Stream: Henson Creek

Executive Summary

Water Division: 4 Water District: 62 CDOW#: 40612 CWCB ID: 09/4/A-007

Segment: Confluence with the North Fork of Henson Creek to the Confluence with Nellie Creek

Upper Terminus: CONFLUNCE WITH THE NORTH FORK OF HENSON CREEK (Latitude 38° 0' 25.1"N) (Longitude 107° 27' 32.6"W)

Lower Terminus: CONFLUENCE WITH NELLIE CREEK (Latitude 38° 1' 13.3"N) (Longitude 107° 24' 4.0"W)

Watershed: Upper Gunnison (HUC#: 14020002) Counties: Hinsdale Length: 3.4 miles USGS Quad(s): Uncompany Peak Existing ISF: 4-82CW386, 12 cfs Flow Recommendation (increase): 11 cfs (April 1 to October 31)

Staff Analysis and Recommendation

Summary

The information contained in this report and the associated instream flow file folder forms the basis for staff's instream flow recommendation to be considered by the Board. It is staff's opinion that the information contained in this report is sufficient to support the findings required in Rule 5.40.

Colorado's Instream Flow Program was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (see 37-92-102 (3) C.R.S.). The statute vests the CWCB with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's Instream Flow Program, the statute directs the CWCB to request instream flow recommendations from other state and federal agencies. The Bureau of Land Management (BLM) and the Colorado Division of Wildlife (CDOW) recommended this segment of Henson Creek to the CWCB for an increased water right under the Instream Flow Program. Henson Creek is being considered for an increase because it has a natural environment that can be preserved to a reasonable degree with an increased instream flow water right.

Henson Creek is approximately18 miles long. It begins on the south flank of Wildhorse Peak at an elevation of approximately 12,260 feet and terminates at the confluence with Lake Fork Gunnison River at an elevation of approximately 8,660 feet. Approximately 79% of the land on the 3.4-mile segment addressed by this report is publicly owned. The total drainage area of the creek is approximately 52.3 square miles. Henson Creek is located within Hinsdale County and generally flows in a northeasterly direction.

The subject of this report is a segment of Henson Creek beginning at the confluence with the North Fork of Henson Creek to the confluence with Nellie Creek. The proposed segment is located approximately 4.5 miles west of Lake City. The staff has received only one recommendation for this segment, from the BLM. The recommendation for this segment is discussed below.

Justification for Instream Flow Increase

The BLM was prompted to re-examine the instream flow on Henson Creek because of the BLM water quality management objectives in the Henson Creek and Lake Fork watersheds. Both of these stream systems are affected by historic mining activities, and the BLM has begun to initiate projects to treat and minimize acid mine runoff and heavy metals contamination. Within these watersheds, streams that are presently able to support fish are extraordinarily valuable for the habitat they provide and for their ability to dilute runoff originating in more contaminated parts of the watershed. Finally, this creek is located along the very heavily used Alpine Loop Backcountry Byway. Users of the byway seek opportunities to fish and camp along the uncontaminated streams within these watersheds.

The BLM's cross section analysis revealed that the current instream flow rate is not fully protective for several reasons. First, in locations where the stream widens out and is capable of

providing significant riffle and physical habitat, the current 11.0 cfs water right provides an average depth of only 0.25 feet. The BLM believes this is insufficient depth for a channel that averages 40 feet in diameter, because a significant percentage of the usable habitat is lost or only barely deep enough for fish passage. The BLM also notes that protecting the flows necessary to meet with the depth criteria would provide wetted perimeter in the range of 80 to 90 percent. In a watershed where water quality issues already stress fish populations, the BLM believes that the population should not also be limited by physical habitat availability. The BLM's conclusion is that it is prudent to protect a higher flow rate that is capable of supporting a larger fish population.

The BLM also believes that this reach of Henson Creek is an important fish source for the repopulation of lower reaches of Henson Creek. The BLM is undertaking a major effort to reclaim the Ute-Ulay Mine located approximately 1.5 miles downstream. As water quality improves in this section, it is anticipated that fish from this reach will move into the improved habitat. The lower reaches of Henson Creek near Lake City cannot serve as a repopulation source for the Henson Creek near the Ute-Ulay Mine. Treasure Falls, located downstream from the Ute-Ulay mine, is a natural barrier that prevents fish from moving from upstream into the reach where the mine is located.

Instream Flow Recommendation(s)

The BLM recommended an increase of 11 cfs (April 1 to October 31), based on its October 9, 2007 data collection efforts. The modeling results from this survey effort are within the confidence interval produced by the R2Cross model.

Land Status Review

		Total Length	Land Ownership	
Upper Terminus	Lower Terminus	(miles)	% Private	% Public
Confl. w/ North Fork	Confl. w/	2.4	210/	700/
Henson Creek	Nellie Creek	5.4	21%	79%

100% of the public lands are owned by the BLM.

Biological Data

Overall, this portion of Henson Creek is a high gradient stream with large substrate size. In the upper portion of the reach, the canyon is sufficiently wide to allow the creek to have a well developed floodplain and wide willow riparian zone. In the lower portion of the reach, the creek is confined by a narrow canyon. Here, the bedrock restricts channel and riparian formation, but the creek has multiple pools and runs that provide excellent fish habitat. The creek supports a healthy and diverse aquatic insect community, including caddisfly, stonefly, and mayfly. Fishery surveys indicate that the creek supports a self-sustaining population brook trout of various sizes and age classes.

Field Survey Data

BLM staff used the R2Cross methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. The R2Cross method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should streamflow cease. This type of hydraulic data collection consists of setting up a transect, surveying the stream channel geometry, and measuring the stream discharge.

Biological Flow Recommendation

The CWCB staff relied upon the biological expertise of the cooperating agencies to interpret output from the R2Cross data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

For this segment of stream, two data sets were collected with the results shown in Table 1 below. Table 1 shows who collected the data (Party), the date the data was collected (Date), the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's Equation (240% and 40% of Q), the summer flow recommendation based on meeting 3 of 3 hydraulic criteria and the winter flow recommendation based upon 2 of 3 hydraulic criteria. It is believed that recommendations that fall outside of the accuracy range of the model, over 250% of the measured discharge or under 40% of the measured discharge may not give an accurate estimate of the necessary instream flow required.

Table 1. Data	1				
Party	Date	Q	250%-40%	Summer (3/3)	Winter (2/3)
BLM	10/9/2007	33.4	83.5 - 13.4	18.86	Out of range
BLM	10/9/2007	31.71	79.3 – 12.7	27.49	Out of range

Table 1: Data

BLM = Bureau of Land Management

The summer flow, which meets 3 of 3 criteria and is within the accuracy range of the R2CROSS model is 23 cfs. This recommendation was derived by averaging the results of the two data sets. The recommended flow of 11 cfs, when added to the existing flow of 12 cfs is equal to 23 cfs.

Hydrologic Data and Analysis

After receiving the cooperating agency's biologic recommendation, the CWCB staff conducted an evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation. This evaluation was done through a computation that is, in essence, a "water balance". In concept a "water balance" computation can be viewed as an accounting exercise. When done in its most rigorous form, the water balance parses precipitation into all the avenues water pursues after it is deposited as rain, snow, or ice. In other words, given a specified amount of water deposition (input), the balance tries to account for all water depletions (losses) until a selected end point is reached. Water losses include depletions due to evaporation and transpiration, deliveries into ground water storage, temporary surface storage, incorporations into plant and animal tissue and so forth. These losses are individually or collectively subtracted from the input to reveal the net amount of stream runoff as represented by the discharge measured by stream gages. Of course, the measured stream flow need not be the end point of interest; indeed, when looking at issues of water use to extinction stream flow measurements may only describe intermediate steps in the complex accounting process that is a water balance carried out to a net value of zero.

In its analysis, CWCB staff has attempted to use this idea of balancing inputs and losses to determine if water is available for the recommended Instream Flow Appropriation. Of course, this analysis must be a practical exercise rather than a lengthy, and costly, scientific investigation. As a result, staff has simplified the process by lumping together some variables and employing certain rational and scientifically supportable assumptions. The process may be described through the following description of the steps used to complete the evaluation for this particular stream.

