--------|------|-------|
| Notes:                                                                                                                                                 |                                                                                                                             |                                |            |          |        |      |       |
| Air Temp:                                                                                                                                              | 79F                                                                                                                         |                                |            |          |        |      |       |
| Water Temp:                                                                                                                                            | 59F                                                                                                                         |                                |            |          |        |      |       |
| Efforts:                                                                                                                                               | 1st pass=                                                                                                                   | 1175sec                        | 2nd        | pass=114 | 17sec  |      |       |
|                                                                                                                                                        |                                                                                                                             | Length                         | 1          | Weight   |        |      |       |
| Species                                                                                                                                                | Count                                                                                                                       | (mm)                           |            | (g)      | Status | Mark | TagID |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 87         | 5        | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 88         | 8        | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 104        | 11       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 102        | 12       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 92         | 9        | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 189        | 70       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 102        | 10       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 99         | 10       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 155        | 40       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 94         | 7        | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 91         | 9        | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 111        | 14       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 85         | 7        | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 106        | 13       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 104        | 12       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 87         | 9        | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 109        | 13       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 104        | 12       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 113        | 15       | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 95         | 8        | 1      |      |       |
| CRN                                                                                                                                                    |                                                                                                                             |                                | 92         | 7        | 1      |      |       |

| 90  | 7                                  | 1                                                                                                             |
|-----|------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 211 | 92                                 | 2                                                                                                             |
| 95  | 8                                  | 2                                                                                                             |
| 88  | 6                                  | 2                                                                                                             |
| 86  | 6                                  | 2                                                                                                             |
| 161 | 45                                 | 2                                                                                                             |
|     | 90<br>211<br>95<br>88<br>86<br>161 | 90       7         211       92         95       8         88       6         86       6         161       45 |

Water: Big Red Canyon Creek Date: 7/6/2005 Location: End of Hanks Valley Rd (FSR 512) ; appx. 200m below ATV trail crossing Drainage: Dolores Water Code: 42452 UTM Zone: 12S UTM X: 744281 m UTM Y: 4239525 m Station Length = 317 ft Station Width = 9.7 ft Crew: USFS crew: Frame, Harty Notes: Long hike down into remote canyon area at the end of Hanks Valley Rd. No visible introgression; no gentic samples taken

|         |       |             | Weight |        |      |       |
|---------|-------|-------------|--------|--------|------|-------|
| Species | Count | Length (mm) | (g)    | Status | Mark | TagID |
| CRN     | 1     | 175         | 54     | 1      |      |       |
| CRN     | 1     | 264         | 209    | 1      |      |       |
| CRN     | 1     | 200         | 101    | 1      |      |       |
| CRN     | 1     | 245         | 146    | 1      |      |       |
| CRN     | 1     | 168         | 52     | 2      |      |       |

Water: Big Red Canyon Creek Date: 7/6/2005 Location: At the end of Hanks Valley Rd (FSR 512); immediatley above ATV trail crossing Drainage: Dolores Water Code: 42452 UTM Zone: 12S UTM X: 0744506 m UTM Y: 4239640 m Station Length = 364.2Station Width = 11.02 Crew: Frame, Harty Notes: None Shock Seconds: 1st Pass = 327, 2nd Pass = 298 Temperature: Air = 26 C, Water = 14 C **GPS File: BIGRED2** 

|         | _     | Length | Weight |        |      |       |
|---------|-------|--------|--------|--------|------|-------|
| Species | Count | (mm)   | (g)    | Status | Mark | TagID |
| CRN     | 1     | 195    | 79     | 1      |      |       |
| CRN     | 1     | 205    | 91     | 1      |      |       |
| CRN     | 1     | 111    | 16     | 1      |      |       |
| CRN     | 1     | 112    | 13     | 1      |      |       |
| CRN     | 1     | 173    | 65     | 1      |      |       |
| CRN     | 1     | 121    | 17     | 2      |      |       |
| CRN     | 1     | 190    | 75     | 2      |      |       |

Water: Big Red #1 Date: 07/25/06 Location: Approximately 200m above horsefly, started at house-sized boulder in streambed. Drainage: Water Code: UTM Zone: n/a UTM X: n/a UTM Y: n/a Station Length = 398.5 ft Station Width = 6.22 ft Crew: Frame, DeBerard Notes: unable to obtain G.P.S. coordinates, no signal in canyon First Pass: 360 Second Pass: 224 Air Temperature: 24 Water Temperature: 21

|         | -     | Length | Weight |        |      |       |
|---------|-------|--------|--------|--------|------|-------|
| Species | Count | (mm)   | (g)    | Status | Mark | TagID |
| BRK     |       | 139    | 24     | 1      |      |       |
| RBT     |       | 136    | 21     | 1      |      |       |
| RBT     |       | 125    | 21     | 1      |      |       |
| RBT     |       | 214    | 111    | 1      |      |       |
| CRN     |       | 126    | 18     | 1      |      |       |
| RBT     |       | 109    | 12     | 1      |      |       |
| MTS     |       | 111    | 19     | 1      |      |       |
| MTS     |       | 101    | 14     | 1      |      |       |
| MTS     |       | 99     | 12     | 1      |      |       |
| MTS     |       | 98     | 12     | 1      |      |       |
| MTS     |       | 103    | 14     | 1      |      |       |
| MTS     |       | 115    | 22     | 1      |      |       |
| MTS     |       | 98     | 11     | 2      |      |       |
| MTS     |       | 98     | 11     | 2      |      |       |
| MTS     |       | 148    | 37     | 2      |      |       |
|         |       |        |        |        |      | no    |

morts

| INSTREAM FLOW DETERMINATIONS LOCATION INFORMATION UNCLAIMED BOARD UNCLAIMED BO                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COLORADO WATER DESCRIPTION DATE RATED DATE RATER PACK RATER PACK RATER PACK RATER PACK RATER DATE RATER PACK R                                                                                                                                                                                                                                                                                                                                                               |
| TREAM NAME BY GREAT CALVERY Horse My Configure CROSS, SECTION NO.<br>MOSS-SECTION LOCATION Same location as 2006 SUIVEY<br>MAD 83 2000 IBN N. 4237345 E. 217921<br>TEG/DT/07 OBSERVERS Alm Statton<br>GAL * SECTION SECTION SECTION TOWNSHIP N/S RANGE E/W PM:<br>COUNTY. WATERSHED WATER DIVISION / DOW WATER CODE.<br>MODUNTY. WATERSHED WATER DIVISION / DOW WATER CODE.<br>MODUNTY. WATERSHED WATER DIVISION / DOW WATER CODE.<br>SUPPLEMENTAL DATA<br>GIAPE SECTION SAME AS VES/NO METER TYPE<br>COMARGE SECTION:<br>TER NUMBER. DATE RATED.<br>ANNEL BED MATERIAL SIZE RANGE DATE RATED.<br>ANNEL BED MATERIAL SIZE RANGE PHOTOGRAPHS.<br>CHANNEL PROFILE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SS-SECTION LOCATION SALE LOCATES AND ALL STORY AND ALL STO                                                                                                                                                                                                                                                                                                                                                               |
| NAD 83 20-2 ISN N- 4237845 E. 217921<br>IEGN7/07 OBSERVERS. Algo Stratton<br>AL SECTION DESERVERS. Algo Stratton<br>IOWNSHIP N/S RANGE: E/W PM:<br>DOW WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED<br>WATERSHED |
| Image: Stratton         SAL         SECTION         NSECTION         WATERSHED         WATER DIVISION         MATERSHED         WATER DIVISION         MATERSHED         WATER DIVISION         MATERSHED         WATER DIVISION         MATER DIVISION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| GAL     ** SECTION     SECTION     TOWNSHIP     N/S     RANGE:     E/W     PM:       SCRIPTION     WATERSHED     WATERSHED     WATERSHED     WATER DIVISION     DOW WATER CODE.       Monthle     Horseldg     Water Division     Dow water code.       Monthle     Business     SUPPLEMENTAL DATA     Supplemental code.       Grape section     Supplemental Data     Supplemental Data     Tape weight       Grape section:     Tes Number.     Date Rated.     Calib/SPIN     Tape weight     Tape Tension     Ibi       Tes Number.     Date Rated.     Calib/SPIN     Tape Weight     Number OF Photographs.     Ibi       Annel Bed Material Size Range     Photographs Taken Yes/NO     Number OF Photographs.     Ibi       CHANNEL PROFILE DATA     Monthle     Monthle     Monthle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| OUNTY.     MATERSHED     WATER DIVISION     DOW WATER CODE.       Mo-Hroke     Horsetg     WATER DIVISION     DOW WATER CODE.       APISI     USGS:     USGS:     USFS:       SUPPLEMENTAL DATA       G TAPE SECTION SAME AS<br>ICHARGE SECTION:     VES / NO       METER TYPE     CALIB/SPIN     JAC       TER NUMBER.     DATE RATED.     CALIB/SPIN       ANNEL BED MATERIAL SIZE RANGE     PHOTOGRAPHS TAKEN YES/NO     NUMBER OF PHOTOGRAPHS.       CHANNEL PROFILE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| APISI USGS: USFS: SUPPLEMENTAL DATA G TAPE SECTION SAME AS ICHANGE SECTION: TEA NUMBER. DATE RATED. CALIB/SPIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SUPPLEMENTAL DATA STAPE SECTION SAME AS VES / NO METER TYPE. CMARGE SECTION TER NUMBER. DATE RATED. CALIB/SPIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SUPPLEMENTAL DATA G TAPE SECTION SAME AS VES / NO METER TYPE CCHARGE SECTION TER NUMBER. DATE RATED. CALIB/SPIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TAPE SECTION SAME AS VES / NO METER TYPE<br>CHARGE SECTION<br>ER NUMBER. DATE RATED. CALIB/SPIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IER NUMBER. DATE RATED. CALIB/SPIN SAC TAPE WEIGHTID\$/1001 TAPE TENSIONID<br>INNEL BED MATERIAL SIZE RANGE PHOTOGRAPHS TAKEN VES/NO NUMBER OF PHOTOGRAPHS.<br>CHANNEL PROFILE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CHANNEL PROFILE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CHANNEL PROFILE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DISTANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| STATION FROM TAPE # ROD READING ## CO READING ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tape w Stake RB 0.0 Stake (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| WS @ Tape LB/AB 0.0 ET 00 Stanon (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WS Upstream 38.0' 3.06' H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| WS Downstream 44.6' 6.10' Direction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LOPE SLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AQUATIC SAMPLING SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| REAM ELECTROFISHED YES/NO DISTANCE ELECTROFISHED IN FILE OUTDUT VECTOR WATER CHEMICTRY CLUBIED VECTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

