

Energy development water needs assessment and water supply alternatives analysis

Yampa River Basin Roundtable Meeting July 21, 2010

Phase I Oil Shale Industry Production Scenarios

Level of Development – Oil Shale

Time Frame	ime Frame Low Medium		High	
Short-term (2007 – 2017)	R & D	None	None	
Mid-term	None	Surface: 50,000 bbl/day	Surface: 50,000 bbl/day	
(2018 – 2035)		In situ: 25,000 bbl/day	In-situ: 500,000 bbl/day	
Long-term	None	Surface: 50,000 bbl/day	Surface: 50,000 bbl/day	
(2036 – 2050)		In-situ: 150,000 bbl/day	In-situ: 1,500,000 bbl/day	

- Phase I timeframes unrealistically short
- Use Athabasca oil sands as a reasonable analog to development of an oil shale industry in the Piceance basin
- Initial field demonstration of technical feasibility for one or more in situ technologies would occur by 2015
 - initial technical feasibility of above-ground retorting has likely already been established
- Initial commercial production would occur 20 years later (compared to the 17-year period prior to development of first commercial production at the Athabasca oil sands)

Evaluation of Scenarios for Piceance Basin Oil Shale Industry

	Timeframe for Development	
	Phase I	Projected Scenario
Field demonstration of technical feasibility		2015
Initial commercial production, 50,000 barrels/day		2035
550,000 barrels/day	2018 – 2035	2053 - 2060
1,550,000 barrels/day	2036 – 2050	2061 - 2071

Planning Scenario

- Sub-committee decided to use a "build-out" scenario
- Adopted the High, Long-term scenario from Phase I
 - 1,500,000 bbl/day in situ
 - 50,000 bbl/day above-ground

- Construction/Pre-production
- Electrical Energy
 - Assumed use of Combined Cycle Gas Turbines near production
 - Use of coal-fired thermal generation is not very likely
- Production
 - Assumed that by-product water produced by retorting would be treated and used for process purposes, thus offsetting some water needs.
- Reclamation
- Spent Shale Disposal
- Upgrading
 - Evaluated several alternative assumptions regarding the level of water use for upgrading and the location
 - Upgrading might be done locally or outside the study area.

Oil Shale Development Direct Water Use Estimates (bbl/bbl)

	In-situ Retorting		Above-Ground Retorting	
	Low	High	Low	High
Construction/Pre-production	0.02	0.16	0.01	0.07
Electrical Energy	0.41	1.00	0.17	0.26
Production			0.47	0.47
Reclamation	0.45	0.54	0.02	0.17
Spent Shale Disposal			0.80	1.60
Upgrading	0.57	1.60	0.60	1.60

Estimates of Water Co-Produced when Retorting Oil Shale (bbl/bbl)

In-situ Retorting	Above-Ground Retorting
0.80	0.30

Oil Shale Development Indirect Water Use

- Water required to support population growth and economic activity due to oil shale development
- Consistency with IBCC process employment/population estimates from Harvey Economics
- Will be refined in Phase II to specific areas:
 - Garfield County
 - Mesa County
 - Rio Blanco County

Process	Employment	Percent of Employment
In situ	14,375	84%
Above-Ground	1,920	11%
Energy generation	800	5%
Total Oil Shale	17,095	100%