The first step required in determining water availability is a determination of the hydrologic regime at the Lower Terminus (LT) of the recommended ISF reach. In the best case this means looking at the data from a gage at the LT. Further, this data, in the best case, has been collected for a long period of time (the longer the better) including wet and dry periods. In the case of Henson Creek no such gage is available at or above the LT. For a short period during the 1930's, there was a gage on the lowest reach of Henson Creek but it is of little value because of its short life and antiquity. It is thus necessary to describe the normal flow regime at Henson Creek above the LT through a "representative" gage station. The gage station selected for this purpose was MINERAL CREEK ABOVE SILVERTON, CO. (USGS 09358900), a gage with a 7 year period of record (POR) collected between 1968 and 1975. The gage is at an elevation of 9,980 ft above mean sea level (amsl) and has a drainage area of 11.0 mi². The hydrograph (plot of discharge over time) produced from this gage includes the effects of two upstream transbasin diversions. These diversions were 100% consumptive to the basin because of their transbasin character. To make the measured data from Mineral Creek transferrable to Henson Creek above the LT, these diversions were added back to the measured Mineral Creek hydrograph. The resulting "adjusted" hydrograph could then be used on Henson Creek above the LT by multiplying the "adjusted" hydrograph by an area ratio; specifically, the area of Henson Creek above the LT (52.36 mi² above the LT) to Mineral Creek above Silverton, CO (11.0 mi² above In this instance, due to the absence of existing significant upstream consumptive the gage). irrigation uses or transbasin diversions on Henson Creek above the LT, the resulting proportioned "adjusted" hydrograph was not further "adjusted" (decreased). Nevertheless, the final hydrograph represents the existing distribution of flow over time.

{The Following discussion is based upon the US Geological Survey's *Techniques of Water-Resources Investigations* Series, *Book 4: Hydrologic Analysis and Interpretation, Chapter A3: Statistical Methods in Water Resources* (Chapter 3: Describing Uncertainty) by D.R. Helsel and R. M. Hirsch. This technical reference provides the scientific background and guidance important to the systematic interpretation of hydrologic data. The document is available online and is a valuable aid to understanding and interpreting the analyses described here.}

The next step in producing a representation of the discharge at Henson Creek above the LT was to compute the Geometric Mean of the area-prorated "adjusted" data values from the Mineral Creek above Silverton, CO Hydrograph. This step is of value because of the inherent statistical weaknesses found in any collection of data intended to measure natural stream discharge. Without getting into the details of statistical theory, it is worth noting that a set of discharge measurements is inherently inaccurate, no matter how well collected, due to the difficulties attendant to data collection, especially hydrologic data. In this particular case, the short period of record lends even greater merit to the use of this statistical tool. To give deference to this fact and to increase the value of the hydrograph product of this analysis, the Geometric Means of the data were computed and plotted along with the 95% Confidence Intervals about the data. The resultant hydrograph, including recommended Instream Flow values, is displayed in figure 1 with an enlargement displayed in figure 2. The data displayed in this hydrograph follow in Table 1.

Fig. 1. Geometric Mean Daily Q Henson Cr abv LT (prop on Mineral Cr adjusted for Irr) & ISF

Fig. 2. Geometric Mean Daily Q Henson Cr abv LT (prop on Mineral Cr adjusted for Irr) & ISFs

Table 1. Geometric Mean Discharge and Recommended Instream Flows						
Date	Existing	Recommended	Proportioned Adjusted GM (abv gage)			
	ISF	ISF	No Adj (-) for Irr & OoB in Henson Cr abv LT			
1-Jan	12.00		13.22407002			
2-Jan	12.00		12.91975433			
3-Jan	12.00		13.13675024			
4-Jan	12.00		12.83324651			
5-Jan	12.00		12.14548074			
6-Jan	12.00		12.14884404			
7-Jan	12.00		12.02158717			
8-Jan	12.00		12.15959526			
9-Jan	12.00		12.26837427			
10-Jan	12.00		12.02910426			
11-Jan	12.00		11.8761145			
12-Jan	12.00		12.06113478			
13-Jan	12.00		12.14435376			
14-Jan	12.00		12.1415566			
15-Jan	12.00		11.94422727			
16-Jan	12.00		11.8651125			

17-Jan	12.00	11.77751388
18-Jan	12.00	11.90810429
19-Jan	12.00	12.01577797
20-Jan	12.00	12.02286833
21-Jan	12.00	11.99408143
22-Jan	12.00	12.07513728
23-Jan	12.00	11.68823112
24-Jan	12.00	11.82515819
25-Jan	12.00	12.17491312
26-Jan	12.00	11.89080676
27-Jan	12.00	11.65509683
28-Jan	12 00	11 47346261
29-Jan	12 00	11 70704567
30-Jan	12.00	11 49747954
31-Jan	12.00	11 50457676
1-Feb	12.00	11 48725043
2-Feb	12.00	11.32785155
3-Feb	12.00	11 24763223
4-Feb	12.00	11 37398717
5-Feb	12.00	11 42569138
6-Feb	12.00	11 25764796
7-Feb	12.00	11.09730248
8-Feb	12.00	10.89718109
9-Feb	12.00	10.8282005
10-Feb	12.00	10.0202000
11-Feb	12.00	10.96984184
12-Feb	12.00	11 04732788
13-Feb	12.00	11.05338786
14-Feb	12.00	10.99363367
15-Feb	12.00	10.0000007
16-Feb	12.00	10.9366657
17-Feb	12.00	10.9366657
18-Feb	12.00	10.9366657
10-Eob	12.00	10.0300007
20-Eeb	12.00	11 09414228
201-Eeb	12.00	11 11024421
27-Feb	12.00	10 91335355
22-Feb	12.00	11.07632429
20-1 60 21-Eob	12.00	11.07052429
24-1 60 25-Eob	12.00	11.07038220
20-1 00 26-Eob	12.00	11.00024120
20-1 60 27-Eeb	12.00	10.00090113
28-Eob	12.00	10.800617
20-1 CD 20-Eab	12.00	10.030017
1_Mar	12.00	11 00133757
2-Mar	12.00	11.03132737
2-iviai 2 Mar	12.00	11.0004/000
J-IVIAI	12.00	11.32307737
4-iviai 5 Mor	12.00	10.92307092
6 Mor	12.00	10.93145031
o-iviar	12.00	11.40918265

7-Mar	12.00		11.79749631
8-Mar	12.00		12.07048922
9-Mar	12.00		12.79612117
10-Mar	12.00		13.36481502
11-Mar	12.00		13.90454513
12-Mar	12.00		14.01282503
13-Mar	12.00		14.69910641
14-Mar	12.00		14.83021962
15-Mar	12.00		14.73998316
16-Mar	12.00		14.9339374
17-Mar	12.00		15.79567882
18-Mar	12.00		16.66653595
19-Mar	12.00		16 78209861
20-Mar	12.00		17 02025649
21-Mar	12.00		17 22251079
22-Mar	12.00		18.38232211
23-Mar	12.00		19 36205931
20 Mar 24-Mar	12.00		18 86665972
25-Mar	12.00		18 61943391
26-Mar	12.00		18 50153011
20 Mar 27-Mar	12.00		18 94950298
27-Mar 28-Mar	12.00		10.34330230
20-1Mar 20-Mar	12.00		20 52833425
20-Mar	12.00		20.32033423
30-Iviai 21 Mor	12.00		22.17145500
J I Apr	12.00	22	23.047 13003
1-Apr	12.00	23	21.00723939
2-Apr	12.00	23	21.26064411
3-Apr	12.00	23	21.00904488
4-Apr	12.00	23	22.32879931
5-Apr	12.00	20 00	24.73630105
6-Apr	12.00	20	27.89228233
7-Apr	12.00	20	30.09420868
8-Apr	12.00	23	30.08966204
9-Apr	12.00	23	36.65206774
10-Apr	12.00	23	39.70237297
11-Apr	12.00	23	39.28181563
12-Apr	12.00	23	36.93949579
13-Apr	12.00	23	36.1057091
14-Apr	12.00	23	34.32398382
15-Apr	12.00	23	34.64906339
16-Apr	12.00	23	33.84378921
17-Apr	12.00	23	37.55768998
18-Apr	12.00	23	40.15534977
19-Apr	12.00	23	38.73033961
20-Apr	12.00	23	36.93667395
21-Apr	12.00	23	37.61424837
22-Apr	12.00	23	43.24878245
23-Apr	12.00	23	49.83572744
24-Apr	12.00	23	57.43953214
25-Apr	12.00	23	68.1001234