т,

-----

| STREAM NAME                               | Bis B                          | ed cl           | E                                           |                                       |                               | CR            | OSS-SECTION   | N NO        | Carebolo            | 7 SHEE                     | DF                 |
|-------------------------------------------|--------------------------------|-----------------|---------------------------------------------|---------------------------------------|-------------------------------|---------------|---------------|-------------|---------------------|----------------------------|--------------------|
| EGINNING OF                               | MEASUREMENT                    | EDGE OF         | WATER LOOKING                               | DOWNSTREAM                            | LEFTIAK                       | HT Gage       | Reading.      | A n         | TIME 900            | 1 Jonez                    |                    |
| Stake 15                                  | Distance                       | Width           | Total                                       | Water                                 | Depth                         | Revolution    |               | Veloci      | ity (ft/sec)        |                            |                    |
| Grasalune (G)<br>Waserine (W)<br>Rock (R) | From<br>instal<br>Point<br>(h) | (77)            | Vertical<br>Depth From<br>Tape/Inst<br>jhtj | Depth<br>(N)                          | of<br>Obser-<br>vation<br>(h) | in Calebra    | Time<br>(sec) | At<br>Point | Mean in<br>Vertical | Area<br>(tt <sup>2</sup> ) | Discharge<br>(cfs) |
| RS                                        | 0                              |                 | 1.95                                        |                                       |                               |               |               |             |                     |                            |                    |
|                                           | 2.2                            |                 | 2.66                                        |                                       |                               |               |               |             |                     |                            |                    |
| 6                                         | 4.8                            |                 | 3.95.                                       |                                       |                               |               |               |             |                     |                            |                    |
|                                           | 6.5                            |                 | 4.24                                        |                                       |                               |               | -             |             |                     |                            |                    |
| W                                         | 6.9                            |                 | 4.58                                        |                                       |                               |               |               | A           | -                   |                            |                    |
|                                           | 7.2                            |                 | 4.85                                        | .25                                   | -                             |               |               | 4           |                     |                            |                    |
|                                           | 7.5                            |                 | 4,88                                        | ,30                                   |                               |               |               | Ø           |                     |                            |                    |
|                                           | 7.8                            |                 | 5.00                                        | .40                                   |                               |               |               | 0.132       |                     |                            |                    |
|                                           | 8.1                            |                 | 5.02                                        | .42                                   |                               |               |               | Q.146       |                     |                            |                    |
|                                           | 8.4                            |                 | 5.22                                        | -64                                   |                               |               |               | 0.184       |                     |                            |                    |
| R                                         | 8.7                            |                 | 5.17                                        | .56                                   |                               | 1.1.1.1.1.1.1 |               | 0.279       |                     |                            |                    |
|                                           | 9.0                            |                 | 5.04                                        | .44                                   |                               |               | -             | Ø.157       |                     |                            |                    |
|                                           | 9.3                            |                 | 5.20                                        | .60                                   | 1                             |               |               | 9.88        | 3                   |                            |                    |
|                                           | 9.6                            |                 | 5.10                                        | -50                                   |                               |               |               | 0.316       |                     |                            |                    |
|                                           | 9.9                            | 20              | 5.08                                        | .52                                   |                               |               |               | 0.260       |                     |                            |                    |
| 1                                         | 10.2                           |                 | 5.02                                        | .44                                   |                               |               |               | 0.830       |                     |                            |                    |
|                                           | 10.5                           |                 | 5.02                                        | .44                                   |                               |               |               | 9.961       |                     |                            |                    |
|                                           | 10.8                           |                 | 5.14                                        | . 54                                  |                               |               |               | 1.20        |                     |                            |                    |
|                                           | 11.1                           |                 | 5.14                                        | .53                                   |                               |               | 1.000         | 1.173       |                     |                            |                    |
|                                           | 11.4                           | 1               | 4.91                                        | .31                                   | 5                             |               |               | 12.142      |                     |                            |                    |
| W                                         | 12.0                           | 1               | 4.59                                        | 0                                     | -                             |               |               |             |                     |                            |                    |
| 6                                         | 12.9                           |                 | 3.95                                        |                                       |                               |               |               |             |                     |                            |                    |
|                                           | 13.8                           | 1               | 3.99                                        |                                       |                               |               | 1.            |             |                     |                            |                    |
| 6- 11                                     | 13.7                           | 1               | 3.62                                        |                                       | *                             |               |               |             |                     |                            |                    |
| LS                                        | 15.6                           |                 | 2.21                                        |                                       | _                             |               |               | 1           |                     |                            |                    |
|                                           |                                |                 |                                             |                                       | 9                             |               |               |             |                     |                            | 1                  |
|                                           |                                |                 |                                             |                                       |                               |               |               |             |                     |                            |                    |
|                                           |                                |                 |                                             |                                       |                               |               |               |             |                     |                            |                    |
|                                           |                                | and topological |                                             |                                       |                               |               |               |             |                     |                            |                    |
|                                           |                                |                 |                                             |                                       |                               |               | 1             |             |                     |                            |                    |
| -                                         |                                |                 | -                                           |                                       |                               |               |               |             |                     |                            |                    |
|                                           |                                |                 |                                             |                                       |                               |               |               |             |                     |                            |                    |
|                                           |                                |                 | 1                                           |                                       |                               |               |               |             |                     |                            |                    |
|                                           |                                |                 | 1                                           |                                       | 1                             |               |               |             |                     |                            |                    |
|                                           |                                |                 | 1                                           |                                       |                               |               |               |             |                     |                            |                    |
|                                           |                                | -               |                                             |                                       | 1                             |               | 1             |             |                     |                            | 1                  |
|                                           |                                |                 |                                             |                                       |                               |               | -             | 1           | -                   |                            | 1                  |
|                                           |                                | -               |                                             |                                       |                               |               |               |             |                     |                            |                    |
|                                           |                                |                 | +                                           |                                       | -                             |               | -             | 1           |                     |                            |                    |
|                                           |                                |                 | 1                                           |                                       |                               | 1             | 1             | 1           |                     |                            |                    |
|                                           |                                |                 |                                             |                                       |                               |               |               |             |                     |                            | 1                  |
| TOTALS                                    |                                | -               | 1                                           |                                       | · · · · · · · · · · ·         |               | -             |             |                     |                            |                    |
|                                           |                                |                 | 4                                           | · · · · · · · · · · · · · · · · · · · |                               | 1             |               | 1           |                     | 1                          | 1                  |

•

----

|                                      |            | l         | NST     | RE.    | AM     | FIE     | FC     | DA<br>DR<br>DET | TA      | MIN     | ATI     | ON      | S       |         |       |        |        | el com  |              |
|--------------------------------------|------------|-----------|---------|--------|--------|---------|--------|-----------------|---------|---------|---------|---------|---------|---------|-------|--------|--------|---------|--------------|
| COLORADO WATER<br>CONSERVATION BOARD | <b>.</b> . |           |         |        | LOC    | ATIO    | N IN   | FO              | RMA     | TION    |         |         |         |         |       |        |        | ON      | OF WILL      |
| STREAM NAME: Big K                   | Red a      | ck u      | ear     | 14     | lose   | 14      | C      | ent             | We      | enter   | 2       |         |         |         |       | C      | ROSS   | SECTION | NO.:         |
| CROSS-SECTION LOCATION               | Sa         | me a      | 2       | 2      | 000    | 0.      | 5.     | 11              | ET      |         |         |         |         |         |       |        |        |         |              |
|                                      |            |           | -       |        |        |         |        |                 | 0       |         |         |         |         |         |       |        |        |         |              |
| DATE 27/07 OBSI                      | AVERS.     | A/my      | P.      | Stre   | tto-   | -       |        |                 |         |         |         |         |         | -       | 116   |        |        |         |              |
| LEGAL % SEC<br>DESCRIPTION           | TION-      |           | SECTION | •      | an est | lic     | WHSH   | IP<br>T         |         | N,      | S       | RANGE   |         | -       | E     | W      | PM:    | _       |              |
| Mantrose                             |            | Han       | sefl    | 7      |        |         |        | w/              | TER DI  | VISION- | [       |         |         |         | DOM N | VATER  | CODE.  |         |              |
| USGS:                                |            |           | C       | 1      |        |         |        |                 |         |         | -       |         |         |         |       |        |        |         |              |
| USFS:                                |            |           |         |        |        |         |        |                 |         |         |         |         |         |         | 14    |        |        |         |              |
|                                      | _          | -         |         |        | SUI    | PPLE    | ME     | NTA             | LDA     | TA      |         | 1       | 1       |         | 1     |        |        |         |              |
| SAG TAPE SECTION SAME AS             | VESI       | NO M      | ETER T  | VPE    |        |         | 1      |                 | -       |         | -       |         |         |         |       | -      |        | -       |              |
| METER NUMBER.                        |            | DATE RAT  | ED.     | 1      |        | L       |        |                 |         |         |         |         |         |         |       | 1      |        |         |              |
| CHANNEL BED MATERIAL SIZ             | ERANGE     | _         |         | -      |        | ICALIO  |        | PHOTO           | OGRAPI  | HS TAK  | EN VE   | S/NO    | Ī       | NUMB    | EROF  | PHOTOG | GRAPH. | s.      | 1015         |
| \$                                   |            |           |         |        | CH     |         | EL P   | ROF             | ILE     | DAT     | A       | ~       | 1       |         |       |        |        |         |              |
| STATION                              | 1          | DISTANCE  | 110     | T      | ROI    | DREAD   | NG Itt | T               | T       | -       |         |         | 6       | R       | S     |        |        | T       | EGEND:       |
| Tape @ Slane LB                      |            | 0.0       |         | -      |        |         |        | -               |         |         |         |         | 9       | 2       | _     |        |        |         | 0            |
| X Tape w Slake RB                    |            | 0.0       |         |        |        |         |        |                 | s       | ~       |         |         |         |         |       |        |        | St      | she (A)      |
| () WS @ Tape LB/RB                   |            | 0.0       | _       |        |        |         | _      |                 | ET      | (13     | )       | 2       | JAAP    |         | <     | E.     | 3      | P       |              |
| 2 WS Upstream                        | 41.        | 5'        |         |        | 2.0    | 4'      | 1      | 15              | ř.      | ~/      |         | *       |         |         |       |        |        |         |              |
| 3 WS Downstream                      | 47         | .0'       |         | 1      | 6.5    | 541     | >      | 14              | -       |         | 0       |         |         |         |       |        |        | - Dire  | ction of Flo |
| SLOPE                                | 88         | 5         |         |        | -      |         |        |                 |         |         | 0       |         | 10      | 945     | 5     |        |        | 14      | -            |
|                                      |            |           |         | AC     | TAUC   | ric s   | AMP    | LIN             | G SI    | JMM     | ARY     | -       | X       | P       | -     |        | -      |         |              |
| STREAM ELECTROFISHED                 | ES/NO      | DISTANC   | ELEC    | TROFIS | SHED _ |         |        |                 | ISH CA  | UGHT    | VES/N   | 0       | T       | WATE    | RCHEN | AISTRY | SAMPL  | ED VE   | S/NO         |
| 12.                                  |            | LENGT     | - FRE   | DUENC  | V DIST | RIBUTIC |        | DNE-IN          | CH \$12 | EGRO    | UPS (1. | 0-1.9.2 | 2.0-2.9 | . ETC.) |       |        |        |         |              |
| SPECIES IFILL IN                     | 1          |           | ,       | 2      | 3      |         | 5      | 6               | 7       | 8       | 9       | 10      | 11      | 12      | 13    | 14     | 15     | >15     | TOTAL        |
|                                      |            |           | -       |        | -      |         |        |                 | -       | -       | -       | -       |         | -       | -     | -      | -      |         |              |
|                                      |            |           | -       | -      | +-     | -       |        | -               | -       | -       | -       | -       | -       | -       | -     | -      | -      |         |              |
| 1                                    | -          |           | -       | 1      | -      | -       |        | -               | -       | -       | -       | -       | -       | 1-      | 1     | +      | +      | -       | -            |
| AQUATIC INSECTS IN STREAM            | SECTION    | BY COMMON | OR SC   | ENTIFI | C ORD  | ERNAM   | E      |                 |         |         |         | -       |         | -       | -     | -      |        |         |              |
|                                      |            |           |         |        |        |         |        |                 | -       |         |         |         |         |         |       |        |        |         |              |
|                                      |            |           |         |        |        | co      | MM     | ENT             | rs      | -1      | _       |         |         |         |       | Pho    | tos    |         |              |
| 50' abou                             | re X       | 51        | O.      | rang   | 10 ;   | Mag     | 7 5    | re              | ock     | C       | air     | ~       | -       |         | +L    | 13     | Op     | skre    | en-          |
|                                      |            |           |         | 1      |        | 1       | -      |                 |         | -       | -       | -       |         |         | t     | + 14   | A      | erus    | 5            |
| -                                    |            | 6         |         |        |        | -       | *      |                 |         | -       | - 20    | 1       |         | 1       |       | 415    | - >    | -       | e trac       |