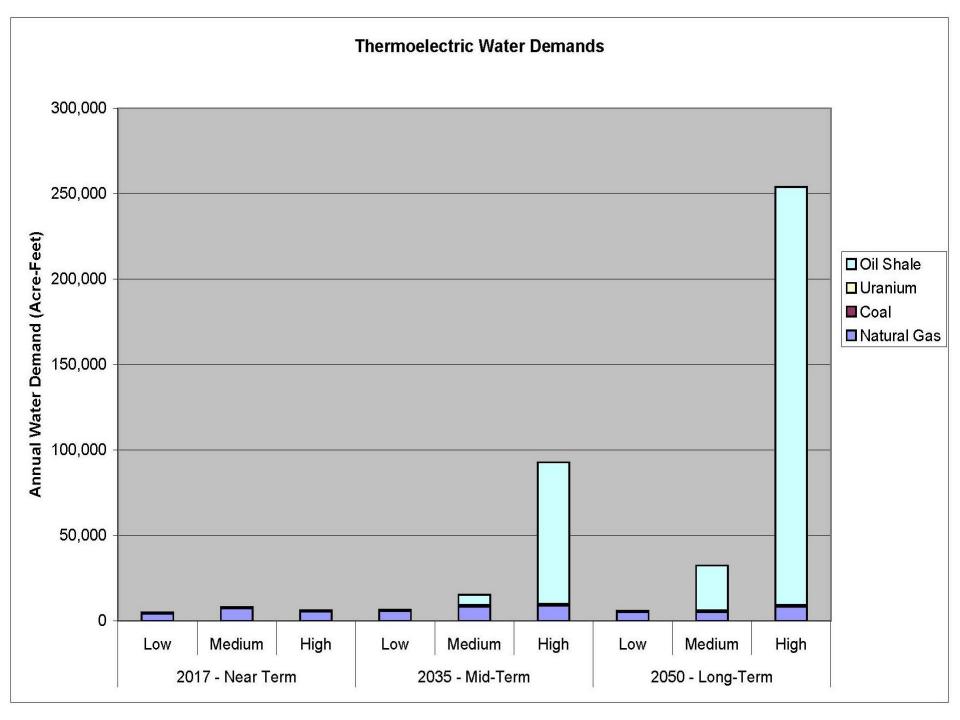
Source: Harvey Economics, 2010; Year 32

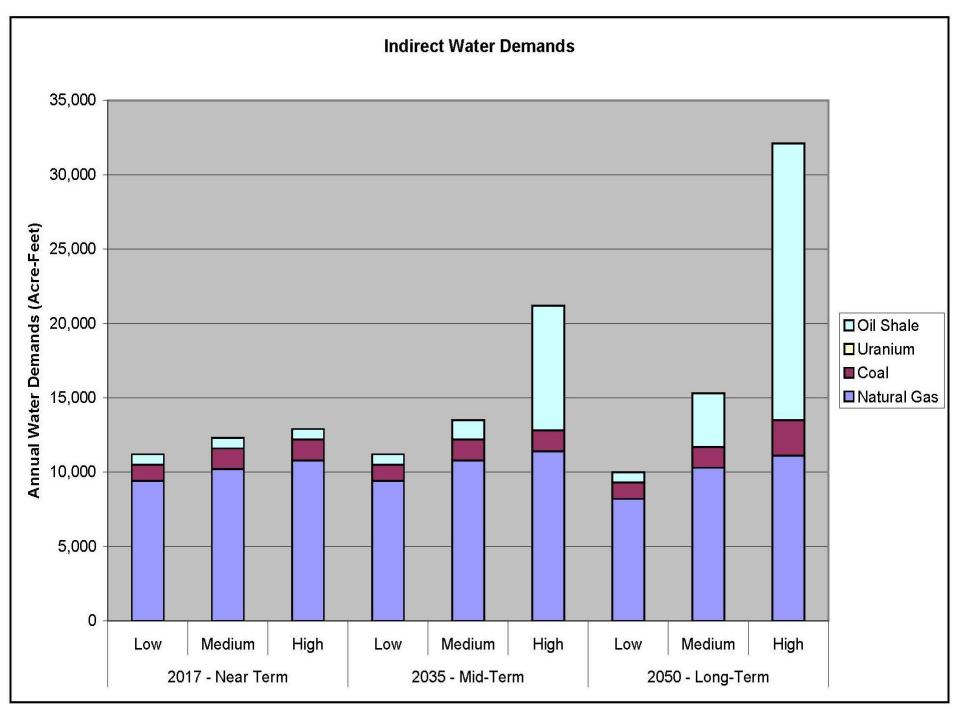
Oil Shale Development Indirect Water Use Estimates

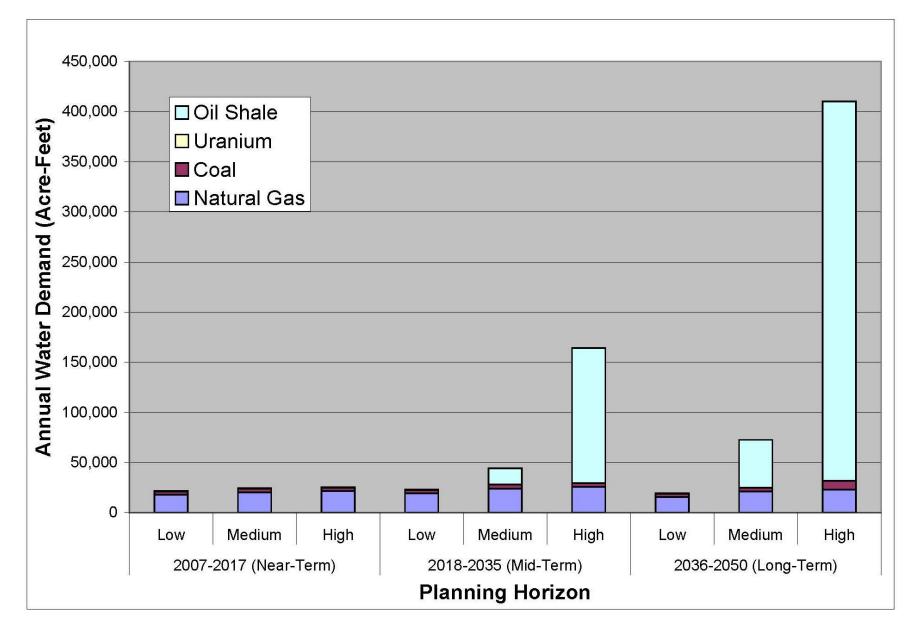
Assumptions:

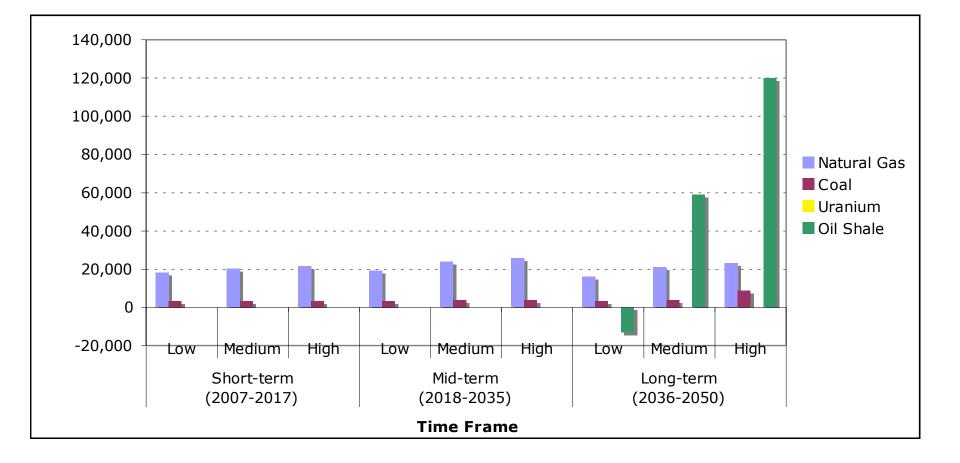
- Direct workforce water use: 100 gallons per-capita per day (gpcd)
- Indirect workforce water use: 200 gpcd
- Energy generation Direct workforce: 200 gpcd
 - -Assumed to be living off-site
- Water required for electricity generation to support population growth not included
 - Assumed to come from the grid

Oil Shale Development Indirect Water Use Estimates




	In-situ Retorting		Above-Ground Retorting	
	bbl/bbl	acre-feet per year	bbl/bbl	acre-feet per year
Construction and Production	0.11	7,800	0.42	990
Electrical Energy	0.007	490	0.002	4.9


- Production Scenarios and Water Demands for Natural Gas, Uranium and Coal development are the same as in Phase I
- Production Scenarios and Water Demands for Oil shale development are being refined in Phase II