26-Apr	12.00	23	71.35428452
27-Apr	12.00	23	62.66353119
28-Apr	12.00	23	60.43154961
29-Apr	12.00	23	57.71940736
30-Apr	12.00	23	59.80331471
1-May	12.00	23	67.59698691
2-May	12.00	23	73.28781442
3-May	12.00	23	98.32990485
4-May	12.00	23	121.04496
5-May	12.00	23	121.1439744
6-May	12.00	23	116.7560175
7-Mav	12.00	23	104.0591864
8-Mav	12.00	23	94.41365964
9-May	12.00	23	94,56537368
10-Mav	12.00	23	117,4187613
11-Mav	12.00	23	154.3302162
12-May	12.00	23	180.6800252
13-May	12.00	23	195 4889799
14-May	12.00	23	217 1591213
15-May	12.00	23	267 5218664
16-May	12.00	23	299 6749719
17-May	12.00	23	333 3377418
18-May	12.00	23	339 8920336
10 May	12.00	23	320 72530/2
20-May	12.00	23	313 0216325
20-iviay	12.00	23	284 204802
21-IVIdy	12.00	23	204.394092
22-IVIAY	12.00	23	240.0090070
23-IVIAY	12.00	23	221.139300
24-IVIAY	12.00	23	240.9316242
20-IVIAY	12.00	20	204.273113
20-IVIAY	12.00	23	333.2200372
27-May	12.00	20	354.236601
28-May	12.00	20	345.8575281
29-May	12.00	23	355.706632
30-May	12.00	23	344.2689521
31-May	12.00	23	360.9873656
1-Jun	12.00	23	361.1634692
2-Jun	12.00	23	361.2954291
3-Jun	12.00	23	346.0189188
4-Jun	12.00	23	361.3662903
5-Jun	12.00	23	367.9713484
6-Jun	12.00	23	358.3163746
7-Jun	12.00	23	349.1127759
8-Jun	12.00	23	317.8171045
9-Jun	12.00	23	312.4531407
10-Jun	12.00	23	317.0348077
11-Jun	12.00	23	342.5243048
12-Jun	12.00	23	352.7497033
13-Jun	12.00	23	352.2117019
14-Jun	12.00	23	357.8817849

15-Jun	12.00	23	345.1837501
16-Jun	12.00	23	357.7921202
17-Jun	12.00	23	368.2770628
18-Jun	12.00	23	397.4173333
19-Jun	12.00	23	377.2167024
20-Jun	12.00	23	350.8593579
21-Jun	12.00	23	363.6434486
22-Jun	12.00	23	398.9098964
23-Jun	12.00	23	422.8529275
24-Jun	12.00	23	427.8547821
25-Jun	12.00	23	441.0507192
26-Jun	12.00	23	425.7358846
27-Jun	12.00	23	421.2929912
28-Jun	12.00	23	403.1124206
29-Jun	12.00	23	385,4965458
30-Jun	12 00	23	363 8570381
1-Jul	12 00	23	351 4512934
2-Jul	12.00	23	350 2054575
3-Jul	12.00	23	339 2007387
4lul	12.00	23	314 1156773
5-Jul	12.00	23	296 7863231
6-Jul	12.00	23	281 7417002
7- Jul	12.00	23	287 2402442
8- Jul	12.00	23	201.2402442
0-5ui 0- lui	12.00	23	263 313062
10 <u>-</u> lul	12.00	23	203.313002
10-Jul	12.00	23	232.0310772
12- Jul	12.00	23	230.0923379
12-Jul	12.00	23	223.132447
13-Jul	12.00	23	210.2020000
14-Jul	12.00	23	201.3917940
10-Jul	12.00	23	210.3217001
10-Jul	12.00	23	207.6497646
17-JUI 40 Jul	12.00	23	199.2407017
18-Jul	12.00	20	200.1274562
19-Jul	12.00	20	216.2909159
20-Jul	12.00	23	225.3245163
21-Jul	12.00	23	197.8726136
22-Jul	12.00	23	181.8710138
23-Jul	12.00	23	175.2803464
24-Jul	12.00	23	164.11/883/
25-Jul	12.00	23	160.8946741
26-Jul	12.00	23	146.6078004
27-Jul	12.00	23	134.8434353
28-Jul	12.00	23	124.4130413
29-Jul	12.00	23	111.2594053
30-Jul	12.00	23	102.6209179
31-Jul	12.00	23	97.83367468
1-Aug	12.00	23	90.07889691
2-Aug	12.00	23	92.79387095
3-Aug	12.00	23	89.81992736

4-Aug	12.00	23	83.59870049
5-Aug	12.00	23	79.01811989
6-Aug	12.00	23	73.5948631
7-Aug	12.00	23	79.46763575
8-Aua	12.00	23	78.45698313
9-Aug	12.00	23	72.70103128
10-Aug	12.00	23	65.81962457
11-Aug	12.00	23	62.68147377
12-Aug	12 00	23	62 592479
13-Aug	12 00	23	59 67080478
14-Aug	12.00	23	56 32264236
15-Aug	12.00	23	57 56942567
16-Aug	12.00	23	56 36721597
17-Aug	12.00	23	59 49402653
18-Aug	12.00	23	77 6261737
10-Διια	12.00	23	73 28619961
20-Aug	12.00	23	76 91901315
20 Aug 21-Δμα	12.00	23	76.09471903
27-Aug	12.00	23	71 03/80022
22-Aug 23-Aug	12.00	23	63 23757020
20 Aug 24-Aug	12.00	23	65 01880124
24-Aug 25-Aug	12.00	23	65 211/7/8
20-Aug 26-Aug	12.00	23	63 14440650
20-Aug	12.00	23	6/ 05/5/156
28-Aug	12.00	23	58 850/0752
20-Aug 20-Aug	12.00	23	54 77744627
29-Aug 30-Aug	12.00	23	53 63201727
31-Aug	12.00	23	54 50637251
1 Son	12.00	20	50 62627655
2-Son	12.00	23	18 08/03755
2-36p	12.00	23	40.90493733
J-Sep	12.00	23	45.14205509
4-Sep	12.00	23	47.49770923
6 Son	12.00	23	70.00770957
7 Son	12.00	23	10.99110001
2 Sop	12.00	23	65 77101096
o-Sep	12.00	23	50.77101900
9-Sep	12.00	23	09.49090090 60.70094406
10-Sep	12.00	23	62.79384406
11-Sep	12.00	23	65.20016749
12-Sep	12.00	20	69.39823391
13-Sep	12.00	20	76.01991643
14-Sep	12.00	20	68.07464649
15-Sep	12.00	20	60.92709082
16-Sep	12.00	23	56.28937222
17-Sep	12.00	23	50.2333077
18-Sep	12.00	23	46.28533361
19-Sep	12.00	23	53.44120185
20-Sep	12.00	23	53.7593699
21-Sep	12.00	23	51.28576566
22-Sep	12.00	23	50.57787987

23-Sep	12.00	23	47.9161255
24-Sep	12.00	23	48.06512379
25-Sep	12.00	23	44.93052208
26-Sep	12.00	23	42.71086204
27-Sep	12.00	23	40.24477581
28-Sep	12.00	23	38.27905981
29-Sep	12.00	23	37.60613495
30-Sep	12.00	23	40.09060994
1-Oct	12.00	23	39.34193842
2-Oct	12.00	23	36.51678291
3-Oct	12.00	23	35.64240918
4-Oct	12.00	23	40.46055572
5-Oct	12.00	23	46.1826198
6-Oct	12.00	23	42,12228498
7-Oct	12.00	23	44.82491007
8-Oct	12.00	23	46 31823711
9-Oct	12.00	23	45 07497095
10-Oct	12.00	23	44 10967214
11-Oct	12.00	23	42 49412924
12-Oct	12.00	23	41 86077093
12-Oct	12.00	23	42 32169975
14-Oct	12.00	23	42.32103373
15-Oct	12.00	23	41.07970509
16-Oct	12.00	23	40.34217322
17 Oct	12.00	23	42.90030430
19 Oct	12.00	23	42.07009004
10-001	12.00	23	43.20020032
19-00l	12.00	23	43.9/09/420
20-Oct	12.00	23	45.2500641
	12.00	20	42.71374254
22-Oct	12.00	20	43.12647823
23-Oct	12.00	20	42.75653205
24-Oct	12.00	20	40.15089014
25-Oct	12.00	23	40.47939614
26-Oct	12.00	23	40.10144012
27-Oct	12.00	23	38.60116456
28-Oct	12.00	23	36.1157311
29-Oct	12.00	23	32.34279679
30-Oct	12.00	23	33.49387154
31-Oct	12.00	23	32.76856789
1-Nov	12.00		32.89861037
2-Nov	12.00		31.136071
3-Nov	12.00		29.15950413
4-Nov	12.00		27.88187721
5-Nov	12.00		28.04020574
6-Nov	12.00		26.70734747
7-Nov	12.00		26.22877167
8-Nov	12.00		26.09873891
9-Nov	12.00		25.37222571
10-Nov	12.00		24.9278938
11-Nov	12.00		24.62842174