+

-0

| STREAM NAME                                             | Big Red                         | ock         |                                            | -0-          |                                         |           | CROSS  | SECTION       | NO          | DATE                | 7 SHEE                     | I OF              |
|---------------------------------------------------------|---------------------------------|-------------|--------------------------------------------|--------------|-----------------------------------------|-----------|--------|---------------|-------------|---------------------|----------------------------|-------------------|
| BEGINNING OF                                            | EASUREMENT                      | EDGE OF     | WATER LOOKING                              | DOWNSTREAM   | LEFT                                    | CHT C     | Co Dos | - L           | 11.         | 10/21/0             | 1 SHEE                     |                   |
| -                                                       | Distance                        | NO. O AT ST | T                                          |              | Denti                                   |           | Je ne  | ioning. Jo    | Velocit     | v (f)/3ec)          | 0                          |                   |
| e Stake (S)<br>Grassine (G)<br>Waterine (W)<br>Rock (R) | From<br>Initial<br>Point<br>(h) | (14)        | Vertics)<br>Depth From<br>Tape/Inst<br>(h) | Depth<br>(N) | of<br>Obser-<br>vation<br>(h)           | Mevolui   | ions   | Time<br>(sec) | At<br>Point | Mean in<br>Vertical | Area<br>(†1 <sup>2</sup> ) | Dacharge<br>(cts) |
|                                                         |                                 |             |                                            |              |                                         |           |        |               |             |                     |                            |                   |
| RS                                                      | 0                               |             | 1.29                                       |              |                                         |           |        |               | · · · · ·   |                     |                            |                   |
|                                                         | 2.7                             |             | 1.45.                                      |              |                                         |           |        |               |             |                     |                            |                   |
|                                                         | 2.8                             |             | 3.42                                       |              |                                         |           |        |               |             | +                   |                            |                   |
| (                                                       | 5.0                             |             | 3.91                                       |              |                                         |           |        |               |             |                     |                            |                   |
|                                                         | 2.1                             |             | 3.22                                       |              | -                                       |           |        |               |             |                     |                            |                   |
|                                                         | 4.1                             |             | 3.59                                       |              |                                         | -         |        | -             |             |                     |                            |                   |
|                                                         | 4.9                             |             | 4.55                                       |              | -                                       | -         |        |               |             | +                   |                            |                   |
| 0                                                       | 5.6                             |             | 4.54                                       |              |                                         |           |        |               |             | -                   |                            |                   |
| W                                                       | 5.8                             |             | 4.92                                       |              |                                         |           | -      |               |             |                     |                            |                   |
|                                                         | 5.9                             |             | 5.56                                       | .63          |                                         | -         |        |               | 0.83        |                     |                            |                   |
|                                                         | G.1                             |             | 5.68                                       | .76          |                                         |           |        |               | 4.125       |                     |                            |                   |
| 11                                                      | 6.3                             |             | 5.53                                       | :61          |                                         | -         |        |               | 0.141       |                     |                            |                   |
|                                                         | 6.5                             | Con all     | 5.58                                       | .68          | in raist                                |           |        | -             | 0.169       |                     |                            |                   |
| 10000                                                   | 6.1                             |             | 5.57                                       | .46          |                                         |           |        |               | 0.565       |                     | -                          |                   |
|                                                         | 6.7                             |             | 5.56                                       | 01           |                                         |           |        |               | 0,408       |                     |                            | +                 |
|                                                         | 7.7                             |             | 2.11                                       | .00          |                                         |           | -      |               | 4.387       | +                   |                            | +                 |
| 9                                                       | 75                              | - income    | 5.00                                       |              |                                         | +         |        |               | 1116        | +                   |                            | -                 |
| -                                                       | 77                              |             | 200                                        | -70          |                                         |           |        |               | 6923        |                     |                            | 1                 |
|                                                         | - 9                             |             | 2.00                                       | .89          |                                         | 1         |        |               | TIED        | -                   |                            | +                 |
|                                                         | 01                              |             | 102                                        | a)           |                                         | +         |        | _             | 1034        |                     |                            |                   |
|                                                         | 0.2                             |             | 2.83                                       | -76          | -                                       |           |        |               | (V.50)      | 2                   |                            |                   |
|                                                         | ¥.5                             |             | 501                                        | -00          |                                         | +         | -      |               | 121         |                     |                            |                   |
|                                                         | 07                              |             | 0.85                                       | 94           | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 1         |        |               | 10,081      |                     |                            | 1                 |
|                                                         | 2g                              |             | 001                                        | 28           |                                         | 1         | -      |               | 11/4        |                     |                            | 1                 |
|                                                         | 91                              |             | 5.01                                       | .92          |                                         | 1         | -      |               | AGUL        |                     | +                          |                   |
| 10                                                      | 93                              |             | 569                                        | 77           | <i>2</i>                                | 1920      | 10     | 002           | DIUTS       | 1                   |                            | 1 1               |
| 0                                                       | 9.5                             |             | 5.69                                       | .79          |                                         |           |        |               | 18383       |                     | 1                          |                   |
|                                                         | 9.7                             |             | 5.34                                       | .42          |                                         |           |        |               | O. 4KC      | )                   |                            |                   |
|                                                         | 9.9                             |             | 5.34                                       | .44          |                                         |           | 0.036  |               | 9.559       | -                   |                            |                   |
| W                                                       | 10.1                            |             | \$.92                                      | 0            | 1                                       |           |        |               |             | 1.                  |                            |                   |
| R                                                       | 11.1                            | -           | 4.08                                       |              | 1                                       |           | 1      |               |             |                     |                            |                   |
|                                                         | 11.5                            |             | 4.53                                       |              |                                         |           |        |               |             |                     | -                          | -                 |
| 6                                                       | 11.8                            |             | 4.35                                       |              |                                         | -         |        |               |             |                     |                            |                   |
| C                                                       | 12.5                            |             | 15.71                                      |              |                                         | 1-        |        | -             |             |                     | 1                          | 1                 |
|                                                         | 200                             |             | 10                                         |              |                                         | 1         | -      |               |             | 1                   |                            | 1                 |
|                                                         | 20.0                            |             | 1.10                                       |              |                                         | 1         |        | -             |             |                     |                            | 1                 |
|                                                         |                                 |             |                                            |              |                                         | 1         | -      | 1000          | 1           | -                   |                            |                   |
|                                                         |                                 |             |                                            |              |                                         | 1         |        |               | 1           |                     | 1                          |                   |
|                                                         |                                 |             | 1                                          |              |                                         | -         | -      | -             |             |                     | 1                          | 1                 |
| TOTALS                                                  |                                 |             |                                            | ar an agt    |                                         |           |        |               | a far ant . |                     | 1                          |                   |
|                                                         |                                 |             | 1                                          |              | CALCULA                                 | TIONS PER | FORME  | D BY.         | T           | CALCULATIONS        | CHECKED BY                 | 6                 |

•

|                                               | IN                     | STRE     | EAM    | F       | F       | D D<br>OR<br>DE | ATA<br>TEF | RMI      | TAN     | ION       | s       |         |        |        | ano c  |                |
|-----------------------------------------------|------------------------|----------|--------|---------|---------|-----------------|------------|----------|---------|-----------|---------|---------|--------|--------|--------|----------------|
| COLORADO WATER<br>CONSERVATION BOAR           | D                      |          | LO     | CATI    | ONI     | NFC             | MR         | ATIO     | N       |           |         |         |        |        | V      | OF W           |
| STREAM NAME: 7319                             | Red Cree               | k.       | neer   | - +     | lor     | se /            | 3          | Con      | f1.     | rente     | 2       |         | -      | CROS   | SECTI  | DN NO:         |
| CROSS-SECTION LOCATION                        | Same loc               | atre     | ~      | 45      |         | 200             | 6          | S        | 110     | ey        | -       | _       |        | -      |        |                |
| NAD 83                                        | Zone BN                | X        | 2 4    | 12      | 37      | 35              | ż          | E.       | -5      | 27        | 95      | 3       |        |        |        |                |
| DATE 6 27/07 085                              | ERVERS Aling           | St       | rat    | Tom     |         |                 |            |          |         |           |         |         |        | 1      |        |                |
| DESCRIPTION<br>COUNTY                         | watershed              |          | _      |         | TOWNS   | MIP             |            | N        | 1/5     | RANGI     | E       |         | E/W    | PM:    | _      |                |
| Mentrose                                      | Horse                  | 44       |        | _       |         | 1               | AIEA       | UNVISION |         |           |         | 00      | W WATE | A CODE | -      |                |
| MAPIS)                                        |                        | 0        |        |         |         | _               | _          | _        |         | -         |         |         |        |        |        |                |
|                                               |                        |          |        |         |         |                 | -          |          | -       | -         | -       |         | _      |        | _      |                |
|                                               |                        |          | su     | IPPL    | EME     | NT/             | L D.       | ATA      | _       | -         |         |         |        |        |        |                |
| SAG TAPE SECTION SAME AS<br>DISCHARGE SECTION | VESINO METE            | ATVPE    |        | _       | 16      |                 |            |          |         | •         |         |         |        |        | -      |                |
| METER NUMBER                                  | DATE RATED.            | -        | -      | CAL     | 18/5Pth |                 | _          | 344      | TAPE    | WEIGHT    | -       |         | 01 TA  | PE TEN | SION   | ibs            |
| STANAL BED MATERIAL SIZ                       | E HANGE                |          |        |         |         | PHOT            | OGRAS      | PHS TAR  |         | S/NO      |         | NUMBER  | F PHOT | OGRAP  | HS.    |                |
|                                               | -                      |          | СН     | ANN     | ELF     | ROI             | FILE       | DAT      | A       |           | 1.      | K       |        |        |        | -              |
| STATION                                       | DISTANCE               | -        |        |         |         | -               | T          |          |         | -         | 2       | 1       |        | _      | -      |                |
| Tape & Stans LB                               | D.O                    | -        | RO     | DREAD   | DING H  | -               | 1          |          |         | 5         | 18      |         | 1      | 5      | +      | LEGEND         |
| Tape w Stake AB                               | 0.0                    |          | -      | -       |         |                 | s          | /        |         | -         | 1       | -       | 6      | 9      | - 5    | take 🛞         |
| ws @ Tape LB/AB                               | 0.0                    |          |        |         |         |                 | ET         | 28       | 3/      | 7         | Bdy     |         |        | 6      | S      | lahon (1)      |
| 2 WS Upstream                                 | 57.5'                  |          | 2.     | 19      | 1       | 1               | HAN        |          | -       | *         | -       |         | É      | -      | Ľ      | -100 (1)-0     |
| 3 WS Downstream                               | 49.31                  |          | 7.     | 64      | 1/2     | 20              | T          | -        |         |           | 1       |         |        |        | - 0    | rction of Flow |
| SLOPE 5.45-                                   | = 106.8 =              |          | .05    | 1       |         |                 |            |          | _       | 50        | 2.00    | )       |        |        | C      | =              |
|                                               |                        | AC       | AUG    | TIC S   | AM      | PLIN            | GS         | UMN      | ARY     |           |         |         |        |        |        |                |
| STREAM ELECTROFISHED Y                        | ES/NO DISTANCE EL      | ECTROPIS | SHED _ |         |         | 1               | ISH CA     | UGHT     | VES/NO  | 0         | T       | WATERCH | MISTR  | SAMP   | LED YE | SUNO           |
|                                               | LENGTH - FR            | EQUENC   | ¥ DIS7 | RI DUTI |         | ONE-IN          |            | EGRO     | UPS IT. | 0-1.9. 2. | 0-2.9.1 | TC.)    |        |        |        | 5/110          |
| SPECIES IFILL IN                              | ,                      | 2        | 3      |         | 5       | 5               | 7          |          | 9       | 10        | "       | 12 13   | 14     | 1 15   | >15    | TOTAL          |
|                                               |                        |          | -      | +       | -       | -               | -          | -        |         |           | -       |         |        |        |        |                |
|                                               |                        | 1        | 1      | 1       | 1       | 1               |            | 1        |         |           | -       | -       | +      | +      | +      |                |
|                                               |                        |          |        |         |         |                 |            |          |         |           |         |         | 1      | 1      | 1      |                |
| GOALC INSEELS IN STREAM                       | SECTION BY COMMON OR : | CIENTIFI | C CRO  | ER NAM  | E       | -               | -          | -        | _       |           |         |         | 1      |        | _      |                |
|                                               |                        | -        | -      | -       | -       |                 | -          | -        |         | -         | -       |         |        |        | -      |                |
| -                                             |                        | -        | 1      | CC      | OMM     | ENT             | S          |          |         | 1         | 12      | hotes   |        |        |        |                |
| Ovange                                        | Flagging =             | Ree      | K      | 6       | in      | 1               |            | _        |         | ¥         | Ile     | UF      | is the | ann    | -      | _              |
| and the second second                         | 12' about              | XZ       | #      | 2       |         |                 |            |          | -       | d.        | 17      | Ar      | 1055   |        | -      |                |
|                                               |                        |          |        |         |         |                 |            |          |         | - 2       | 18      | 1)0     | when   | stre   | -C-    |                |
| Observed 1                                    | 3th Fish Spec          | 1.15     | 1-1    | Luc     | win     |                 |            |          |         |           |         | -       |        |        |        |                |

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The USDA Forest Service (FS) is writing this letter to formally communicate its instream flow recommendation for Red Canyon Creek, located in Water Division 4.

**Location and Land Status**. The FS is recommending stream flow protection under the CWCB Stream and Lake Protection program for 6.75 miles of Red Canyon Creek starting at the headwaters and terminating at the confluence of Red Canyon Creek and Horsefly Creek. Red Canyon is tributary to Horsefly Creek which flows into the San Miguel River approximately 13 miles east of Naturita. The stream reach covered by the surveys conducted on FS lands start at the confluence with Horsefly Creek and comprises the entire Red Canyon watershed. The proposed reach is entirely located on NFS lands. Two small 40-80 acre parcels of private land do exist in the watershed.

**Biological Summary.** Fisheries surveys in the watershed indicate that the stream environment supports self-sustaining populations of native Colorado River cutthroat trout and mottled sculpin. A small rainbow trout population is also located near the mouth of the creek. Colorado River cutthroat trout are of limited distribution across the state of Colorado, particularly in the San Miguel River sub-basin, where Red Canyon Creek is one of only three populations that currently exist. Distribution of these genetically pure CRCT populations is limited to approximately 5-7% of their native distribution on the Grand Mesa, Uncompahgre, and Gunnison National Forests (GMUG NF) (James and Speas 2005). Electofishing surveys completed in 2005 indicate that there are approximately 40 adult fish per mile in Red Canyon Creek (USFS unpublished).

Low flows are common in the late summer and fall, and may be a limiting factor for fish production and movement during this time. The stream channel provides good pool habitat during summer and winter low flows. However, depth appears to limit movement and distribution of CRCT during this time. Low flows also limit aquatic insect production during this low period as well. Despite these natural flow limitations in the summer and winter seasons, the stream does support a full-functional riparian community, and suitable fish habitat to support the long-term persistence of native CRCT.

**R2Cross Analysis.** Three cross sections were collected on Red Canyon Creek on June 27, 2008, and used to quantify instream flow protection using R2Cross procedures outlined by the Colorado Water Conservation Board (CWCB 1996). FS data analysis indicates that the following flows are needed to preserve the fishery and natural environment to a reasonable degree.