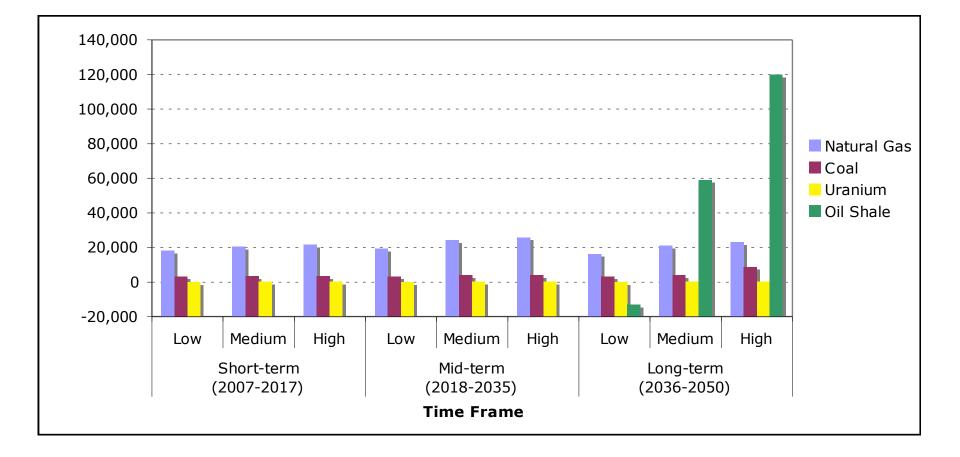
Total Water Demands

Summary of Phase II Total Water Demands

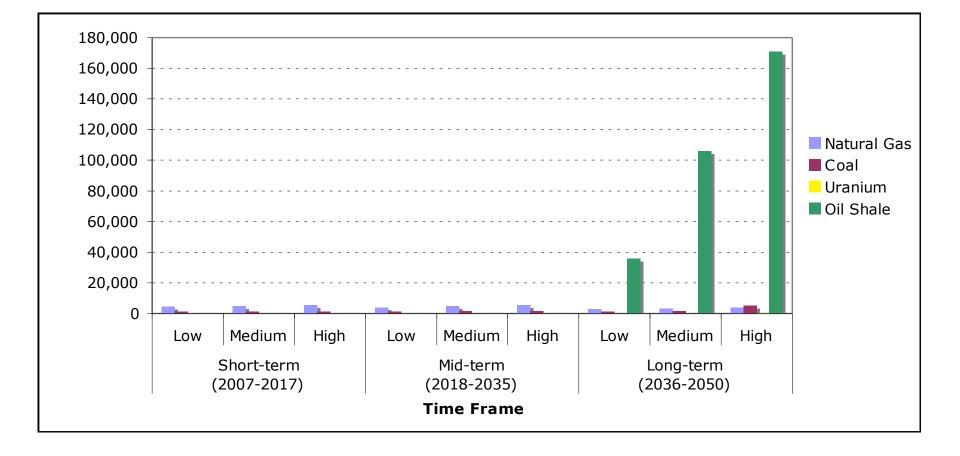
In Situ Industry Configurations and Total Unit Water Use

In Situ Scenario	Scenario Description	Unit Use (bbl/bbl)	Comments
IS-1	Down-hole combustion heating off-site upgrading. Low estimates.	-0.22	Without energy direct use or use by energy workforce; no upgrading use.
IS-2	Down-hole combustion heating, off-site upgrading. High estimates.	0.01	Without energy direct use or use by energy workforce.
IS-3	Shell in situ conversion process (ICP), off- site upgrading. Low estimates.	0.20	Without energy direct use or use by energy workforce; no upgrading use.
IS-4	Shell ICP, on-site upgrading. Low estimates.	0.77	Based on low estimates of electricity use and other process water uses. ICP will likely require less intensive upgrading.
IS-5	Shell ICP, off-site upgrading. High estimates.	1.02	Based on high estimates of electricity use and other process water uses.
IS-6	Down-hole combustion heating on-site upgrading. High estimates.	1.61	Based on high estimates of process water uses. No electrical heating. Combustion- based processes are more likely to require more upgrading. Highest combustion value.
IS-7	Shell ICP, on-site upgrading. High process, low upgrading.	1.59	Uses low estimate of upgrading, as ICP process is more likely to require less upgrading. Otherwise uses high estimates. Highest ICP value.

Above-Ground Industry Configurations and Total Unit Water Use



Above- Ground Scenario	Scenario Description	Unit Use (bbl/bbl)	Comments
AG-1	Off-site electricity, off-site upgrading. Low estimates	1.41	Seems a likely possibility, if above-ground product is compatible with down-hole in situ product; small electricity demands can be met from grid. Use with down-hole in-situ.
AG-2	Off-site electricity, on-site upgrading. Low estimates	2.01	Likely that above-ground retort product will require more intensive upgrading, so this estimate may be low. Use with ICP.
AG-3	On-site electricity, on-site upgrading. Low estimates	2.18	Use co-produced gas for on-site combined cycle gas turbine (CCGT). Likely that above-ground retort product will require more intensive upgrading, so this estimate may be low. Use with ICP.
AG-4	Off-site electricity, off-site upgrading. High estimates	2.43	Seems a likely possibility, if Above-Ground product is compatible with down-hole in situ; small electricity demands can be from grid. Use with down-hole in situ method.
AG-5	Off-site electricity, on-site upgrading. High estimates	4.03	Seems a likely possibility with ICP in situ, since the small above-ground production might require on-site upgrading; small electricity demands can be from grid. Use with ICP.
AG-6	On-site electricity, on-site upgrading High estimates,	4.29	Use co-produced gas for on-site CCGT. Use with ICP.


Scenario	Unit Use	Industry Water Use, acre-feet/year			
Scenano	(bbl/bbl)	Low	Medium	High	
IS-1	-0.22	-16,000			
IS-4	0.77		54,000		
IS-7	1.59			110,000	
AG-1	1.41	3,300			
AG-3	2.18		5,100		
AG-6	4.29			10,000	
Total		-13,000	59,000	120,000	

Summary of Phase II Total Water Demands

Summary of Phase II Direct Water Demands