12-Nov	12.00	24.55900311
13-Nov	12.00	24.13476533
14-Nov	12.00	22.91163241
15-Nov	12.00	23.27077365
16-Nov	12.00	22.2675439
17-Nov	12.00	21.48415835
18-Nov	12.00	21.15293515
19-Nov	12.00	20.53712081
20-Nov	12.00	21.00548202
21-Nov	12.00	20.54878088
22-Nov	12.00	20.25897553
23-Nov	12.00	20.115189
24-Nov	12.00	20.21154978
25-Nov	12.00	19.70525808
26-Nov	12.00	19.1644728
27-Nov	12.00	18.10039986
28-Nov	12.00	18.48176534
29-Nov	12.00	18.43538485
30-Nov	12.00	17.77879243
1-Dec	12.00	17.48268271
2-Dec	12.00	17.59405539
3-Dec	12.00	17.95670172
4-Dec	12.00	17.43655579
5-Dec	12.00	17.54972987
6-Dec	12.00	16.65063003
7-Dec	12.00	16.28572985
8-Dec	12.00	15.80026798
9-Dec	12.00	15.27465548
10-Dec	12.00	15.38420052
11-Dec	12.00	15.28920699
12-Dec	12.00	14.98895169
13-Dec	12.00	15.05781945
14-Dec	12.00	14.94412428
15-Dec	12.00	15.13751459
16-Dec	12.00	15.07313611
17-Dec	12.00	14.88056827
18-Dec	12.00	14.65246296
19-Dec	12.00	14.48672258
20-Dec	12.00	14.46955812
21-Dec	12.00	14.23341536
22-Dec	12.00	14.10717457
23-Dec	12.00	13.99081929
24-Dec	12.00	13.81657537
25-Dec	12.00	13.73937813
26-Dec	12.00	13.19039252
27-Dec	12.00	13.81691589
28-Dec	12.00	14.24557704
29-Dec	12.00	13.6976678
30-Dec	12.00	13.51377271
31-Dec	12.00	13.32506035

Existing Water Right Information

Staff has analyzed the water rights tabulation and contacted the Division Engineer Office (DEO) to identify any potential water availability problems. There is one decreed surface diversions within this reach of stream Casey Ditch (0.50 cfs with an 1976 appropriation). Staff has determined that water is available for appropriation on Henson Creek, between the confluence with the North Fork Henson Creek to the confluence with Nellie Creek, to preserve the natural environment to a reasonable degree without limiting or foreclosing the exercise of valid existing water rights.

CWCB Staff's Instream Flow Recommendation

Staff recommends the Board form its intent to appropriate on the following stream reach:

<u>Segment</u>: Confluence with the North Fork of Henson Creek to the Confluence with Nellie Creek

Upper Terminus: CONFLUNCE WITH THE NORTH FORK OF HENSON CREEK(Latitude 38° 0' 25.1"N)(Longitude 107° 27' 32.6"W)UTM North: 4209442.6UTM East: 284104.9S7 T43N R5W NMPM2490' East of the West Section Line; 173' South of the North Section Line

Lower Terminus: CONFLUENCE WITH NELLIE CREEK

(Latitude 38° 1' 13.3"N)
(Longitude 107° 24' 4.0"W)
UTM North: 5210795.4
S35 T44N R5W NMPM
1553' West of the East Section Line; 2476' North of the South Section Line

Watershed: Upper Gunnison (HUC#: 14020002) Counties: Hinsdale Length: 3.4 miles USGS Quad(s): Uncompany Peak Existing ISF: 4-82CW386, 12 cfs Flow Recommendation (increase): 11 cfs (April 1 to October 31)

Vicinity Map

Land Use Map

Topographic & Water Rights Map

United States Department of the Interior

BUREAU OF LAND MANAGEMENT Colorado State Office 2850 Younglield Street Lakewood, Colorado 80215-7093 www.blm.gov/eo

In Reply Refer To: 7250 (CO-932)

DEC 3 0 2000

RECEIVED

JAN 0 5 2009

Colorado Water Conservation Board

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its recommendation for an instream flow enlargement on Henson Creek, located in Water Division 4. The reach that is the subject of this recommendation begins at the confluence with the North Fork of Henson Creek and extends downstream to the confluence with Nellie Creek, a distance of 3.4 miles. The existing instream flow water right on this creek is 12 cubic feet per second, year round. The existing instream flow water right was established in 1984.

Location and Land Status: This portion of Henson Creek starts near the historic town site of Capitol City and ends approximately 4.5 miles west of Lake City. The stream reach is located within Hinsdale County. The land along this reach is comprised of approximately 2.7 miles of BLM ownership and 0.7 miles of private ownership.

Biological Summary: Overall, this portion of Henson Creek is a high gradient stream with large substrate size. In the upper portion of the reach, the canyon is sufficiently wide to allow the creek to have a well developed floodplain and wide willow riparian zone. In the lower portion of the reach, the creek is confined by a narrow canyon. Here, the bedrock restricts channel and riparian formation, but the creek has multiple pools and runs that provide excellent fish habitat. The creek supports a healthy and diverse aquatic insect community, including: caddisfly, stonefly, and mayfly. Fishery surveys indicate that the creek supports a self-sustaining population brook trout of various sizes and age classes.

R2Cross Analysis: The BLM's data analysis, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

 An 11 cubic feet per second (cfs) enlargement is recommended during the high temperature period from April 1 through October 31, bringing the total instream flow up to 23 cfs during this time period.

Justification for Instream Flow Enlargement: The BLM was prompted to re-examine the instream flow on Henson Creek because of BLM water quality management objectives in the Henson Creek and Lake Fork watersheds. Both of these stream systems are affected by historic mining activities, and the BLM has begun to initiate projects to treat and minimize acid mine runoff and heavy metals contamination. Within these watersheds, streams that are presently able to support fish are extraordinarily valuable for the habitat they provide and for their ability to dilute runoff originating in more contaminated parts of the watershed. Finally, this creek is located along the very heavily used Alpine Loop Backcountry Byway. Users of the byway seek opportunities to fish and camp along the uncontaminated streams within these watersheds.

The BLM's cross section analysis revealed that the current instream flow rate is not fully protective for several reasons. First, in locations where the stream widens out and is capable of providing significant riffle and physical habitat, the current 11 cfs water right provides an average depth of only 0.25 feet. The BLM believes this is insufficient depth for a channel that averages 40 feet in diameter, because a significant percentage of the usable habitat is lost or only barely deep enough for fish passage. The BLM also notes that protecting the flows necessary to meet with the depth criteria would provide wetted perimeter in the range of 80 to 90 percent. In a watershed where water quality issues already stress fish populations, the BLM believes that the population should not also be limited by physical habitat availability. The BLM's conclusion is that it is prudent to protect a higher flow rate that is capable of supporting a larger fish population.

The BLM also believes that this reach of Henson Creek is an important fish source for the repopulation of lower reaches of Henson Creek. The BLM is undertaking a major effort to reclaim the Ute-Ulay Mine located approximately 1.5 miles downstream. As water quality improves in this section, it is anticipated that fish from this reach will move into the improved habitat. The lower reaches of Henson Creek near Lake City cannot serve as a repopulation source for the Henson Creek near the Ute-Ulay Mine. Treasure Falls, located downstream from the Ute-Ulay mine, is a natural barrier that prevents fish from moving upstream into the reach where the mine is located.

Water Availability: For water availability analysis, the BLM recommends using a combination of methods. First, the BLM recommends developing a synthetic hydrograph using the equations provided in *Estimation of Natural Streamflow Characteristics in Western Colorado, USGS Water Resources Investigation Report 85-4086, 1985.* This method incorporates data about basin size and elevation. This synthetic hydrograph should then be reconciled against historic

gage data, using a basin apportionment approach. The most relevant historic gage is USGS gage 09124000 (Henson Creek at Lake City, CO). It should be noted that the gage may have been affected by icing during the winter, and may have underestimated winter flows as a result.

The BLM's search of the official water rights tabulation revealed that the Casey Ditch may be located within the stream reach proposed for an enlargement. The legal description provided for the ditch places it off of the stream channel. However, changes in the official land surveys for this area may have resulted in an erroneous description in the water right decree. Water rights located upstream from this reach include the Lucky Chance Pipeline (50 cfs – nonconsumptive), Lucky Chance Reservoir (0.59 acre feet), Yellowstone Pipeline (0.03 cfs), and PG Ditch No. 1 (0.075 cfs – conditional).

Conclusion: The BLM believes that there is strong justification for an additional instream flow appropriation. This creek is this highly accessible creek that and is located in an area where water quality issues preclude human usage and fish habitat on other streams. Our initial water availability analysis indicates there is sufficient water to support the appropriation without material injury to existing water rights. Accordingly, we urge the board to make an initial appropriation at its regular board meeting in January 2009.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section to support this recommendation were provided with the draft recommendation in February 2008. We thank the Colorado Water Conservation Board for its cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely.

Linda Anania Deputy State Director, Resources and Fire

cc: Kenny McDaniel, Gunnison FO Art Hayes, Gunnison FO Tom Fresques, Glenwood Springs FO

DRAFT INSTREAM FLOW RECOMMENDATION - HENSON CREEK, WD 4

Feb. 13, 2008

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its recommendation for an instream flow enlargement on Henson Creek, located in Water Division 4. The reach that is the subject of this recommendation begins at the confluence with the North Fork of Henson Creek and extends downstream to the confluence with Nellie Creek, a distance of 3.4 miles. The existing instream flow water right on this creek is 12.0 cubic feet per second, year round. The existing instream flow water right was established in 1984.