A minimum flow of 3.8 cubic feet per second is recommended from January 1<sup>st</sup> to December 30<sup>th</sup>. If natural stream flows fall below 3.8 cubic feet per second, then all remaining water should be protected in order to "preserve the native fishery and natural environment to a reasonable degree." Based on the FS observations of this stream the

protection of flows below 3.8 cubic feet per second is needed to protect existing fish habitat, fish migration, and spawning and incubation periods for Colorado River cutthroat trout. Water use and development during low flow periods would have severe detrimental effects incubation success, summer and fall distribution and migration patterns, and aquatic food abundance in a stream system where these fisheries habitat and food requirements are already strained by naturally occurring low flows.

#### Water Availability

In the absence of gage data from Red Canyon Creek, a hydrograph was constructed using a natural flow estimation model developed by Kircher et al (1985). The southwest regional equation was used to model streams on the Uncomaphgre Plateau. A review of five Uncompahgre Plateau streams by the BLM was used to validate the use of southwest regional equations (Appendix B). Intermittent USGS gages from Spring Creek near Beaver Hill (1978 - 1980), Potter Creek near Olathe: (1980), and Hay Press Creek above Fruita Reservoir #3 (1984 – 1987) were used to develop monthly streamflow characteristics for Red Canyon Creek. Monthly water yield estimates were eventually converted to mean monthly discharge numbers to construct an annual hydrograph (Table 1). Annual yield was estimated at 5,963 acre-feet, with 95% of the annual yield occurring in April-June.

**Table 1.** Mean monthly hydrograph for Red Canyon Creek developed using southwest regional equationsdeveloped by Kircher et al (1985) and Bureau of Land Management (D. Murphy pers. communications)for streams on the Uncompany Plateau.

Water Yield Estimates - Kircher 1985 (southwest regional equation)

| Watershed:<br>Location:    | <b>Red Canyon Creek</b><br>FS lands |          |          |                         |
|----------------------------|-------------------------------------|----------|----------|-------------------------|
| Drainage Area (square mile | es):                                |          | 12.90661 |                         |
| Mean Basin Elevation (ft): |                                     |          | 8480.971 |                         |
| Mean Basin Elev5000 ft/    | 1000 ft:                            |          | 3.480971 |                         |
| Mean Annual Flow (cfs):    |                                     |          | 8.236    |                         |
| Mean Annual Yield (AF):    |                                     |          | 5963     |                         |
|                            | Percent of annual flow              | AF/Month | AF/Day   | Mean Monthly flow (cfs) |
| January                    | 0.0032                              | 19.085   | 0.616    | 0.311                   |
| February                   | 0.0065                              | 38.766   | 1.337    | 0.675                   |
| March                      | 0.0100                              | 59.640   | 1.924    | 0.972                   |
| April                      | 0.1470                              | 876.713  | 29.224   | 14.759                  |
| Мау                        | 0.5541                              | 3304.076 | 106.583  | 53.830                  |
| June                       | 0.2461                              | 1467.153 | 48.905   | 24.700                  |
| July                       | 0.0130                              | 77.532   | 2.501    | 1.263                   |
| August                     | 0.0050                              | 29.820   | 0.962    | 0.486                   |
| September                  | 0.0040                              | 23.856   | 0.795    | 0.402                   |
| October                    | 0.0039                              | 23.260   | 0.750    | 0.379                   |
| November                   | 0.0037                              | 22.067   | 0.736    | 0.371                   |
| December                   | 0.0035                              | 20.874   | 0.673    | 0.340                   |

**Relationship to Management Plans.** The Grand Mesa, Uncompany Plan Gunnison National Forests (GMUG NF) Land and Resource Management Plan provide land management direction for FS lands located in the Red Canyon watershed. Forest Plan direction for Fisheries, Threatened, Endangered, and Sensitive species suggest that land managers should among other things, maintain viable populations of native fish species, improve fish habitat conditions, and cooperate with state agencies to meet minimum flow needs to support fish populations. Additionally, agencies of the Colorado Division of Natural Resources and the Forest Service have signed agreements to assist in the conservation and protection of Colorado River cutthroat trout (CRCT River Cutthroat Trout Task Force 2006), and to work together to solve water issues in Colorado (Colorado DNR/USDA Forest Service MOU on water, 2004).

The Red Canyon stream segment is important to the FS because it is one of only three CRCT populations that currently exist in the San Miguel River. Red Canyon provides important spawning and rearing habitat for a self-sustaining Colorado River cutthroat trout fishery. Additionally, Red Canyon Creek is one of only a few perennial streams in the semi-arid landscape of the Uncompahgre Plateau. The stream is an important source of water for the lower reaches of Horselfly Creek, since headwater diversions currently divert a significant source of the summer flows for irrigation and small domestic use. Access into Red Canyon is very limited, so fishing pressure, and other land management uses are is minimal, so stream level protection would be an important tool in maintaining aquatic values in this area of the Uncompahgre Plateau.

The FS requests that the Board recognize that this recommendation is based only upon the minimum flows necessary to support the cold-water fishery values. FS may wish to work with the Board and/or through the Colorado water rights system to appropriate flows to optimally protect fish values and to protect other water-dependent values specified in FS resource management plans.

Data sheets, R2Cross output, fishery survey information, hydrology and water yield techniques, and photographs of the cross section are enclosed to support this recommendation. We thank both the Colorado Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Christopher James, Fisheries Biologist, at (970) 240-5421 or John Almy, Forest Hydrologist, at (970) 874-6656.

#### 4 Enclosures

cc: Pauline Adams, GMUG NF, Water Rights Coordinator Polly Hayes, Regional Office, Water Program Manager Scott Ludwig, Regional Office, Water Rights Coordinator

### **Literature Cited**

Colorado River Cutthroat Trout Task Force 2006. Conservation Agreement and Strategy for Colorado River cutthroat trout in the states of Colorado Wyoming, and Utah. April 2001, updated June 2006.

Colorado Water Conservation Board 1996. Development of instream flow recommendations in Colorado using R2Cross. By Greg Espegren, Senior Water Resource Specialist. January 1996.

James, C. and C. Speas. 2005. Colorado River cutthroat trout Species and Conservation Assessment. Prepared for the GMUG NF, November 2005.

Kircher, J.E., A.F. Choquette, and B.D. Richter, 1985. Estimation of Natural Streamflow Characteristics in Western Colorado. Water Resources Investigations Report 85-4086, 1985. U.S. Geological Survey, Prepared in Coordination with the Bureua of Land Management.

| STREAM NAME                                | Bis                             | Red     | ck                                        |              |                               | CROS                                     | SECTION       | ON NO       | DATE 6/27/0         | 7 SHEET                    | OF                |
|--------------------------------------------|---------------------------------|---------|-------------------------------------------|--------------|-------------------------------|------------------------------------------|---------------|-------------|---------------------|----------------------------|-------------------|
| BEGINNING OF N                             | EASUREMENT                      | EDGE OF | WATER LOOKING                             | DOWNSTREAM   | LEFT / RIGHT                  | Gage Re                                  | ading.        | N/An        | TIME 1110           |                            | 191               |
| State (S)                                  | Distance                        | Width   | Total                                     | Water        | Depth F                       | tevolutions                              |               | Velocit     | ty (ft/sec)         |                            |                   |
| Grassline (G)<br>Waterine (W)<br>Block (R) | From<br>Initial<br>Point<br>[h] | (17)    | Venical<br>Depth From<br>Tape/Inst<br>(N) | Depth<br>(N) | of<br>Obser-<br>vation<br>(h) | 17-19/24                                 | Time<br>(sec) | At<br>Point | Mean in<br>Vertical | Ares<br>(#1 <sup>2</sup> ) | Oscharge<br>(cfs) |
| DC                                         | 0                               |         | 3 00                                      |              |                               | 2                                        |               |             |                     |                            |                   |
| -2                                         | 2.0                             |         | 291                                       |              |                               |                                          |               |             |                     |                            |                   |
|                                            | 3.8                             |         | 4.69                                      |              |                               | 1                                        | 100           |             |                     |                            |                   |
| 6                                          | 4.6                             |         | 5.15                                      |              |                               |                                          |               |             |                     | 12.00                      |                   |
|                                            | 5.7                             | 10      | 5.29                                      |              |                               | -                                        |               |             |                     |                            |                   |
| W                                          | 59                              | 100     | 5.56                                      | 0            |                               | ×                                        |               | Dat         | -                   |                            |                   |
|                                            | 19                              |         | 171                                       | .2.0         |                               |                                          |               | DIAL        |                     |                            |                   |
|                                            | 71                              |         | 202                                       | 28           |                               |                                          |               | 10 201      | 3                   |                            |                   |
|                                            |                                 |         | 2.00                                      | 20           |                               |                                          |               | 10201       | 1                   |                            |                   |
|                                            | 1.0                             |         | 10.01                                     | -30          |                               |                                          |               | 12.361      |                     | *                          |                   |
|                                            | 1.2                             |         | 13.85                                     | -20          |                               |                                          |               | (0.007      | 5                   |                            |                   |
|                                            | 1.1                             |         | 5.86                                      | -30          |                               |                                          |               | 9.056       |                     |                            |                   |
|                                            | 7.4                             |         | 5.86                                      | -28          |                               |                                          |               | P. 562      |                     |                            | 199               |
|                                            | 8.1                             | 100.000 | 5.88                                      | - 30         | -                             |                                          |               | 0,914       |                     |                            |                   |
|                                            | 8.5                             | _       | 3-88                                      | -30          | 1                             |                                          |               | 0.992       |                     |                            | 25. 22 1. 19      |
|                                            | 8.5                             | -       | 5.78                                      | -40          |                               |                                          |               | 0.848       |                     |                            |                   |
|                                            | 8.1                             |         | 5.91                                      | -40          |                               | 3.73.08                                  |               | 0.701       |                     |                            |                   |
|                                            | 8-7                             | -       | 6.00                                      | .72          |                               |                                          |               | 0.00%       |                     |                            |                   |
|                                            | 9,1                             |         | 6.01                                      | -40          |                               | 1. A. A.                                 | -             | 19,301      | -                   |                            |                   |
|                                            | 7-3                             | +       | 6.00                                      | -40          |                               |                                          |               | 0,475       |                     |                            |                   |
|                                            | 7-3                             |         | 6.19                                      | .50          |                               |                                          |               | 9,584       |                     | La provincia               |                   |
|                                            | 9.7                             | 1.52    | 6.16                                      | .58          |                               |                                          |               | 0.801       |                     |                            |                   |
|                                            | 9.9                             |         | 6.07                                      | -48          |                               |                                          |               | 1:055       |                     |                            |                   |
|                                            | 10.1                            | 1       | 6.07                                      | .50          |                               |                                          | -             | 1.031       |                     |                            |                   |
|                                            | 10.3                            |         | 6.14                                      | .58          |                               |                                          |               | 10.816      |                     |                            |                   |
|                                            | 10.5                            |         | 6.11                                      | -56          |                               |                                          |               | Ø.537       | -                   |                            |                   |
|                                            | 10.7                            |         | 6.12                                      | .55          |                               |                                          |               | 0,200       | -                   |                            |                   |
|                                            | 10.9                            |         | 5.96                                      | .40          |                               |                                          |               | 0.191       |                     |                            |                   |
|                                            | 11.1                            | EXC.    | 5.90                                      | -35          |                               | an a |               | 0,254       |                     |                            |                   |
|                                            | 11.4                            |         | 5.63                                      | -04          |                               |                                          |               | Q.          |                     |                            |                   |
| . /                                        | 11.9                            | -       | 5.78                                      | .22          |                               |                                          |               | P           |                     |                            |                   |
| W                                          | 120                             |         | 5.56                                      | 0            |                               | -                                        | -             |             |                     |                            |                   |
|                                            | 12.2                            | -       | 5.42                                      |              |                               |                                          |               |             |                     |                            |                   |
| 9                                          | 14.0                            | -       | 5.15                                      |              |                               |                                          |               |             |                     |                            |                   |
|                                            | 14.2                            |         | 4.39                                      |              |                               |                                          |               | +           |                     |                            |                   |
| 5                                          | 18.8                            |         | 2.13                                      |              |                               |                                          |               |             |                     |                            |                   |
|                                            | 10-01                           |         | 200                                       |              |                               |                                          |               |             |                     |                            |                   |
|                                            |                                 |         |                                           |              |                               |                                          |               |             |                     |                            |                   |
|                                            |                                 |         |                                           |              |                               | 1911                                     |               |             |                     |                            |                   |
|                                            |                                 |         |                                           |              |                               |                                          |               |             |                     |                            |                   |
| TOTALS                                     |                                 |         |                                           | at an ant    |                               |                                          | Line.         | 10 m        |                     |                            |                   |
| End of Measure                             | ment Tim                        | e:      | Gage Readur                               | ч н          | CALCULATIO                    | S PERFORME                               | D BY.         |             | CALCULATIONS        | HECKED BY:                 |                   |

5.5

• .

## **<u>Stream</u>: Big Red Creek**

**Executive Summary** 

Water Division: 4 Water District: 60 HUC 1403000302

Segment: Confluence with Big A Creek down to Confluence with Horsefly Creek

- Upper Terminus: Latitude: 38°16'18.116''N Longitude: 108°12'18.583''W UTM 219602.4 Easting UTM 4240821.9 Northing NAD 83 Zone 13N SW1/4, NW1/4, Sec 4, T46N, R12W, NMPM
- Lower Terminus: Latitude: 38°14'22.518''N Longitude: 108°13'24.235''W UTM 217882.3 Easting UTM 4237313.2 Northing NAD 83 Zone 13N NW1/4, SW1/4, Sec 17, T46N, R12W, NMPM

Counties: Montrose Length: 2.68 miles

**USGS Quad(s):** Antone Spring and Sanborn Park

**ISF Appropriation:** 



Red Canyon Creek June 27, 2007 R2X Survey

#### **Summary**

The information contained in this report and the associated instream flow file folder forms the basis for staff's instream flow recommendation to be considered by the Board. It is staff's opinion that the information contained in this report is sufficient to support the findings required in Rule 5.40.

Colorado's Instream Flow Program was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (see 37-92-102 (3) C.R.S.). The statute vests the CWCB with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's Instream Flow Program, the statute directs the CWCB to request instream flow recommendations from other state and federal agencies. The United States Forest Service (USFS) recommended this segment of Big Red Creek to the CWCB for inclusion into the Instream Flow Program. Big Red Creek is being considered for inclusion into the Instream Flow Program because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right. The USFS is very interested in protecting stream flows in Big Red Creek because it is a free flowing perennial stream which is supporting both aquatic and riparian values on public land. Forest Service investigations conducted in 2006 and 2007 have suggested that this is a fully functioning aquatic system that is contributing towards the agency stewardship mission of protecting sustainable ecosystems. This stream provides occupied habitat for both native and non-native trout species. It provides important refuge during periods of drought and elevated water temperatures in the lower reaches of Horsefly Creek. There are currently no withdrawals of water from Big Red Creek. There is currently an instream flow water right held by the CWCB in Horsefly creek (05CW215) which begins approximately 1.2

miles downstream of where Big Red Creek flows into Horsefly, at a point where Sheep Creek enters Horsefly Creek, and then continues downstream to its confluence with the San Miguel River (see map). The protection is 13 cfs from April 1 thru June 5.

Big Red Creek is located entirely on Federal lands administered by the U.S. Forest Service. The drainage begins on the south end of the Uncompany Plateau in Montrose County, at an elevation of approximately 9,400 feet (see attachment 1 map). The stream flows for approximately 5.9 miles before it joins Horsefly Creek. Horsefly Creek flows into the San Miguel River approximately 6.5 miles below the lower terminus of Big Red Creek. Horsefly Creek and its lower tributaries, which include Big Red Creek, is a relatively remote setting located in moderately deep canyons. There is no road access to either Big Red Creek or Lower Horsefly Creek. The total drainage area of Big Red creek is approximately 13.2 square miles.

The subject of this report is a segment of Big Red Creek beginning at its confluence with Big A Creek (Latitude: 38°16'18.195"N; Longitude: 108°12'18.486"W), where sufficient perennial flow exists to support a cold water fishery and other associated aquatic values. From this point it flows in a southwesterly direction 2.68 miles to its confluence with Horsefly Creek (Latitude: 38°14'22.605"N; Longitude: 108°13'24.026"W). The proposed segment is located 8.5 miles northeast of Norwood, Colorado. The staff has received only one recommendation for this segment, from the USFS. The recommendation for this segment is discussed below.

### Instream Flow Recommendation(s)

Considerable field work has been conducted within the Horsefly watershed for the purpose of determining instream flow protection needs. Field work was initiated in 2006 and continued through 2007. Field study sites have been located on both Little Red Creek and Big Red Creek near their confluence with Horsefly Creek and also on Horsefly Creek near the Forest boundary. Based upon a recommendation by the Grand Mesa, Uncomphagre and Gunnison National Forest to the CWCB a notice to appropriate was issued in early 2009. At this time only Big Red Canyon Creek is being submitted as a recommendation by the agency for appropriation of instream flow rights under State statute.

### **Land Status Review**

|                |                | Total Length | Land Ow   | nership  |
|----------------|----------------|--------------|-----------|----------|
| Upper Terminus | Lower Terminus | (miles)      | % Private | % Public |
| Headwaters     | Spring Creek   | 2.68         | 0%        | 100%     |

# **Biological Data**

Fisheries surveys in the watershed indicate that the stream environment supports self-sustaining populations of native Colorado River cutthroat trout (CRCT) and mottled sculpin. A small rainbow trout population is also located near the mouth of the creek. Colorado River cutthroat trout are of limited distribution across the state of Colorado, particularly in the San Miguel River sub-basin, where Red Canyon Creek is one of only three populations that currently exist. Distribution of these genetically pure CRCT populations is limited to approximately 5-7% of their native distribution on the Grand Mesa, Uncompany, and Gunnison National Forests (GMUG NF) (James and Speas 2005). Electofishing surveys completed in 2005 indicate that there are approximately 40 adult fish per mile in Red Canyon Creek (USFS unpublished). Sampling was done again on July 6, 2009. Over a 188 ft sampling reach 27 CFCT were collected.

Low flows are common in the late summer and fall, and may be a limiting factor for fish production and movement during this time. The stream channel provides good pool habitat during summer and winter low flows. However, depth appears to limit movement and distribution of CRCT during this time. Low flows also limit aquatic insect production during this low period as well. Despite these natural flow limitations in the summer and winter seasons, the stream does support a full-functional riparian community, and suitable fish habitat to support the long-term persistence of native CRCT.

## **Field Survey Data**

USFS staff used the R2Cross methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. A two person crew used a pygmy meter and current meter digitizer to measure cross section velocities in the stream. Channel widths and depths were surveyed with a stadia rod, engineering level and fiberglass tape. Channel gradients were determined from rod, level and tape survey. The R2Cross method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should stream flow cease. This type of hydraulic data collection consists of surveying the stream channel geometry, determining channel roughness by collecting a representative sample of bed particles, and measuring the stream discharge. Three cross sections were established and surveyed on 7/25/2006. The flow measurements were extremely low during that visit and the R2X solutions were outside the acceptable range. Therefore a second set of measurements were collected at the previously established cross-sections on 6/27/2007. When run through the R2X model the 2007 data results were felt to be reasonable and representative of observed flows and channel morphological characteristics. Channel roughness was estimated by measuring 100 channel substrate particles and then calculating the D84 size particle. Mountain streams like Big Red Creek are difficult to get precise flow measurements, particularly during low flows, due to the highly variable velocity profiles that occur in streams with high roughness and channel complexity. Most likely measured flows under estimate the actual flows in the channel and that moving through the channel bed materials.

An estimate of bankful discharge was made which is roughly equivalent to the discharge at the grassline indicator utilized in the R2X program. In order to provide sufficient flow to periodically move channel materials and wood and thus sustain both aquatic and riparian habitat at a minimum 60% of bankful discharge is needed for a two week period most years

## **Biological Flow Recommendation**

The CWCB staff relied upon the biological expertise of the cooperating agencies to interpret output from the R2Cross data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CWCB has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Espegren 1996).

For this segment of stream, three data sets were collected with the results shown in Table 1 below. Table 1 shows who collected the data (Party), the date the data was collected (Date), the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's Equation (240% and 40% of Q), the summer flow recommendation based on meeting 3 of 3 hydraulic criteria and the winter flow recommendation based upon 2 of 3 hydraulic criteria and 60% if the bankful flow. However, updates to the R2Cross program have the ability to vary Manning's n over a range of flows allowing for more accurate staging tables to be used in the prediction of hydraulic parameters. These changes allow for more accurate hydraulic modeling in periods outside of the typical accuracy range of R2Cross. For this exercise the USFS generated the Thorne-Zevenbergen staging table by supplying a D84 for use in setting Mannings roughness coefficient and

also selected the Bathhurst formula for calculation of velocity and discharge in streams with high relative roughness.

| COIL  | ilucilee wit | II HOISENY C | ICCK.    |                |          |              |           |
|-------|--------------|--------------|----------|----------------|----------|--------------|-----------|
| Party | X-sec        | Date         | Measured | 40%-250%       | Summer   | Winter (2/3) | 60%       |
|       |              |              | Q        |                | (3/3)    |              | Bankful Q |
| USFS  | #1           | 6/27/2007    | 1.3 cfs  | .52 – 3.25 cfs | 1.35 cfs | 1.2 cfs      | 11.64 cfs |
| USFS  | #2           | 6/27/2007    | 2.08 cfs | .8 – 5.2 cfs   | .98 cfs  | .52 cfs      | 16.2 cfs  |
| USFS  | #3           | 6/27/2007    | 1.11 cfs | .44 – 2.78 cfs | 1.23 cfs | .81 cfs      | 10.3 cfs  |

Table 1: Stream flow data and R2Cross outputs from three cross sections located on Big Red Creek near confluence with Horsefly Creek.

USFS = U.S. Forest Service

#### **Biologic Flow Recommendation**

Outputs from cross sections 1, 2 and 3 were averaged to develop a spring/summer and winter flow recommendations. The summer flow recommendation is 1.2 cfs; winter flow recommendation is .85 cfs. Spring snowmelt runoff recommendation is 12.7 cfs.

### Hydrologic Data

No stream gaging records exist for Red Canyon Creek. Mean Annual and mean monthly flow data was calculated by using the USGS interactive Streamstats program available online http://water.usgs.gov/osw/streamstats/. Documentation for all the regression equations used in Streamstats can be found in Capesius and Stephens, 2009.

The basin characteristics flow model generates a number of stream flow statistics. Each are gernerated by slightly different regression equations and applied constants. Those of most interest in this application are mean annual flow and mean monthly flows projected over the 12 month period. Because it was believed that runoff from the Uncompahgre Plateau did not follow patterns for higher elevation basins in Southwest Colorado several years ago the Bureau of Land Management developed a flow distribution tool that took mean annual basin yield and distributed it by month for basins with flows originating on the Uncompahgre Plateau. Mean Annual flow has a relatively low mean standard error when compared to some of the individual mean monthly flow parameters. This was accomplished by examining historic stream flow records from gaging station sites surrounding the Uncompahgre Plateau. Snowmelt runoff tends to begin and end sooner. Basins tend to be flasher, meaning a larger percentage of the total yield is confined to a few months while base flows tend to be quite small.

Table 2 below displays the estimated mean annual and mean monthly flow of Red Canyon Creek

| drainage area   | 8,448 | acres  | 13.2  | (mi^2)                |
|-----------------|-------|--------|-------|-----------------------|
| Mean annual     |       |        |       |                       |
| precip          | 25.29 | inches | 25.29 | (inches -10 inches)   |
| mean basin elev | 8,609 | ft     | 3.609 | (ft -5,000 ft/1000ft) |
| mean basin      |       |        |       |                       |
| slope           | 0.247 | ft/ft  | 0.247 | (ft/ft)               |

|      |        | Modeled (cfs) | Regression<br>Constant<br>a | b1    | b2    | b3    | b4    | # of<br>stns | mean<br>standard<br>error |
|------|--------|---------------|-----------------------------|-------|-------|-------|-------|--------------|---------------------------|
|      | Annual | 40.0          | 0.705.00                    | 0.000 |       | 4 7 4 |       | 54           |                           |
|      | Iviean | 10.3          | 9.70E-02                    | 0.888 |       | 1.74  |       | 54           | 55                        |
|      |        | r             | r                           |       | r     |       |       | T            |                           |
| Mean | Oct    | 4.8           | 2.84                        | 0.806 |       |       | 1.11  | 54           | 100                       |
|      | Nov    | 3.1           | 1.83                        | 0.815 |       |       | 1.13  | 54           | 87                        |
|      | Dec    | 2.0           | 1.22                        | 0.872 |       |       | 1.26  | 54           | 11                        |
|      | Jan    | 1.5           | 9.33E-01                    | 0.916 |       |       | 1.34  | 54           | 11                        |
|      | Feb    | 1.9           | 6.47E-01                    | 0.913 |       |       | 0.906 | 54           | 11                        |
|      | Mar    | 5.8           | 1.24E-01                    | 0.861 | 0.502 |       |       | 54           | 53                        |
|      | Apr    | 19.4          | 4.22E-02                    | 0.961 | 1.13  |       |       | 54           | 62                        |
|      | May    | 20.5          | 1.00E-01                    | 0.948 |       | 2.24  |       | 54           | 55                        |
|      | Jun    | 14.8          | 3.17E-02                    | 1.010 |       | 2.76  |       | 54           | 98                        |
|      | Jul    | 9.6           | 1.12E+01                    | 0.850 |       |       | 1.68  | 54           | 123                       |
|      | Aug    | 6.2           | 5.13                        | 0.790 |       |       | 1.32  | 54           | 135                       |
|      | Sep    | 4.8           | 3.65                        | 0.811 |       |       | 1.3   | 54           | 142                       |

Using the calculated mean annual flow of 10.3 cfs it was then distributed over the 12 months using the BLM derived distribution model.