Location and Land Status. This portion of Henson Creek starts near the historic town site of Capitol City and ends approximately 4.5 miles west of Lake City. The stream reach is located within Hinsdale County. The land along this reach is comprised of approximately 2.7 miles of BLM ownership and 0.7 miles of private ownership.

Biological Summary. Overall, this portion of Henson Creek is a high gradient stream with large substrate size. In the upper portion of the reach, the canyon is sufficiently wide to allow the creek to have a well developed floodplain and wide willow riparian zone. In the lower portion of the reach, the creek is confined by a narrow canyon. Here, the bedrock restricts channel and riparian formation, but the creek has multiple pools and runs that provide excellent fish habitat. The creek supports a healthy and diverse aquatic insect community, including caddisfly, stonefly, and mayfly. Fishery surveys indicate that the creek supports a self-sustaining population brook trout of various sizes and age classes.

R2Cross Analysis. BLM's data analysis, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

An 11.0 cubic feet per second enlargement is recommended during the high temperature period from April 1 through October 31, bringing the total instream flow right up to 23.0 cubic feet per second during this time period.

Justification for Instream Flow Enlargement. BLM was prompted to re-examine the instream flow on Henson Creek because of BLM water quality management objectives in the Henson Creek and Lake Fork watersheds. Both of these stream systems are affected by historic mining activities, and BLM has begun to initiate projects to treat and minimize acid mine runoff and heavy metals contamination. Within these watersheds, streams that

are presently able to support fish are extraordinarily valuable for the habitat they provide and for their ability to dilute runoff originating in more contaminated parts of the watershed. Finally, this creek is located along the very heavily used Alpine Loop Backcountry Byway. Users of the byway seek opportunities to fish and camp along the uncontaminated streams within these watersheds.

BLM's cross section analysis revealed that the current instream flow rate is not fully protective for several reasons. First, in locations where the stream widens out and is capable of providing significant riffle and physical habitat, the current 11.0 cfs water right provides an average depth of only 0.25 feet. BLM believes this is insufficient depth for a channel that averages 40 feet in diameter, because a significant percentage of the usable habitat is lost or only barely deep enough for fish passage. BLM also notes that protecting the flows necessary to meet with the depth criteria would provide wetted perimeter in the range of 80% to 90%. In a watershed where water quality issues already stress fish populations, BLM believes that the population should not also be limited by physical habitat availability. BLM's conclusion is that it is prudent to protect a higher flow rate that is capable of supporting a larger fish population.

BLM also believes that this reach of Henson Creek is an important fish source for the repopulation of lower reaches of Henson Creek. BLM is undertaking a major effort to reclaim the Ute-Ulay Mine located approximately 1.5 miles downstream. As water quality improves in this section, it is anticipated that fish from this reach will move into the improved habitat. The lower reaches of Henson Creek near Lake City cannot serve as a repopulation source for the Henson Creek near the Ute-Ulay Mine. Treasure Falls, located downstream from the Ute-Ulay mine, is a natural barrier that prevents fish from moving from upstream into the reach where the mine is located.

Water Availability. For water availability analysis, BLM recommends using a combination of methods. First, BLM recommends developing a synthetic hydrograph using the equations provided in *Estimation of Natural Streamflow Characteristics in Western Colorado, USGS Water Resources Investigation Report 85-4086, 1985.* This method incorporates data about basin size and elevation. This synthetic hydrograph should then be reconciled against historic gage data, using a basin apportionment approach. The most relevant historic gage is USGS gage 09124000 (Henson Creek at Lake City, CO). When utilizing this gage, we should keep in mind that the gage may have been affected by icing during the winter, and may have underestimated winter flows as a result.

BLM's search of the official water rights tabulation revealed that the Casey Ditch may be located within the stream reach proposed for an enlargement. The legal description provided for the ditch places it off of the stream channel. However, changes in the official land surveys for this area may have resulted in an erroneous description in the water right decree. Water rights located upstream from this reach include the Lucky Chance Pipeline (50 cfs – nonconsumptive), Lucky Chance Reservoir (0.59 acre feet), Yellowstone Pipeline (0.03 cfs), and PG Ditch No. 1 (0.075 cfs conditional).

Conclusion. BLM believes that there is strong justification for an additional instream flow appropriation. This creek is this highly accessible creek that and is located in an area where water quality issues preclude human usage and fish habitat on other streams. Our initial water availability analysis indicates there is sufficient water to support the appropriation without material injury to existing water rights. Accordingly, we urge the board to make an initial appropriation at its regular board meeting in January 2009.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section are enclosed to support this recommendation. We thank the Colorado Water Conservation Board for its cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely,

Linda Anania Deputy State Director Resources and Fire

4 Enclosures

cc: Kenny McDaniel, Gunnison FO Art Hayes, Gunnison FO Tom Fresques, Glenwood Springs FO

COLORADO WATER CONSERVATION BOARD

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

STREAM NAME:	- Martina -	Rock alter	an a	s. Kewe Su	-h	CROSS	SECTION NO .:
CROSS-SECTION LC		t albertes K	gline, Moor	. Minc.			
	······						······································
DATE: 10-9-0	7 OBSERVERS:	2. Sunith	D. Mirohy	,			
LEGAL DESCRIPTION	4 SECTION:	NE SECTION:	TOWNSHIP	43N/s	RANGE:	S EN	NM
COUNTY:	<u>us dale</u>	WATERSHED:	re fort	WATER DIVISION:		DOW WATER CODE:	40624
USGS:	Unconna	have Gree	\$ 7,5'		-35 (255)	284728	
USFS:		0				-201331	

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS DISCHARGE SECTION:		arsh-1	McBirne	4		
METER NUMBER:	DATE RATED:	CALIB/SPIN:	sec	TAPE WEIGHT:	e yr c Ibs/foot	TAPE TENSION: Ibs
CHANNEL BED MATERIAL SIZE RANGE:	font poulde	õ	PHOTOGRAPHS TAP	EN YESIND	NUMBER OF PI	HOTOGRAPHS: 3

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (#)	ROD READING (ft)	Ī	· · · · · · · · · · · · · · · · · · ·	LEGEND:
X Tape @ Stake	.в 0.0	Surveyed]	¥	
🗴 Tape @ Stake F	^{3B} 0.0	surveyed	s к		Stake
1 WS @ Tape LB	/RB 0.0	1.30 / G.15	E T C	Z YAR	Photo $\langle 1 \rangle \rightarrow$
2 WS Upstream	1. (C)]"	17	~
3 WS Downstrea	m 15,0]		Direction of Flow
SLOPE	. 971 - 2000 -	0236			· · · · · · · · · · · · · · · · · · ·

AQUATIC SAMPLING SUMMARY

STREAM ELECTROFISHED: YES/NO	DISTANCE	ISTANCE ELECTROFISHED:II FISH CAUGHT: `						YES/NO	NO WATER CHEMISTRY SAMPLED: YES/NO									
	LENGTH	FREC	UENC	Y DISTR	IBUTI	ON BY	ONE-IN	CH SIZ	E GRO	UPS (1.	0-1.9,2	2.0-2.9	ETC.)					
SPECIES (FILL IN)		1	2	з	-4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
sec attached																		
AQUATIC INSECTS IN STREAM SECTION B			ENTIFIC	ORDE	RNAM	E:												•
mauth + car	ldist																	

COMMENTS

Ph: 7,9	 	
US: 180		
Temperse 1	 	

DISCHARGE/CROSS SECTION NOTES

STREAM NAM	ne: Per	150	÷.	serer.				CROS	S-SECTION	I NO.:	DATE:	SHEE	T OF
BEGINNING C	F MEASUREN	IENT	EDGE OF W	ATER LOOKING D	OWNSTREAM:	LEFT / RIC	ант Ga	age Re	ading:	ft	тіме: 1. 2	147 L	
0 Stake	S) Distance	,	Width	Total	Water	Depth	Revolut	ions		Veloci	y (ft/sec)		
Grassline Grassline Waterline Rock	G) From W) Initial R) Point (ft)		(ft)	Vertical Depth From Tape/Inst (ft)	Depth (ft)	of Obser- vation (ft)			Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
LS	0.0	21		4.38									
	3.0)		11,6%			L						
G	<u> </u>	2		5,46									
\mathbb{W}	5			6.80							_		
	5.5	>		7.40	,6					2.45			
	<u> </u>			7.55	,75					1.77			ļ
	6.5			7 25	,45					1.78			
		~		7,30	.50					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			
	1.1	-		7.15	.35					<u>.</u>			
		0		7.25	,45		ļ			1 . e	_		
		2		7.35	5_					2.57			
	16.4	2		1,40	.40					2-11			
	12.5	j l		7,55	,75					2.20		ļ	
	190	7		7,30	150					3.85			
	20.5	5		14.45	.70					1,34			
	22.	0		7.35	160					1,52			
	033	5		7,35	.60					1.80			
	29.	e		7,25	,50					2.69			
	800	5		7,35	,60					2.87			
	1 de -	0		7.35	,60					1.95			
	- 29.3	5		7,25	150					1,22			
	31.0	2		6,95	.20					1.73			
	32.5	5		the states	,55					1.21			
	34.	0			,40					.91		L	
	35.	5		6.25	,10					ϕ			
													ļ
					· .								
· · · · · ·													
$-\nu$	57.4	2											
<u> </u>		<u>V</u> ~		18 18 3 1 1 1 1 1									
	<u>(5) 1.1.1</u> C 1.1.2												
TOTALS:	2 - 24	<u>\.</u>											
End of Mes	Surement	Time	e:	Gaco Poodice		CALCULAT	IONS PERF	ORME	D BY:	C	ALCULATIONS C	HECKED BY:	