Table 3 – Red Canyon Mean Annual Flow distributed over the year

| Mean Annu | al Flow (  | cfs):    | 10.300  |              |
|-----------|------------|----------|---------|--------------|
| Mean Annu | al Yield ( | (AF):    | 7457    |              |
|           |            |          |         |              |
|           | %of        |          |         | Mean Monthly |
|           | flow       | AF/Month | AF/Day  | flow cfs     |
| January   | 0.0032     | 23.867   | 0.770   | 0.389        |
| February  | 0.0065     | 48.480   | 1.672   | 0.844        |
| March     | 0.0100     | 74.584   | 2.406   | 1.215        |
| April     | 0.1470     | 1096.385 | 36.546  | 18.458       |
| May       | 0.5541     | 4131.955 | 133.289 | 67.318       |
| June      | 0.2461     | 1834.767 | 61.159  | 30.888       |
| July      | 0.0130     | 96.959   | 3.128   | 1.580        |
| August    | 0.0050     | 37.292   | 1.203   | 0.608        |
| September | 0.0040     | 29.834   | 0.994   | 0.502        |
| October   | 0.0039     | 29.088   | 0.938   | 0.474        |
| November  | 0.0037     | 27.596   | 0.920   | 0.465        |
| December  | 0.0035     | 26.104   | 0.842   | 0.425        |



There is an obvious difference in how the two methods distribute flows for Red Canyon Creek. The presence of a self sustaining population of cold water fish suggests that there is adequate flow even during low flow conditions to support their spawning, rearing and overwintering needs. The estimate of flow presented in Table 3 is indicative of the flashy hydrograph that is typical of the Uncomcompany Plateau watersheds. However, the extreme disparity between high flow and low flow may be exaggerated. It is reasonable to assume that for the majority of years actual flows are somewhere within the range of what is represented in Chart 1.

Streamflow gaging records are very limited for the area around Red Canyon, in particular for small headwater streams. The USGS did operate a gage on Tabeguache Creek, which is in the near vicinity and also of very similar character, during the period 1946-1953. Records were retrieved from an open file report published in 2003 (USGS Report 02-471).

Table 4 -USGS stream flow records from Tabeguache Creek near Nucla operated 1946-1953 Lat 38°22'08' Long 108°20'42'' Drainage Area: 16.9 mi<sup>2</sup> Elevation: 8,010

| -     | Monthly mean discharge, in cubic feet per second, by water year |      |      |      |      |      |       |        |       |      |      |      |
|-------|-----------------------------------------------------------------|------|------|------|------|------|-------|--------|-------|------|------|------|
| Water | Oct                                                             | Nov  | Dec  | Jan  | Feb  | Mar  | Apr   | May    | June  | July | Aug  | Sept |
| year  |                                                                 |      |      |      |      |      |       |        |       |      |      |      |
| 1946  |                                                                 |      |      |      |      |      | 32.50 | 30.30  | 3.26  | 0.22 | 0.09 | 0.15 |
| 1947  | 0.61                                                            | 0.48 | 0.40 | 0.30 | 0.40 | 0.60 | 21.50 | 38.30  | 4.49  | 0.73 | 0.98 | 0.79 |
| 1948  | 4.40                                                            | 4.50 | 3.20 | 3.80 | 6.00 | 8.00 | 79.80 | 104.60 | 12.30 | 0.27 | 0.08 | 0.04 |
| 1949  | 0.25                                                            | 0.50 | 0.50 | 0.50 | 0.40 | 0.60 | 37.80 | 102.10 | 37.70 | 2.21 | 0.04 | 0.07 |
| 1950  | 0.59                                                            | 0.63 | 0.62 | 0.60 | 0.80 | 1.70 | 78.10 | 63.30  | 10.90 | 0.20 | 0.00 | 0.03 |
| 1951  | 0.39                                                            | 1.01 | 0.29 | 0.30 | 0.30 | 0.40 | 6.16  | 41.40  | 6.23  | 0.03 | 0.12 | 0.00 |
| 1952  | 0.07                                                            | 0.06 | 0.19 | 0.30 | 0.30 | 0.30 | 47.10 | 123.50 | 25.10 | 0.42 | 0.17 | 0.05 |
| 1953  | 0.07                                                            | 0.15 | 0.20 | 0.30 | 0.30 | 1.01 | 9.89  | 31.50  | 7.24  | 0.27 | 0.68 | 0.02 |

| % of Time<br>discharge<br>was<br>equaled or<br>exceeded | Oct.<br>Q | Nov.<br>Q | Dec.<br>Q | Jan<br>Q | Feb<br>Q | March<br>Q | April<br>Q | May<br>Q | June<br>Q | July<br>Q | Aug<br>Q | Sept<br>Q |
|---------------------------------------------------------|-----------|-----------|-----------|----------|----------|------------|------------|----------|-----------|-----------|----------|-----------|
| 100.00                                                  | 0.00      | 0.00      | 0.00      | 0.30     | 0.30     | 0.30       | 0.60       | 7.20     | 0.00      | 0.00      | 0.00     | 0.00      |
| 90.00                                                   | 0.04      | 0.10      | 0.21      | 0.30     | 0.30     | 0.31       | 2.69       | 17.23    | 0.68      | 0.03      | 0.02     | 0.01      |
| 80.00                                                   | 0.09      | 0.11      | 0.21      | 0.30     | 0.30     | 0.40       | 5.60       | 30.70    | 1.78      | 0.06      | 0.04     | 0.03      |
| 70.00                                                   | 0.11      | 0.40      | 0.22      | 0.31     | 0.31     | 0.49       | 9.25       | 38.35    | 2.80      | 0.09      | 0.06     | 0.04      |
| 60.00                                                   | 0.21      | 0.44      | 0.30      | 0.31     | 0.31     | 0.60       | 15.25      | 48.13    | 4.11      | 0.10      | 0.08     | 0.06      |
| 50.00                                                   | 0.31      | 0.47      | 0.42      | 0.31     | 0.41     | 0.61       | 24.07      | 57.77    | 6.04      | 0.20      | 0.09     | 0.07      |
| 40.00                                                   | 0.46      | 0.59      | 0.51      | 0.50     | 0.41     | 0.62       | 32.50      | 69.58    | 8.04      | 0.38      | 0.11     | 0.08      |
| 30.00                                                   | 0.63      | 0.68      | 0.53      | 0.51     | 0.42     | 1.72       | 47.43      | 86.68    | 14.00     | 0.51      | 0.22     | 0.10      |
| 20.00                                                   | 0.78      | 1.25      | 0.60      |          |          | 1.85       | 67.14      | 104.25   | 25.17     | 0.72      | 0.41     | 0.20      |
| 10.00                                                   | 1.79      | 3.71      |           |          |          |            | 110.00     | 134.87   | 44.33     | 1.38      | 0.61     | 0.61      |
| 5.00                                                    | 6.26      | 4.89      |           |          |          |            | 138.38     | 154.67   | 54.14     | 2.85      | 0.91     | 0.91      |
| 1.00                                                    | 8.61      | 6.19      |           |          |          |            | 173.40     | 176.72   |           | 4.91      | 3.56     | 1.56      |

#### Precipitation Data

In order to evaluate the runoff during the period from 1946-1953 precipitation records for Norwood, Colorado for the same time period were retrieved from the Western Regional Climate Center website <a href="http://www.wrcc.dri.edu">http://www.wrcc.dri.edu</a>. This period represented a period that was 10% drier than the long term average (1924-2008). Therefore the mean monthly flows and exceedence table values displayed under Table 4 may under-represent a more accurate long term condition.

#### Table 5: Precipitation Data From Station at Norwood, Colorado

|             | Annual   |
|-------------|----------|
| Year        | (inches) |
|             |          |
| 1946        | 14.78    |
| 1947        | 19.58    |
| 1949        | 14.25    |
| 1950        | 9.84     |
| 1951        | 10.68    |
| 1952        | 14.19    |
| 1953        | 14.42    |
|             |          |
| 7 year mean | 13.96    |
|             |          |
| Long Term   |          |
| Mean        | 15.50    |
| 1924-2008   |          |

### **Existing Water Right Information**

Staff has analyzed the water rights tabulation and consulted with the Division Engineer's Office (DEO) to identify any potential water availability problems. Records indicate that there are no surface water diversions on Red Canyon Creek. A conditional right was awarded on the Red Canyon Ditch in 1974 for 5 cfs That right was abandon by order of the Court in 1983 (83CW43).

### **Relationship to Management Plans**

The Grand Mesa, Uncompany and Gunnison National Forests (GMUG NF) Land and Resource Management Plan provide land management direction for FS lands located in the Red Canyon watershed. Forest Plan direction for Fisheries, Threatened, Endangered, and Sensitive species suggest that land managers should among other things, maintain viable populations of native fish species, improve fish habitat conditions, and cooperate with state agencies to meet minimum flow needs to support fish populations. Additionally, agencies of the Colorado Division of Natural Resources and the Forest Service have signed agreements to assist in the conservation and protection of Colorado River cutthroat trout (CRCT River Cutthroat Trout Task Force 2006), and to work together to solve water issues in Colorado (Colorado DNR/USDA Forest Service MOU on water, 2004).

The Red Canyon stream segment is important to the FS because it is one of only three CRCT populations that currently exist in the San Miguel River. Red Canyon provides important spawning and rearing habitat for a self-sustaining Colorado River cutthroat trout fishery. Additionally, Red Canyon Creek is one of only a few perennial streams in the semi-arid landscape of the Uncompany Plateau. The stream is an important source of water for the lower reaches of Horselfly Creek, since headwater diversions currently divert a significant source of the summer flows for irrigation and small domestic use. Access into Red Canyon is very limited, so fishing pressure, and other land management uses are is minimal, so stream level protection would be an important tool in maintaining aquatic values in this area of the Uncompany Plateau.

The FS requests that the Board recognize that this recommendation is based only upon the minimum flows necessary to support the cold-water fishery values. FS may wish to work with the Board and/or through the Colorado water rights system to appropriate flows to optimally protect fish values and to protect other water-dependent values specified in FS resource management plans.

We thank both the Colorado Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Clay Speas, Fisheries Biologist, at (970) 874-6650 or John Almy, Forest Hydrologist, at (970) 874-6656.

## **Literature Cited**

Capesius, J.P., and Stephens, V.C., 2009, Regional regression equations for estimation of natural streamflow statistics in Colorado: U.S. Geological Survey Scientific Investigations Report 2009–5136, 46 p.

Colorado River Cutthroat Trout Task Force 2006. Conservation Agreement and Strategy for Colorado River cutthroat trout in the states of Colorado Wyoming, and Utah. April 2001, updated June 2006.

Colorado Water Conservation Board 1996. Development of instream flow recommendations in Colorado using R2Cross. By Greg Espegren, Senior Water Resource Specialist. January 1996.

James, C. and C. Speas. 2005. Colorado River cutthroat trout Species and Conservation Assessment. Prepared for the GMUG NF, November 2005.

Kircher, J.E., A.F. Choquette, and B.D. Richter, 1985. Estimation of Natural Streamflow Characteristics in Western Colorado. Water Resources Investigations Report 85-4086, 1985. U.S. Geological Survey, Prepared in Coordination with the Bureua of Land Management.