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

consentition			
STREAM NAME:	lenser, firek - above Lee	Sinclder Gulch	CROSS-SECTION NO .: 2
CROSS-SECTION LOC	intion: just above Blue Moon	. Mine	
DATE: 10-9-07	OBSERVERS: R. Smith D Hurp	h.1	
LEGAL DESCRIPTION	WE SECTION: TOWNSHIF	430/s RANGE: 5	EN PM: NM
COUNTY: HIM	Edale WATERSHED: Lake Fork "	VATER DIVISION:	DW WATER CODE: 40874
USGS: MAP(S):	Uncompangre Peak 7,51	Z13 GPS 23.	1635
USFS:	· 0	42	0930Z

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS	NO METER TYPE:	March	MrB	ir neu		
METER NUMBER:	DATE RATED:	CALIB/SPIN:	sec		weyed	SUNEYES
CHANNEL BED MATERIAL SIZE RANGE:	1-fear b	oulders	HOTOGRAPHS TAK	KEN YESINO	NUMBER OF PI	

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (ft)	ROD READING (ft)		(X)	LEGEND:
X Tape @ Stake LB	0.0	surveyed	1	¥	
🗴 Tape @ Stake RB	0.0	surveyed	s к		
1 WS @ Tape LB/RB	0.0	6.02	E T C	A A A A A A A A A A A A A A A A A A A	
2 WS Upstream	(5.0] н [
3 WS Downstream	15.0	in.18			Direction of Flow
SLOPE C),24/30,0 =	.008			

AQUATIC SAMPLING SUMMARY

STREAM ELECTROFISHED YES/NO	DISTANC	E ELEC	TROFIS	3HED:_	f	a	F	FISH CA	,иднт(YES/	0		WATE	R CHE	VISTRY	SAMP	LED: YE	s/NO
	LENGTH	I- FREC	QUENC	Y DISTI	RIBUTI	ON BY	ONE-IN	ICH SIZ	LE GRO	UPS (1	.0-1.9,	2.0-2.9	₽, ETC.)					
SPECIES (FILL IN)		1	2	3	-4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
		<u> </u> '	ļ '	<u> </u>	<u> </u>		-['			-								
		_ '	 '				 '	ļ			_					<u> </u>	- '	ļ
		<u>+</u> '	<u> </u> '				<u> </u> '	 '	 '		+	 			↓		'	
AQUATIC INSECTS IN STREAM SECTION						, <u>, , , , , , , , , , , , , , , , , , </u>	<u>'</u> ــــــــــــــــــــــــــــــــــــ	<u>لــــــــــــــــــــــــــــــــــــ</u>	ــــــ '	<u> </u>	<u> </u>				<u> </u>		'	<u> </u>
	244		f			E.			<u> </u>		<u> </u>							
LMANPHY ON S	<u></u>	<u> </u>	<u> </u>	<u> </u>		-								الذيب بيرميها ال	مسيرات			
·			1		00	ЭММ	ENT	S	·									
Ph: 7.9																		
TDS: 140						_	_			-				<u> </u>				

FORM #ISF FD 1-85

94

14.

7.

هي)

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Hen	son c	reek				CROS	SS-SECTION	INO.: 2	DATE:	07 SHEET	0F
BEGINNING OF N	EASUREMEN	NT EDGE OF V	VATER LOOKING D	OWNSTREAM	LEFT / RIG	ант G	lage Re	eading:	ft	TIME:	40 0	m
ອີStake (S) Grassline (G) Waterline (W) B Rock (R)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolu	itions	Time (sec)	Velocil At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
LS	0.0		1.62							·		
			5.94									
<u> </u>	<u> </u>		Sec. 2									
	1.0		6.20	,)					4			
	6,0		6.35	,35					1.95			
	8		6.75	,715					1.84			
	10		6.80	,30					2.23	3		
	12		6.70	,70					216			
	2.22		6.50	.50					2.25	·		
	10	,	6.70	.70					2.02			
	18		6.60	160					1.41			
	20		6.55	.55					2.61			
	27		6.50	,50					2.51			
	17.1		645	,45					1.83			
	26		6.50	,50					1.43			
	18		6,40	,40					,96			
	30		6,30	.30					1.03			
	47.		6.40	,40					1.04	-		
	34		6.40	,40					1.35			
	36		6,45	.15					1.70			
	20		6 20	30					1 40			
	<u> </u>	·	625	75					.70			
	1.1 1		6 10	10					.1			
	M12								<i>p</i>			
	-									****		
<u>()</u>	7	2	4.02									
Ge	114	Į	5.04									
<u>n</u> _s	49.0	7	4.18									
TOTALO		ļ										
TUTALS:		1							- 1 -			
End of Measur	ement T	ime:	Gage Reading	: ft	CALCULAT	IONS PER	FURME	1 R.I.:		ALQULATIONS	JHEUKED BY:	

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	Henson Creel Just u/s from 1	c Blue Moon Mine
DATE: OBSERVERS:	9-Oct-07 R. Smith, D. M	ſurphy
1/4 SEC: SECTION: TWP: RANGE: PM:	NE 7 43N 5W NM	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Lake Fork Gu 4 40624	nnison River
USGS MAP: USFS MAP:	Uncompahgre 0	Peak 7.5'
SUPPLEMENTAL DATA		*** NOTE ***
TAPE WT: TENSION:	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod
CHANNEL PROFILE DATA		
SLOPE:	0.0236	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:		DATE

STREAM NAME:	Henson Creek
XS LOCATION:	Just u/s from Blue Moon Mine
XS NUMBER:	1

	#1	# DATA POINTS=								
FEATURE		VERT	WATER							
	DIST	DEPTH	DEPTH	VEL						
15	0.00	4.38								
20	3.00	4.62								
1 G	5.00	5.46								
W	5.40	6.80								
	5.50	7.40	0.60	2.45						
	7.00	7.55	0.75	1.99						
	8.50	7.25	0.45	1.78						
	10.00	7.30	0.50	3.25						
	11.50	7.15	0.35	2.72						
	13.00	7.25	0.45	2.74						
	14.50	7.35	0.55	2.59						
	16.00	7.40	0.60	2.71						
	17.50	7.55	0.75	2.20						
	19.00	7.30	0.50	3.05						
	20.50	7.45	0.70	1.34						
	22.00	7.35	0.60	1.52						
	23.50	7.35	0.60	1.80						
	25.00	7.25	0.50	2.69						
	26.50	7.35	0.60	2.87						
	28.00	7.35	0.60	1.95						
	29.50	7.25	0.50	1.22						
	31.00	6.95	0.20	1.73						
	32.50	7.30	0.55	1.21						
	34.00	7.15	0.40	0.91						
	35.50	6.85	0.10	0.00						
W	37.00	6.75								
	39.00	6.45								
G	42.00	5.55								
RS	45.00	5.12								

TOTALS -----

VALUES COMPUTED FROM RAW FIELD DATA

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.61	0.60	0.48	1.18	3.5%
1.51	0.75	1.13	2.24	6.7%
1.53	0.45	0.68	1.20	3.6%
1.50	0.50	0.75	2.44	7.3%
1.51	0.35	0.53	1.43	4.3%
1.50	0.45	0.68	1.85	5.5%
1.50	0.55	0.83	2.14	6.4%
1.50	0.60	0.90	2.44	7.3%
1.51	0.75	1.13	2.48	7.4%
1.52	2 0.50	0.75	2.29	6.8%
1.51	0.70	1.05	1.41	4.2%
1.50	0.60	0.90	1.37	4.1%
1.50	0.60	0.90	1.62	4.9%
1.50	0.50	0.75	2.02	6.0%
1.50	0.60	0.90	2.58	7.7%
1.50	0.60	0.90	1.76	5.3%
1.50	0.50	0.75	0.92	2.7%
1.53	0.20	0.30	0.52	1.6%
1.54	0.55	0.83	1.00	3.0%
1.51	0.40	0.60	0.55	1.6%
1.53	0.10	0.15	0.00	0.0%
1.50)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
32.32	0.75	15.86	33.40	100.0%
	(Max.)			
	Manning's n =		0.0674	
	Hydraulic Radius=		0.490551629	
	•			