U.S. Geological Survey, 2003. Streamflow Characteristics for Selected Stations In and Near the Grand Mesa, Uncompanyer, and Gunnison National Forest, Southwestern Colorado. Open file report 02-471



Horsefly Watershed Vicinity Map



# Attachment 2 – Staging Tables from 2007 R2X Data

|      | STREAM NAM    | ΛE:   | Big Red Creek | (               |                 |                  |                   |                  |               |          |           |             |
|------|---------------|-------|---------------|-----------------|-----------------|------------------|-------------------|------------------|---------------|----------|-----------|-------------|
|      | XS LOCATION   | N:    |               |                 |                 |                  |                   |                  |               |          |           | D84 Table   |
|      | XS<br>NUMBER: |       | 1             |                 |                 |                  | Thorne-Zevenbe    | rgen D84 Corre   | ction Applied |          |           | 1-HeyD84    |
|      |               |       |               |                 |                 |                  |                   |                  | #REF!         | 0.58     |           | BathurstD84 |
|      |               |       | *GL* = lowest | Grassline elev  | ation correcte  | ed for sag       |                   |                  |               |          |           | 3-Best Est  |
|      | STAGING TA    | BLE   | *WL* = Waterl | ine corrected f | or variations i | n field measure  | d water surface e | levations and sa | ıg            |          |           | 4-User      |
|      |               |       |               |                 |                 |                  |                   |                  |               | #REF!    |           |             |
|      | DIST TO       | TOP   | AVG.          | MAX.            |                 |                  | PERCENT           | HYDR             |               | AVG.     | Bath      | Неу         |
|      | WATER         | WIDTH | DEPTH         | DEPTH           | AREA            | VETTED<br>PERIM. | WET PERIM         | RADIUS           | FLOW          | VELOCITY | VELOCITY  | VELOCITY    |
|      | (FT)          | (FT)  | (FT)          | (FT)            | (SQ FT)         | (FT)             | (%)               | (FT)             | (CFS)         | (FT/SEC) | (FT/SEC)  | (FT/SEC)    |
|      |               | 0     | #DIV/0!       | 0               | 0               | 0                | #DIV/0!           | #DIV/0!          | #REF!         | #REF!    | #REF!     | #REF!       |
| *GL* | #REF!         | 8.91  | 0.69          | 1.27            | 6.12            | 9.75             | 100.0%            | 0.63             | 19.40         | 3.17     | 4.9976012 | 3.169497868 |
|      | 0.00          | 9.76  | 0.97          | 1.63            | 9.46            | 10.94            | 112.2%            | 0.86             | 42.38         | 4.48     | 9.8408998 | 4.479672095 |
|      | 0.00          | 9.62  | 0.93          | 1.58            | 8.98            | 10.76            | 110.4%            | 0.83             | 38.72         | 4.31     | 9.111514  | 4.313694003 |
|      | 0.00          | 9.50  | 0.89          | 1.53            | 8.50            | 10.60            | 108.7%            | 0.80             | 35.17         | 4.14     | 8.3607547 | 4.13836353  |
|      | 0.00          | 9.39  | 0.86          | 1.48            | 8.03            | 10.43            | 107.0%            | 0.77             | 31.78         | 3.96     | 7.6419455 | 3.959357581 |
|      | 0.00          | 9.27  | 0.82          | 1.43            | 7.56            | 10.27            | 105.3%            | 0.74             | 28.55         | 3.78     | 6.9553405 | 3.776468157 |
|      | 0.00          | 9.16  | 0.78          | 1.38            | 7.10            | 10.11            | 103.6%            | 0.70             | 25.48         | 3.59     | 6.3011817 | 3.589469506 |
|      | 0.00          | 9.04  | 0.73          | 1.33            | 6.64            | 9.94             | 102.0%            | 0.67             | 22.58         | 3.40     | 5.679696  | 3.398116086 |
|      | 0.00          | 8.93  | 0.69          | 1.28            | 6.19            | 9.78             | 100.3%            | 0.63             | 19.84         | 3.20     | 5.0910915 | 3.20214023  |
|      | 0.00          | 7.80  | 0.74          | 1.23            | 5.77            | 8.59             | 88.1%             | 0.67             | 19.41         | 3.36     | 6.0622226 | 3.361956473 |
|      | 0.00          | 7.43  | 0.73          | 1.18            | 5.39            | 8.20             | 84.1%             | 0.66             | 17.58         | 3.26     | 5.8695046 | 3.260754785 |
|      | 0.00          | 7.07  | 0.71          | 1.13            | 5.03            | 7.82             | 80.2%             | 0.64             | 15.91         | 3.16     | 5.6949867 | 3.162657214 |
|      | 0.00          | 6.71  | 0.70          | 1.08            | 4.69            | 7.44             | 76.3%             | 0.63             | 14.38         | 3.07     | 5.5409213 | 3.068240351 |
|      | 0.00          | 6.34  | 0.69          | 1.03            | 4.36            | 7.05             | 72.3%             | 0.62             | 12.98         | 2.98     | 5.410238  | 2.978198738 |
|      | 0.00          | 5.99  | 0.68          | 0.98            | 4.05            | 6.68             | 68.5%             | 0.61             | 11.71         | 2.89     | 5.2902599 | 2.889931374 |
|      | 0.00          | 5.86  | 0.64          | 0.93            | 3.75            | 6.51             | 66.8%             | 0.58             | 17.84         | 4.75     | 4.7520772 | 2.709358165 |
|      | 0.00          | 5.73  | 0.60          | 0.88            | 3.47            | 6.35             | 65.1%             | 0.55             | 14.69         | 4.24     | 4.2406657 | 2.524242167 |
|      | 0.00          | 5.60  | 0.57          | 0.83            | 3.18            | 6.19             | 63.5%             | 0.51             | 11.95         | 3.76     | 3.7564687 | 2.334242503 |

| 0.00 | 5.47 | 0.53              | 0.78 | 2.91 | 6.02 | 61.8%              | 0.48 | 9.59              | 3.30              | 3.2999486 | 2.138985123  |
|------|------|-------------------|------|------|------|--------------------|------|-------------------|-------------------|-----------|--------------|
| 0.00 | 5.34 | 0.49              | 0.73 | 2.63 | 5.86 | 60.1%              | 0.45 | 7.57              | 2.87              | 2.871584  | 1.938060931  |
| 0.00 | 5.21 | 0.45              | 0.68 | 2.37 | 5.70 | 58.4%              | 0.42 | 5.86              | 2.47              | 2.4718659 | 1.731025448  |
| 0.00 | 5.08 | 0.42              | 0.63 | 2.11 | 5.53 | 56.7%              | 0.38 | 4.44              | 2.10              | 2.1020267 | 1.517726309  |
| 0.00 | 4.93 | 0.38              | 0.58 | 1.86 | 5.35 | 54.8%              | 0.35 | 3.31              | 1.78              | 1.7754372 | 1.304498114  |
| 0.00 | 4.78 | 0.34              | 0.53 | 1.62 | 5.16 | 53.0%              | 0.31 | 2.39              | 1.48              | 1.4750868 | 1.084030592  |
| 0.00 | 4.62 | 0.30              | 0.48 | 1.39 | 4.98 | <mark>51.1%</mark> | 0.28 | <mark>1.67</mark> | <mark>1.20</mark> | 1.2016565 | 0.855811426  |
| 0.00 | 4.47 | 0.26              | 0.43 | 1.16 | 4.79 | <mark>49.2%</mark> | 0.24 | <mark>1.11</mark> | <mark>0.96</mark> | 0.9558619 | 0.619437688  |
| 0.00 | 4.26 | <mark>0.22</mark> | 0.38 | 0.94 | 4.56 | 46.7%              | 0.21 | <mark>0.70</mark> | 0.75              | 0.7495433 | 0.387336032  |
| 0.00 | 3.90 | <mark>0.19</mark> | 0.33 | 0.74 | 4.19 | 42.9%              | 0.18 | <mark>0.44</mark> | 0.59              | 0.5911644 | 0.180555004  |
| 0.00 | 3.70 | 0.15              | 0.28 | 0.55 | 3.96 | 40.6%              | 0.14 | 0.23              | 0.43              | 0.4303392 | -0.063533295 |
| 0.00 | 3.51 | 0.10              | 0.23 | 0.37 | 3.74 | 38.4%              | 0.10 | 0.11              | 0.30              | 0.296695  | -0.31025174  |
| 0.00 | 2.62 | 0.08              | 0.18 | 0.21 | 2.82 | 28.9%              | 0.07 | 0.04              | 0.20              | 0.2025164 | -0.467997414 |
| 0.00 | 1.78 | 0.06              | 0.13 | 0.10 | 1.91 | 19.6%              | 0.05 | 0.01              | 0.12              | 0.1206427 | -0.61240716  |
| 0.00 | 0.77 | 0.04              | 0.08 | 0.03 | 0.82 | 8.4%               | 0.04 | 0.00              | 0.05              | 0.0479683 | -0.720947973 |
| 0.00 | 0.25 | 0.01              | 0.03 | 0.00 | 0.27 | 2.7%               | 0.01 | 0.00              | 0.01              | 0.0084598 | -0.73758716  |

|     | STREAM NAM   | ИЕ:<br>N: | Red<br>Canyon<br>0 |                 |                 |                  |                 |                   |                |          |           | D84 Table       |
|-----|--------------|-----------|--------------------|-----------------|-----------------|------------------|-----------------|-------------------|----------------|----------|-----------|-----------------|
|     | XS<br>NUMBER |           | 2                  |                 |                 |                  | Thorne-Zeve     | nbergen D84 Co    | prrection Appl | lied     |           | 1-HeyD84        |
|     | NOMBER.      |           |                    |                 |                 |                  |                 |                   | #REF!          | 0.58     |           | BathurstD8      |
|     |              |           | *GL* = lowest      | Grassline elev  | ation correcte  | ed for sag       |                 |                   |                |          |           | 4<br>3-Best Est |
|     | STAGING TAE  | BLE       | *WL* = Waterl      | ine corrected f | or variations i | in field measur  | ed water surfac | ce elevations and | dsag           |          |           | 4-User          |
|     |              |           |                    |                 |                 |                  |                 |                   |                | #REF!    |           |                 |
|     | DIST TO      | ТОР       | AVG.               | MAX.            |                 |                  |                 | HYDR              |                | AVG.     | Bath      | Hev             |
|     | WATER        | WIDTH     | DEPTH              | DEPTH           | AREA            | WETTED<br>PERIM. | PERCENT<br>WET  |                   | FLOW           | -        | VELOCITY  | VELOCITY        |
|     |              |           |                    |                 |                 |                  | PERIM           | RADIUS            |                | VELOCITY |           |                 |
|     | (1 1)        | (11)      | (11)               | (11)            | (0011)          | (11)             | (70)            | (1 1)             | (010)          | (FT/SEC) |           | (11/620)        |
|     |              |           |                    |                 |                 |                  |                 |                   |                |          |           |                 |
| GL* | #REF!        | 5.64      | 1.05               | 1.50            | 5.92            | 7.63             | 100.0%          | 0.78              | 26.96          | 4.55     | 11.85025  | 4.551183        |
|     | 0.00         | 10.61     | 0.92               | 1.94            | 9.76            | 13.29            | 174.2%          | 0.73              | 44.28          | 4.54     | 7.8228704 | 4.5383487       |
|     | 0.00         | 10.51     | 0.88               | 1.89            | 9.23            | 13.06            | 171.1%          | 0.71              | 40.28          | 4.36     | 7.2074595 | 4.3643932       |
|     | 0.00         | 10.10     | 0.86               | 1.84            | 8.71            | 12.59            | 164.9%          | 0.69              | 37.11          | 4.26     | 6.9974033 | 4.2593817       |
|     | 0.00         | 9.63      | 0.85               | 1.79            | 8.22            | 12.07            | 158.2%          | 0.68              | 34.30          | 4.17     | 6.8843834 | 4.1728391       |
|     | 0.00         | 9.09      | 0.85               | 1.74            | 7.75            | 11.47            | 150.2%          | 0.68              | 31.95          | 4.12     | 6.9331262 | 4.122605        |
|     | 0.00         | 8.51      | 0.86               | 1.69            | 7.31            | 10.81            | 141.6%          | 0.68              | 29.99          | 4.10     | 7.1243666 | 4.102177        |
|     | 0.00         | 7.93      | 0.87               | 1.64            | 6.90            | 10.15            | 132.9%          | 0.68              | 28.27          | 4.10     | 7.40714   | 4.0974247       |
|     | 0.00         | 7.35      | 0.89               | 1.59            | 6.52            | 9.49             | 124.3%          | 0.69              | 26.80          | 4.11     | 7.8131804 | 4.1114743       |
|     | 0.00         | 6.78      | 0.91               | 1.54            | 6.16            | 8.83             | 115.6%          | 0.70              | 25.57          | 4.15     | 8.3905491 | 4.1482938       |
|     | 0.00         | 5.59      | 1.05               | 1.49            | 5.86            | 7.56             | 99.1%           | 0.77              | 26.57          | 4.54     | 11.826638 | 4.5357344       |
|     | 0.00         | 5.38      | 1.04               | 1.44            | 5.58            | 7.27             | 95.2%           | 0.77              | 24.97          | 4.47     | 11.74791  | 4.4723556       |
|     | 0.00         | 5.18      | 1.03               | 1.39            | 5.32            | 6.97             | 91.4%           | 0.76              | 23.48          | 4.41     | 11.707936 | 4.4130918       |
|     | 0.00         | 4.97      | 1.02               | 1.34            | 5.07            | 6.68             | 87.5%           | 0.76              | 22.08          | 4.36     | 11.712642 | 4.3585101       |
|     | 0.00         | 4.85      | 0.99               | 1.29            | 4.82            | 6.49             | 85.0%           | 0.74              | 20.46          | 4.24     | 11.203578 | 4.2435249       |
|     | 0.00         | 4.77      | 0.96               | 1.24            | 4.58            | 6.36             | 83.3%           | 0.72              | 18.73          | 4.09     | 10.401733 | 4.0894127       |
|     | 0.00         | 4.70      | 0.92               | 1.19            | 4.34            | 6.23             | 81.6%           | 0.70              | 17.08          | 3.93     | 9.6270875 | 3.9322107       |
|     | 0.00         | 4.62      | 0.89               | 1.14            | 4.11            | 6.10             | 79.9%           | 0.67              | 15.50          | 3.77     | 8.8799103 | 3.7717257       |
|     | 0.00         | 4.54      | 0.85               | 1.09            | 3.88            | 5.97             | 78.2%           | 0.65              | 14.00          | 3.61     | 8.1604878 | 3.6077472       |
|     | 0.00         | 4.47      | 0.82               | 1.04            | 3.66            | 5.84             | 76.5%           | 0.63              | 12.58          | 3.44     | 7.4691247 | 3.4400449       |
|     | 0.00         | 4.39      | 0.78               | 0.99            | 3.44            | 5.70             | 74.7%           | 0.60              | 11.23          | 3.27     | 6.806144  | 3.2683669       |
| NL* | 0.00         | 4.31      | 0.75               | 0.94            | 3.22            | 5.57             | 73.0%           | 0.58              | 19.86          | 6.17     | 6.1718873 | 3.0924368       |
|     |              |           |                    |                 |                 |                  |                 |                   |                |          |           |                 |

| 0.00 | 4.27 | 0.70              | 0.89 | 3.00 | 5.46 | 71.6%              | 0.55 | 16.50             | 5.49              | 5.4939062 | 2.899665   |
|------|------|-------------------|------|------|------|--------------------|------|-------------------|-------------------|-----------|------------|
| 0.00 | 4.24 | 0.66              | 0.84 | 2.79 | 5.36 | 70.2%              | 0.52 | 13.51             | 4.84              | 4.842471  | 2.6979742  |
| 0.00 | 4.21 | 0.61              | 0.79 | 2.58 | 5.25 | 68.8%              | 0.49 | 10.92             | 4.23              | 4.233276  | 2.4892     |
| 0.00 | 4.18 | 0.57              | 0.74 | 2.37 | 5.15 | 67.4%              | 0.46 | 8.69              | 3.67              | 3.6665563 | 2.2728563  |
| 0.00 | 4.15 | 0.52              | 0.69 | 2.16 | 5.04 | 66.0%              | 0.43 | 6.79              | 3.14              | 3.1424766 | 2.0484208  |
| 0.00 | 4.12 | 0.47              | 0.64 | 1.95 | 4.93 | 64.6%              | 0.40 | 5.20              | 2.66              | 2.6611182 | 1.8153385  |
| 0.00 | 4.08 | 0.43              | 0.59 | 1.75 | 4.83 | 63.3%              | 0.36 | 3.89              | 2.22              | 2.2224646 | 1.5730311  |
| 0.00 | 4.05 | 0.38              | 0.54 | 1.55 | 4.72 | 61.9%              | 0.33 | 2.82              | 1.83              | 1.8263871 | 1.3209192  |
| 0.00 | 3.82 | 0.35              | 0.49 | 1.35 | 4.42 | 57.8%              | 0.31 | 2.17              | 1.61              | 1.6067236 | 1.1406598  |
| 0.00 | 3.78 | 0.31              | 0.44 | 1.16 | 4.31 | 56.4%              | 0.27 | <mark>1.48</mark> | <mark>1.28</mark> | 1.279102  | 0.8740945  |
| 0.00 | 3.75 | 0.26              | 0.39 | 0.97 | 4.20 | 55.0%              | 0.23 | 0.96              | <mark>0.99</mark> | 0.9923335 | 0.5964847  |
| 0.00 | 3.71 | <mark>0.21</mark> | 0.34 | 0.78 | 4.09 | <mark>53.6%</mark> | 0.19 | <mark>0.58</mark> | 0.75              | 0.7460651 | 0.3081914  |
| 0.00 | 3.46 | <mark>0.17</mark> | 0.29 | 0.60 | 3.76 | <mark>49.3%</mark> | 0.16 | <mark>0.35</mark> | 0.58              | 0.5754238 | 0.0648939  |
| 0.00 | 2.80 | 0.16              | 0.24 | 0.45 | 3.01 | 39.5%              | 0.15 | 0.23              | 0.50              | 0.4999795 | -0.0628545 |
| 0.00 | 2.57 | 0.12              | 0.19 | 0.32 | 2.70 | 35.4%              | 0.12 | 0.11              | 0.36              | 0.3598487 | -0.314946  |
| 0.00 | 2.18 | 0.09              | 0.14 | 0.20 | 2.26 | 29.6%              | 0.09 | 0.05              | 0.25              | 0.2453995 | -0.5477236 |
| 0.00 | 1.97 | 0.05              | 0.09 | 0.09 | 2.02 | 26.4%              | 0.05 | 0.01              | 0.15              | 0.1453327 | -0.7869211 |
| 0.00 | 0.94 | 0.02              | 0.04 | 0.02 | 0.96 | 12.6%              | 0.02 | 0.00              | 0.06              | 0.056327  | -0.8620204 |

|      | STREAM NAM                | IE:   | Big Red Creek |                 |                 |                  |                 |                   |               |          |           |                 |
|------|---------------------------|-------|---------------|-----------------|-----------------|------------------|-----------------|-------------------|---------------|----------|-----------|-----------------|
|      | XS LOCATION               | l:    | 0             |                 |                 |                  |                 |                   |               |          |           | D84 Table       |
|      | XS<br>NUMBER <sup>.</sup> |       | 3             |                 |                 |                  | Thorne-Zeve     | enbergen D84 Co   | prrection App | lied     |           | 1-HeyD84        |
|      | NOMBER.                   |       |               |                 |                 |                  |                 |                   | #REF!         | 0.58     |           | BathurstD8      |
|      |                           |       | *GL* = lowest | Grassline elev  | ation correcte  | ed for sag       |                 |                   |               |          |           | 4<br>3-Best Est |
|      | STAGING TAE               | BLE   | *WL* = Water  | ine corrected f | or variations i | n field measur   | ed water surfac | ce elevations and | d sag         |          |           | 4-User          |
|      |                           |       |               |                 |                 |                  |                 |                   | -             | #REF!    |           |                 |
|      | DIST TO                   | TOP   | AVG.          | MAX.            |                 |                  |                 | HYDR              |               | AVG.     | Bath      | Hey             |
|      | WATER                     | WIDTH | DEPTH         | DEPTH           | AREA            | VETTED<br>PERIM. | WET             |                   | FLOW          |          | VELOCITY  | VELOCITY        |
|      | (FT)                      | (FT)  | (FT)          | (FT)            | (SQ FT)         | (FT)             | (%)             | (FT)              | (CFS)         | (FT/SEC) | (FT/SEC)  | (FT/SEC)        |
|      |                           |       |               |                 |                 |                  |                 |                   |               | (        |           |                 |
|      |                           |       |               |                 |                 |                  |                 |                   |               |          |           |                 |
| *GL* | #REF!                     | 9.40  | 0.53          | 1.04            | 4.96            | 10.12            | 100.0%          | 0.49              | 17.14         | 3.46     | 3.4554276 | 2.6912772       |
|      | 0.00                      | 10.70 | 1.01          | 1.62            | 10.76           | 11.98            | 118.3%          | 0.90              | 56.96         | 5.30     | 11.775318 | 5.2961482       |
|      | 0.00                      | 10.56 | 0.97          | 1.57            | 10.22           | 11.79            | 116.5%          | 0.87              | 52.19         | 5.11     | 10.919497 | 5.1050312       |
|      | 0.00                      | 10.42 | 0.93          | 1.52            | 9.70            | 11.60            | 114.6%          | 0.84              | 47.63         | 4.91     | 10.094053 | 4.9103749       |
|      | 0.00                      | 10.30 | 0.89          | 1.47            | 9.18            | 11.44            | 113.0%          | 0.80              | 43.19         | 4.70     | 9.250807  | 4.704092        |
|      | 0.00                      | 10.19 | 0.85          | 1.42            | 8.67            | 11.28            | 111.5%          | 0.77              | 38.92         | 4.49     | 8.4183357 | 4.4888876       |
|      | 0.00                      | 10.09 | 0.81          | 1.37            | 8.16            | 11.13            | 110.0%          | 0.73              | 34.85         | 4.27     | 7.6272192 | 4.2691107       |
|      | 0.00                      | 9.98  | 0.77          | 1.32            | 7.66            | 10.98            | 108.4%          | 0.70              | 30.98         | 4.04     | 6.8774838 | 4.044512        |
|      | 0.00                      | 9.88  | 0.73          | 1.27            | 7.16            | 10.82            | 106.9%          | 0.66              | 27.33         | 3.81     | 6.1691194 | 3.8148214       |
|      | 0.00                      | 9.77  | 0.68          | 1.22            | 6.67            | 10.67            | 105.4%          | 0.63              | 23.89         | 3.58     | 5.5020752 | 3.5797458       |
|      | 0.00                      | 9.67  | 0.64          | 1.17            | 6.19            | 10.52            | 103.9%          | 0.59              | 20.66         | 3.34     | 4.8762555 | 3.3389667       |
|      | 0.00                      | 9.56  | 0.60          | 1.12            | 5.71            | 10.36            | 102.4%          | 0.55              | 24.49         | 4.29     | 4.291514  | 3.0921377       |
|      | 0.00                      | 9.46  | 0.55          | 1.07            | 5.23            | 10.21            | 100.9%          | 0.51              | 19.60         | 3.75     | 3.74765   | 2.838881        |
|      | 0.00                      | 9.09  | 0.52          | 1.02            | 4.76            | 9.81             | 96.9%           | 0.49              | 16.30         | 3.42     | 3.4232977 | 2.6506463       |
|      | 0.00                      | 8.36  | 0.52          | 0.97            | 4.33            | 9.07             | 89.6%           | 0.48              | 14.58         | 3.37     | 3.3701018 | 2.5646592       |
|      | 0.00                      | 7.64  | 0.51          | 0.92            | 3.93            | 8.34             | 82.4%           | 0.47              | 13.17         | 3.36     | 3.3552484 | 2.4935076       |
|      | 0.00                      | 7.13  | 0.50          | 0.87            | 3.56            | 7.82             | 77.2%           | 0.46              | 11.36         | 3.19     | 3.1922181 | 2.366221        |
|      | 0.00                      | 6.76  | 0.47          | 0.82            | 3.21            | 7.42             | 73.3%           | 0.43              | 9.41          | 2.93     | 2.9301666 | 2.197516        |
|      | 0.00                      | 6.40  | 0.45          | 0.77            | 2.88            | 7.03             | 69.4%           | 0.41              | 7.70          | 2.67     | 2.6725673 | 2.0250535       |
|      | 0.00                      | 6.29  | 0.41          | 0.72            | 2.57            | 6.88             | 67.9%           | 0.37              | 5.77          | 2.25     | 2.2508199 | 1.7650395       |
|      | 0.00                      | 6.18  | 0.36          | 0.67            | 2.25            | 6.73             | 66.5%           | 0.33              | 4.21          | 1.87     | 1.8679226 | 1.4968548       |

| 0.00 | 6.04 | 0.32 | 0.62              | 1.95 | 6.54 | 64.6%              | 0.30 | 2.99              | 1.54              | 1.5378571 | 1.2302773  |
|------|------|------|-------------------|------|------|--------------------|------|-------------------|-------------------|-----------|------------|
| 0.00 | 5.76 | 0.29 | 0.57              | 1.65 | 6.23 | 61.6%              | 0.27 | 2.12              | 1.28              | 1.2815321 | 0.9895614  |
| 0.00 | 5.31 | 0.26 | 0.52              | 1.37 | 5.72 | 56.5%              | 0.24 | <mark>1.51</mark> | <mark>1.10</mark> | 1.1012401 | 0.7947253  |
| 0.00 | 4.81 | 0.23 | 0.47              | 1.12 | 5.16 | <mark>51.0%</mark> | 0.22 | 1.06              | <mark>0.94</mark> | 0.9419128 | 0.6078414  |
| 0.00 | 4.34 | 0.21 | 0.42              | 0.89 | 4.62 | <mark>45.7%</mark> | 0.19 | <mark>0.70</mark> | 0.79              | 0.7863252 | 0.4118366  |
| 0.00 | 4.11 | 0.17 | 0.37              | 0.68 | 4.36 | 43.0%              | 0.16 | 0.40              | 0.59              | 0.5924625 | 0.1417872  |
| 0.00 | 3.12 | 0.16 | 0.32              | 0.50 | 3.33 | 32.9%              | 0.15 | 0.26              | 0.51              | 0.5140291 | 0.0409005  |
| 0.00 | 2.65 | 0.13 | 0.27              | 0.36 | 2.84 | 28.0%              | 0.13 | 0.14              | 0.39              | 0.3930452 | -0.1524874 |
| 0.00 | 2.36 | 0.10 | <mark>0.22</mark> | 0.23 | 2.53 | 25.0%              | 0.09 | 0.06              | 0.26              | 0.262085  | -0.4009053 |
| 0.00 | 1.50 | 0.09 | <mark>0.17</mark> | 0.14 | 1.64 | 16.2%              | 0.08 | 0.03              | 0.19              | 0.1865848 | -0.5136597 |
| 0.00 | 1.18 | 0.05 | 0.12              | 0.06 | 1.28 | 12.6%              | 0.05 | 0.01              | 0.10              | 0.0992914 | -0.7205663 |
| 0.00 | 0.53 | 0.03 | 0.07              | 0.02 | 0.58 | 5.7%               | 0.03 | 0.00              | 0.03              | 0.0333518 | -0.8410347 |
| 0.00 | 0.14 | 0.01 | 0.02              | 0.00 | 0.15 | 1.5%               | 0.01 | 0.00              | 0.00              | 0.0040501 | -0.824781  |