1

STREAM NAME:	Henson Creek
XS LOCATION:	Just u/s from Blue Moon Mine
XS NUMBER:	1

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	15.86	15.79	-0.4%
6.53	15.86	23.86	50.5%
6.55	15.86	23.20	46.3%
6.57	15.86	22.54	42.2%
6.59	15.86	21.88	38.0%
6.61	15.86	21.23	33.9%
6.63	15.86	20.58	29.8%
6.65	15.86	19.93	25.7%
6.67	15.86	19.29	21.6%
6.69	15.86	18.64	17.6%
6.71	15.86	18.00	13.5%
6.73	15.86	17.37	9.5%
6.74	15.86	17.05	7.5%
6.75	15.86	16.73	5.5%
6.76	15.86	16.42	3.5%
6.77	15.86	16.10	1.5%
6.78	15.86	15.79	-0.4%
6.79	15.86	15.48	-2.4%
6.80	15.86	15.17	-4.3%
6.81	15.86	14.86	-6.3%
6.82	15.86	14.55	-8.2%
6.83	15.86	14.25	-10.2%
6.85	15.86	13.64	-14.0%
6.87	15.86	13.04	-17.8%
6.89	15.86	12.44	-21.6%
6.91	15.86	11.84	-25.3%
6.93	15.86	11.25	-29.1%
6.95	15.86	10.65	-32.8%
6.97	15.86	10.06	-36.5%
6.99	15.86	9.48	-40.2%
7.01	15.86	8.90	-43.9%
7.03	15.86	8.33	-47.5%

WATERLINE AT ZERO AREA ERROR = 6.773

STREAM NAME: Henson Creek XS LOCATION: Just u/s from Blue Moon Mine XS NUMBER: 1

GL = lowest Grassline elevation corrected for sag

Constant Manning's n

;	STAGING TABL	E "VV	L" = Waterline (corrected for va	riations in field	measured wa	ter surface elevati	ions and sag		
_	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	5.55	36.97	1.57	2.00	58.18	38.78	100.0%	1.50	258.20	4.44
	5.77	36.16	1.38	1.78	50.03	37.77	97.4%	1.32	204.34	4.08
	5.82	35.98	1.34	1.73	48.22	37.55	96.8%	1.28	192.98	4.00
	5.87	35.80	1.30	1.68	46.43	37.32	96.2%	1.24	181.89	3.92
	5.92	35.62	1.25	1.63	44.64	37.09	95.7%	1.20	171.07	3.83
	5.97	35.44	1.21	1.58	42.87	36.87	95.1%	1.16	160.53	3.74
	6.02	35.26	1.17	1.53	41.10	36.64	94.5%	1.12	150.27	3.66
	6.07	35.07	1.12	1.48	39.34	36.41	93.9%	1.08	140.28	3.57
	6.12	34.89	1.08	1.43	37.59	36.19	93.3%	1.04	130.58	3.47
	6.17	34.71	1.03	1.38	35.85	35.96	92.7%	1.00	121.17	3.38
	6.22	34.53	0.99	1.33	34.12	35.74	92.2%	0.95	112.05	3.28
	6.27	34.35	0.94	1.28	32.40	35.51	91.6%	0.91	103.22	3.19
	6.32	34.17	0.90	1.23	30.69	35.28	91.0%	0.87	94.69	3.09
	6.37	33.98	0.85	1.18	28.98	35.06	90.4%	0.83	86.46	2.98
	6.42	33.80	0.81	1.13	27.29	34.83	89.8%	0.78	78.54	2.88
	6.47	33.55	0.76	1.08	25.60	34.53	89.0%	0.74	71.03	2.77
	6.52	33.20	0.72	1.03	23.93	34.14	88.0%	0.70	63.97	2.67
	6.57	32.85	0.68	0.98	22.28	33.75	87.0%	0.66	57.22	2.57
	6.62	32.50	0.64	0.93	20.65	33.36	86.0%	0.62	50.79	2.46
	6.67	32.15	0.59	0.88	19.03	32.97	85.0%	0.58	44.69	2.35
	6.72	31.80	0.55	0.83	17.43	32.58	84.0%	0.54	38.91	2.23
WL	6.77	31.27	0.51	0.78	15.85	32.01	82.5%	0.50	33.62	2.12
	6.82	30.50	0.47	0.73	14.31	31.20	80.5%	0.46	28.82	2.01
	6.87	29.97	0.43	0.68	12.80	30.63	79.0%	0.42	24.24	1.89
	6.92	29.72	0.38	0.63	11.31	30.32	78.2%	0.37	19.85	1.75
	6.97	29.24	0.34	0.58	9.83	29.80	76.8%	0.33	15.90	1.62
	7.02	28.52	0.29	0.53	8.39	29.02	74.8%	0.29	12.42	1.48
	7.07	27.80	0.25	0.48	6.98	28.24	72.8%	0.25	9.31	1.33
	7.12	27.08	0.21	0.43	5.61	27.46	70.8%	0.20	6.59	1.17
	7.17	25.67	0.17	0.38	4.28	25.99	67.0%	0.16	4.36	1.02
	7.22	23.45	0.13	0.33	3.05	23.71	61.1%	0.13	2.64	0.86
	7.27	19.51	0.10	0.28	1.96	19.71	50.8%	0.10	1.42	0.73
	7.32	14.41	0.08	0.23	1.12	14.55	37.5%	0.08	0.69	0.61
	7.37	7.70	0.07	0.18	0.56	7.77	20.0%	0.07	0.33	0.59
	7.42	4.62	0.06	0.13	0.26	4.66	12.0%	0.06	0.13	0.49
	7.47	2.39	0.04	0.08	0.09	2.41	6.2%	0.04	0.04	0.38
	7.52	0.84	0.01	0.03	0.01	0.85	2.2%	0.01	0.00	0.19

STREAM NAME:	Henson Creek
XS LOCATION:	Just u/s from Blue Moon Mine
XS NUMBER:	1

SUMMARY SHEET

MEASURED FLOW (Qm)=	33.40	cfs	RECOMMENDED IN
CALCULATED FLOW (Qc)=	33.62	cfs	
(Qm-Qc)/Qm * 100 =	-0.7	%	
			FLOW (CFS)
MEASURED WATERLINE (WLm)=	6.78	ft	
CALCULATED WATERLINE (WLc)=	6.77	ft	
(WLm-WLc)/WLm * 100 =	0.0	%	
· · · ·			
MAX MEASURED DEPTH (Dm)=	0.75	ft	
MAX CALCULATED DEPTH (Dc)=	0.78	ft	
(Dm-Dc)/Dm * 100	-3.6	%	
MEAN VELOCITY=	2.12	ft/sec	
MANNING'S N=	0.067		
SLOPE=	0.0236	3 ft/ft	
.4 * Qm =	13.4	cfs	
2.5 * Qm=	83.5	cfs	
	00.0		

RECOMMENDED INSTREAM FLOW: _____

FLOW (CFS)	PERIOD

RATIONALE FOR RECOMMENDATION:

RECOMMENDATION BY:	AGENCY		DATE
CWCB REVIEW BY:		[DATE:

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	Henson Creek Just upstream from Blue Moon Mine 2			
DATE: OBSERVERS:	9-Oct-07 R. Smith, D. M	ſurphy		
1/4 SEC: SECTION: TWP: RANGE: PM:	NE 7 43N 5W NM			
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Lake Fork Gu 4 40624	nnison River		
USGS MAP: USFS MAP:	Uncompahgre 0	e Peak 7.5'		
SUPPLEMENTAL DATA		*** NOTE ***		
TAPE WT: TENSION:	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod		
CHANNEL PROFILE DATA	_			
SLOPE:	0.008			
INPUT DATA CHECKED B	Y:	DATE		
ASSIGNED TO:		DATE		

STREAM NAME:	Henson Creek
XS LOCATION:	Just upstream from Blue Moon Mine
XS NUMBER:	2

	#[26		
FEATURE		VERT	WATER	
	DIST	DEPTH	DEPTH	VEL
LS	0.00	4.64		
1 G	2.50	5.04		
W	3.00	6.02		
	4.00	6.20	0.20	0.00
	6.00	6.35	0.35	1.95
	8.00	6.75	0.75	1.84
	10.00	6.80	0.80	2.23
	12.00	6.70	0.70	2.16
	14.00	6.50	0.50	2.25
	16.00	6.70	0.70	2.02
	18.00	6.60	0.60	1.41
	20.00	6.55	0.55	2.61
	22.00	6.50	0.50	2.51
	24.00	6.45	0.45	1.83
	26.00	6.50	0.50	1.43
	28.00	6.40	0.40	0.96
	30.00	6.30	0.30	1.03
	32.00	6.40	0.40	1.04
	34.00	6.40	0.40	1.35
	36.00	6.45	0.45	1.70
	38.00	6.30	0.30	1.40
	40.00	6.25	0.25	0.20
	42.00	6.10	0.10	0.00
W	42.80	6.02		
G	44.70	5.04		
RS	49.00	4.18		

26 VALUES COMPUTED FROM RAW FIELD DATA

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
1.02	0.20	0.30	0.00	0.0%
2.01	0.35	0.70	1.37	4.3%
2.04	0.75	1.50	2.76	8.7%
2.00	0.80	1.60	3.57	11.3%
2.00	0.70	1.40	3.02	9.5%
2.01	0.50	1.00	2.25	7.1%
2.01	0.70	1.40	2.83	8.9%
2.00	0.60	1.20	1.69	5.3%
2.00	0.55	1.10	2.87	9.1%
2.00	0.50	1.00	2.51	7.9%
2.00	0.45	0.90	1.65	5.2%
2.00	0.50	1.00	1.43	4.5%
2.00	0.40	0.80	0.77	2.4%
2.00	0.30	0.60	0.62	1.9%
2.00	0.40	0.80	0.83	2.6%
2.00	0.40	0.80	1.08	3.4%
2.00	0.45	0.90	1.53	4.8%
2.01	0.30	0.60	0.84	2.6%
2.00	0.25	0.50	0.10	0.3%
2.01	0.10	0.14	0.00	0.0%
0.80		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%

TOTALS	39.91	0.8	18.24	31.71	100.0%
	((Max.)			
	Man	ning's n =		0.0454	
	Hydr	raulic Radius=	0.	456990105	

STREAM NAME:	Henson Creek
XS LOCATION:	Just upstream from Blue Moon Mine
XS NUMBER:	2

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	18.24	17.46	-4.3%
5.77	18.24	27.49	50.7%
5.79	18.24	26.68	46.3%
5.81	18.24	25.87	41.9%
5.83	18.24	25.07	37.4%
5.85	18.24	24.26	33.0%
5.87	18.24	23.46	28.6%
5.89	18.24	22.66	24.2%
5.91	18.24	21.86	19.8%
5.93	18.24	21.05	15.4%
5.95	18.24	20.25	11.0%
5.97	18.24	19.46	6.7%
5.98	18.24	19.06	4.5%
5.99	18.24	18.66	2.3%
6.00	18.24	18.26	0.1%
6.01	18.24	17.86	-2.1%
6.02	18.24	17.46	-4.3%
6.03	18.24	17.07	-6.4%
6.04	18.24	16.67	-8.6%
6.05	18.24	16.28	-10.8%
6.06	18.24	15.88	-12.9%
6.07	18.24	15.49	-15.1%
6.09	18.24	14.71	-19.3%
6.11	18.24	13.94	-23.6%
6.13	18.24	13.18	-27.7%
6.15	18.24	12.42	-31.9%
6.17	18.24	11.68	-36.0%
6.19	18.24	10.93	-40.1%
6.21	18.24	10.20	-44.1%
6.23	18.24	9.48	-48.0%
6.25	18.24	8.77	-51.9%
6.27	18.24	8.07	-55.7%

WATERLINE AT ZERO AREA ERROR =

6.000

STREAM NAME:Henson CreekXS LOCATION:Just upstream from Blue Moon MineXS NUMBER:2

Constant Manning's n

STAGING TABLE

 GL^* = lowest Grassline elevation corrected for sag WL^* = Waterline corrected for variations in field measured water surface elevations and sag

_	DIST TO WATER (FT)	TOP WIDTH (FT)	AVG. DEPTH (FT)	MAX. DEPTH (FT)	AREA (SQ FT)	WETTED PERIM. (FT)	PERCENT WET PERIM (%)	HYDR RADIUS (FT)	FLOW (CFS)	AVG. VELOCITY (FT/SEC)
GI *	5 04	42 20	1.37	1 76	57 64	43 15	100.0%	1.34	204 90	3 55
OL	5.05	42.20	1.36	1.70	57.20	43.10	99.9%	1.34	204.00	3 54
	5 10	42.05	1.31	1 70	55.09	42.95	99.5%	1.00	190.61	3 46
	5.15	41.93	1.26	1.65	53.00	42.79	99.2%	1.24	179.12	3.38
	5 20	41 81	1 22	1 60	50.90	42 62	98.8%	1 19	167.92	3 30
	5.25	41.68	1.17	1.55	48.81	42.46	98.4%	1.15	157.00	3.22
	5.30	41.56	1.12	1.50	46.73	42.29	98.0%	1.11	146.39	3.13
	5.35	41.44	1.08	1.45	44.66	42.13	97.6%	1.06	136.07	3.05
	5.40	41.32	1.03	1.40	42.59	41.96	97.2%	1.01	126.06	2.96
	5.45	41.19	0.98	1.35	40.53	41.80	96.9%	0.97	116.35	2.87
	5.50	41.07	0.94	1.30	38.47	41.63	96.5%	0.92	106.96	2.78
	5.55	40.95	0.89	1.25	36.42	41.46	96.1%	0.88	97.89	2.69
	5.60	40.83	0.84	1.20	34.38	41.30	95.7%	0.83	89.14	2.59
	5.65	40.70	0.79	1.15	32.34	41.13	95.3%	0.79	80.72	2.50
	5.70	40.58	0.75	1.10	30.30	40.97	94.9%	0.74	72.64	2.40
	5.75	40.46	0.70	1.05	28.28	40.80	94.6%	0.69	64.90	2.30
	5.80	40.34	0.65	1.00	26.26	40.64	94.2%	0.65	57.51	2.19
	5.85	40.22	0.60	0.95	24.24	40.47	93.8%	0.60	50.49	2.08
	5.90	40.09	0.55	0.90	22.24	40.31	93.4%	0.55	43.83	1.97
	5.95	39.97	0.51	0.85	20.24	40.14	93.0%	0.50	37.56	1.86
WL*	6.00	39.85	0.46	0.80	18.24	39.98	92.6%	0.46	31.68	1.74
	6.05	39.33	0.41	0.75	16.26	39.44	91.4%	0.41	26.39	1.62
	6.10	38.55	0.37	0.70	14.31	38.65	89.6%	0.37	21.62	1.51
	6.15	37.60	0.33	0.65	12.41	37.70	87.4%	0.33	17.33	1.40
	6.20	36.65	0.29	0.60	10.55	36.74	85.2%	0.29	13.45	1.28
	6.25	35.31	0.25	0.55	8.75	35.39	82.0%	0.25	10.10	1.15
	6.30	32.64	0.22	0.50	7.05	32.72	75.8%	0.22	7.43	1.05
	6.35	29.31	0.19	0.45	5.50	29.38	68.1%	0.19	5.28	0.96
	6.40	24.38	0.17	0.40	4.11	24.45	56.7%	0.17	3.67	0.89
	6.45	20.45	0.15	0.35	2.99	20.51	47.5%	0.15	2.43	0.81
	6.50	15.22	0.14	0.30	2.10	15.27	35.4%	0.14	1.64	0.78
	6.55	11.97	0.12	0.25	1.42	12.01	27.8%	0.12	1.00	0.71
	6.60	8.73	0.10	0.20	0.90	8.76	20.3%	0.10	0.58	0.64
	6.65	6.48	0.08	0.15	0.52	6.50	15.1%	0.08	0.28	0.55
	6.70	4.24	0.06	0.10	0.25	4.25	9.8%	0.06	0.11	0.45
	6.75	2.97	0.02	0.05	0.07	2.97	6.9%	0.02	0.02	0.25

STREAM NAME:	Henson Creek
XS LOCATION:	Just upstream from Blue Moon Mine
XS NUMBER:	2

SUMMARY SHEET

MEASURED FLOW (Qm)=	31.71	cfs	RECOMMENDED INST	REAM FLOW:
CALCULATED FLOW (Qc)=	31.68	cfs		
(Qm-Qc)/Qm * 100 =	0.1	%		
			FLOW (CFS)	PERIC
MEASURED WATERLINE (WLm)=	6.02	ft		=====
CALCULATED WATERLINE (WLc)=	6.00	ft		
(WLm-WLc)/WLm * 100 =	0.3	%		
MAX MEASURED DEPTH (Dm)=	0.80	ft		
MAX CALCULATED DEPTH (Dc)=	0.80	ft		
(Dm-Dc)/Dm * 100	0.1	%		
MEAN VELOCITY=	1.74	ft/sec		
MANNING'S N=	0.045			
SLOPE=	0.008	ft/ft		
.4 * Qm =	12.7	cfs		
2.5 * Qm=	79.3	cfs		

LOW:

FLOW (CFS)	PERIOD

RATIONALE FOR RECOMMENDATION:

RECOMMENDATION BY:	AGENCY	DATE:
CWCB REVIEW BY:		DATE:

