<u>Stream</u>: Little Cottonwood Creek

Executive Summary

Water Division: 6 Water District: 44 CDOW#: 21185 CWCB ID#: 06/06/A-012

<u>Segment</u>: Headwaters to Freeman Reservoir

 Upper Terminus: Headwaters

 Latitude: 40d46'34.85"N
 Longitude: 107d24'11.73"W

 UTM North: 4516708.793
 UTM East: 297191.841

 NE1/4, SW1/4, Sctn32, T10N, R89W, 6th pm

 2167 ft, E of the W Section Line, 1397 ft, N of the S Section Line

Lower Terminus: 200 Feet Upstream of Freeman Reservoir

Latitude: 40d45'55.02"N Longitude: 107d25'19.2"W UTM North: 4515523.965 UTM East: 295576.225 NE1/4, SW1/4, Sctn6, T9N, R89W, 6th PM 1638 ft, E of the W Section, 2715 ft, N of the S Section Line Counties: Moffat Length: 1.45 miles USGS Quad(s): Freeman Reservoir ISF Appropriation: 0.70 cfs (05/01 – 07/31) 0.35 cfs (08/01 – 12/14) 0.20 cfs (12/15 – 04/30)

Little Cottonwood Creek

Summary

The information contained in this report and the associated instream flow file folder forms the basis for the instream flow recommendation to be considered by the Board. It is staff's opinion that the information contained in this report is sufficient to support the findings required in Rule 5 i.

Colorado's Instream Flow Program was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (see 37-92-102 (3) C.R.S.). The statute vests the CWCB with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's Instream Flow Program, the statute directs the CWCB to request instream flow recommendations from other state and federal agencies. The Colorado Division of Wildlife (CDOW) recommended this segment of Little Cottonwood Creek to the CWCB for inclusion into the Instream Flow Program. Little Cottonwood Creek is being considered for inclusion into the Instream Flow Program because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right.

The CDOW is forwarding this stream flow recommendation to the CWCB to meet the State of Colorado's policy "... that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities" C.R.S. 33-1-101 (1). The CDOW Strategic Plan states "Healthy aquatic environments are essential to maintain healthy and viable fisheries, and critical for self-sustaining populations. The Division desires to protect and enhance the quality and quantity of aquatic habitats."

Little Cottonwood Creek is approximately 10.5 miles long. It begins on the southeast side of Black Mountain at an elevation of approximately 9800 feet and terminates at the confluence with Fortification Creek at an elevation of approximately 6500 feet. Of the 1.7 mile segment addressed by this report, 100% of the segment, or 1.7 miles, is located on public lands. Little Cottonwood Creek is located within Moffat County. The total drainage area of Little Cottonwood Creek is approximately 9.0 square miles. The Little Cottonwood Creek generally flows in a westerly direction.

The subject of this report is a segment of the Little Cottonwood Creek beginning at its headwaters and extending downstream to Freeman Reservoir. The proposed segment is located northeast of the Town of Craig. The staff has received one recommendation for this segment from the CDOW. The recommendation for this segment is discussed below.

Instream Flow Recommendation(s)

The CDOW has recommended 0.7 cfs year-round, based on their data collection efforts (see Table 1 and Appendix A). The modeling results from this survey effort are within the confidence interval produced by the R2CROSS model.

Land Status Review

		Total Length Land Owr		nership
Upper Terminus	Lower Terminus	(miles)	% Private	% Public
Headwaters	Freeman Reservoir	1.45	0%	100%

100% of the public lands are owned by the USFS.

Biological and Field Survey Data

As reported in the letter from CDOW to the CWCB "The DOW, in October of 1997, collected stream cross section information, natural environment data, and other data needed to quantify the instream flow needs for this reach of Little Cottonwood Creek. Little Cottonwood Creek is classified as a minor stream (between 4 to 9 feet wide) and fishery surveys indicate the stream environment of Little Cottonwood Creek supports Colorado River cutthroat trout (*Salmo clarki pleuriticus*).

Colorado River cutthroat trout have been identified by the DOW and several other state and federal agencies as "species of greatest conservation need". DOW is involved in developing

Conservation and Management Plans for these species. The intention of these plans is to increase populations and distributions of identified species, thereby assisting in the long-term persistence of each species. The success of such plans could potentially curtail the need for federal listing of these species under the Endangered Species Act (ESA). These species are not currently federally listed" (See CDOW Fish Survey in Appendix B).

Field Survey Data

CDOW staff used the R2CROSS methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. The R2CROSS method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should streamflow cease. This type of hydraulic data collection consists of setting up a transect, surveying the stream channel geometry, and measuring the stream discharge. Appendix B contains copies of field data collected for this proposed segment.

Biological Flow Recommendation

The CWCB staff relied upon the biological expertise of the cooperating agencies to interpret output from the R2CROSS data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

For this segment of stream, two data sets were collected with the results shown in Table 1 below. Table 1 shows who collected the data (Party), the date the data was collected (October 1997), the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's Equation (240% and 40% of Q), the summer flow recommendation based on meeting 3 of 3 hydraulic criteria and the winter flow recommendation based upon 2 of 3 hydraulic criteria.

Party	Date	Q	250%-40%	Summer (3/3)	Winter (2/3)				
DOW	10/16/1997	0.48	1.2 - 0.2	$2.0^{(1)}$	1.6 ⁽¹⁾				
DOW	10/16/1997	1.20	3.0 - 0.5	?	0.7				
DOWN DIVI	0 77 711 111 0								

Table 1: Data

DOW = Division of Wildlife

(1) Predicted flow outside of the accuracy range of Manning's Equation. ? = Criteria never met in R2CROSS Staging Table.

Biologic Flow Recommendation

Both summer flow recommendations, which met 3 of 3 criteria and were outside the accuracy range of the R2CROSS model (See Table 1). The winter flow recommendation, which met 2 of 3 criteria and is within the accuracy range of the R2CROSS model range is 0.7 cfs (See Table 1).

Hydrologic Data

After receiving the cooperating agency's biologic recommendation, the CWCB staff conducted an evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation. Because there are no existing stream gages on Little Cottonwood Creek the next best approach is to look at the flow records of nearby streams with stream gage records. In this case Granite Creek (USGS Gage 9238770) and Middle Fork Fish Creek (USGS Gage 9238750) were the closest gaged streams with similar watershed aspects, drainage areas, and elevation. These creeks have drainage areas of 1.37 square miles and 2.82 square miles, respectively, and 12 years of stream gage record each, from 1984-1995. The hydrograph below was derived by apportioning the averaged stream flow from these basins, using a drainage area ratio. The total drainage area of Little Cottonwood Creek is approximately 1.42 square miles.

Based on this analysis, the hydrograph shows that the summer flow recommendation of 0.7 cfs is available only from May 1 to July 31. Table 2 below displays the estimated average monthly stream flow in Little Cottonwood Creek.

Table 2: Estimated Stream Flow for Little Cottonwood Creek												
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
CFS	0.22	0.21	0.24	0.37	5.86	23.03	2.04	0.47	0.34	0.36	0.40	0.31

Table 2 shows that the year round flow recommendation of 0.7 cfs is available at least 50% of the time for the month of May 1st through July 31st. The winter flow recommendation of 0.7 cfs is not available at least 50% of the time from August 1st through April 30th. Based on water availability, the winter flow recommendation was further reduced to 0.35 cfs for the time period of August 1st through December 14th and 0.2 cfs December 15th through April 30th.

Precipitation Data

Staff reviewed a local precipitation data set from one site located around the Granite Creek and Middle Fork Fish Creek Drainages (See Precipitation Data in Appendix C). Table 3 shows the water year and the percent of average precipitation recorded at each site. It is staff's opinion that the 12 years of stream-flow data analyzed is representative of average water-years.

	Elevation = 7890
	Lat 40 09
	Long 106 54
Year	Yampa 59265
1984	93.6%
1985	108.7%
1986	89.6%
1987	74.0%
1988	101.8%
1989	102.4%
1991	110.3%
1992	92.4%
1993	92.0%
1994	No data
1995	No data
Average	96.1%

 Table 3: Precipitation Data as a percentage of Average

Existing Water Right Information

Staff has analyzed the water rights tabulation and consulted with the Division Engineer's Office (DEO) to identify any potential water availability problems. Records indicate there are no intervening surface water diversions located within this reach of Little Cottonwood Creek. According to the DEO, there is usually sufficient water available within this stream reach to satisfy the recommended instream flow amount. Based on this analysis, staff has determined that water is available for appropriation on Little Cottonwood Creek, from the headwaters to Freeman Reservoir, to preserve the natural environment to a reasonable degree without limiting or foreclosing the exercise of valid existing water rights.

Little Cottonwood Creek

CWCB Staff's Instream Flow Recommendation

Based on the CDOW recommendation, staff recommends the Board form its intent to appropriate on the following stream reach:

Segment: Headwaters to Freeman Reservoir

Upper Terminus: Headwaters Latitude: 40d46'34.85"N Longitude: 107d24'11.73"W UTM North: 4516708.793 UTM East: 297191.841 NE1/4, SW1/4, Sctn32, T10N, R89W, 6th pm 2167 ft, E of the W Section Line, 1397 ft, N of the S Section Line

Lower Terminus: 200 Feet Upstream of Freeman Reservoir

Latitude: 40d45'55.02"N Longitude: 107d25'19.2"W UTM North: 4515523.965 UTM East: 295576.225 NE1/4, SW1/4, Sctn6, T9N, R89W, 6th PM 1638 ft, E of the W Section, 2715 ft, N of the S Section Line Counties: Moffat Length: 1.45 miles USGS Quad(s): Freeman Reservoir ISF Appropriation: 0.70 cfs (05/01 – 07/31) 0.35 cfs (08/01 – 12/14) 0.20 cfs (12/15 – 04/30) APPENDIX – A ISF Recommendation

STATE OF COLORADO

Bill Owens, Governor DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE AN EQUAL OPPORTUNITY EMPLOYER

Bruce McCloskey, Director 6060 Broadway Denver, Colorado 80216 Telephone (303) 297-1192

December 15, 2005

Mr. Dan Merriman and Mr. Todd Doherty Colorado Water Conservation Board Stream and Lake Protection Section 1313 Sherman Street, Room 723 Denver, Colorado 80203

Re: Colorado Division of Wildlife Instream Flow Recommendations for Little Cottonwood Creek.

Dear Dan and Todd,

The purpose of this letter is to officially transmit the Colorado Division of Wildlife's (DOW) Instream Flow Recommendations for Little Cottonwood Creek in Moffat County. The reach of stream covered by this flow recommendation is from the headwaters of Little Cottonwood Creek to the inlet of Freeman Reservoir, a distance of approximately 1.5 miles.

The DOW, in October of 1997, collected stream cross section information, natural environment data, and other data needed to quantify the instream flow needs for this reach of Little Cottonwood Creek. Little Cottonwood Creek is classified as a minor stream (between 4 to 9 feet wide) and fishery surveys indicate the stream environment of Little Cottonwood Creek supports Colorado River cutthroat trout (Salmo clarki pleuriticus)

Colorado River cutthroat trout have been identified by the DOW and several other state and federal agencies as "species of greatest conservation need". DOW is involved in developing Conservation and Management Plans for these species. The intention of these plans is to increase populations and distributions of identified species, thereby assisting in the long-term persistence of each species. The success of such plans could potentially curtail the need for federal listing of these species under the Endangered Species Act (ESA). These species are not currently federally listed."

The stream cross section data was analyzed using the R2CROSS program. The R2CROSS output was evaluated using the methods described in Nehring (1979) and Espegren (1996). The CDOW has reviewed the data collected to date and based on that review recommends that the CWCB appropriated the following flow amounts to preserve the natural environment of Little Cottonwood Creek to a reasonable degree:

APPENDIX – B Field Data

•	COLORADO WATER CONSERVATION BOARD	•
• INS	TREAM FLOW / NATURAL LAKE LEVEL PROGRAM	•
• 9	TREAM CROSS SECTION AND FLOW ANALYSIS	•
LOCATION INFORMATIC	20	
	-	
STREAM NAME	LUTLE COTIONNOC CK	
XS LOCATION	200 YDS U/S OF FREEMAN RESERVOTS	
XS NUMBER	1	
PATE	10/:0/57	
OBSERVERS	ESPEGREN, UPFENDAHL, TA	
1/4 BEC		
SECTION		
TWP		
RANGE		
5M		
COUNTY	MOFFAT	
WATERSHED	FORTIFICATION CK	
DIVISION	÷	
DOM CODE	21185	
USGS MAP	FREEMAN RESERVOIR	
CEFS MAR	KOUTT N F	
SUEPLEMENTAL DATA	ATT NOTE	
	Leave TAPE WT and TENSION	
	at defaults for data collected	
TAPE WT	0 0106 with a survey level and rod	
TENSION	17 5	
CHANNEL PROFILE DATA	N	
SLOPE	0 026	
INFUT DATA CHECKED B	Ŷ	DATE
ASSIGNED TO		DATE .

- ..

.

DATE .

.

	STREAM NAME		LITTLE	COTTON	юор ск	
	X5 LOCATION		200 YDS	u/s 0	FREFMAN	RESERVOIR
	XS NUMBER		:			
			-			
	INFUT DATA		# DAIA	FOINTS	•	28
	FEATURE		V5	P1	WATER	
		UIST	DEF	тк	DEPTH	VEL
	S	0 ú∩	э	50	0 00	0 00
1	G	1.00	1	30	0 00	0,00
		1 30	:	25	0 00	0.00
		3 00	1	95	0 00	0 00
	×	۵۴ د	2	00	0 00	0 0 0
		4 DC	2	U Š	C ((S	000
		4 30	2	15	0 10	0,00
		4 50	2	1.5	0 10	ΰ 51
		4 90	2	20	C 20	0 16
		5 20	2	15	0.15	0.74
		5 50	2	15	Ú 15	1 17
		5 80	7	10	0 10	C 91
		6 10	2	20	0 20	1 11
		6 40	2	15	0 15	167
		670	2	15	0 15	1 69
		7 00	2	20	0 20	1 43
	BX	/ 30	2	15	0 15	0.55
	PR .	7 60	2	15	U 15	0 03
) 90	2	10	0 10	C 10
	RR	8 20	2	15	0 15	0 25
		8 50	2	15	1 15	0.25
		8 80	2	10	Ú 10	5 07
	ĸ	9 10	2	00	0 00	0.00
		10 00	-	85	0 0 0	0.00
		11 00	1	6-	0.00	0 00
۱	0	11 70	1	40	0 00	0 00
		12.06	ċ	BU	0 0 0	r) Su
	s	14 10	0	1 0	2 00	Ú 03

TOTALS -----

- -----

_

WETTED	WATER	APEA	Ç.	N Q
PFRIM	DEPTH	(Am)	(Qm)	CEUI.
			•••• •• ••	
n ú0	0 ÚC	0.00	0 CO	0.0
n 00	0 00	0 00	U CO	0.0
0 00	C 00	0 CC	C 00	Ú Ú
0 00	0 00	0 00	0.00	C C
0 00	0 00	0.00	3 30	ن ن ا
0 60	C 05	0.02	0.00	0.0
0 32	0 10	0.03	c oo	0 Q
0 20	0 10	0 03	0 UZ	7 د
0 3Ú	C 20	0.05	0 01	2.0
06 0	0.15	0.05	0 63	5.9
0 30	0 15	0 05	n 95	10 9
0.20	2 10	0 00	\$ 53	5 /
0 32	0 20	0.06	0 07	13 A
0، 0	0 15	0.05	0.08	15 6
0 30	0 15	0.05	6 O B	15 8
0.10	0 20	0 06	0 09	17 å
ù 30	0.35	0.05	0 Ul	7.5
0 30	0.15	0.05	0 QC	6.3
0 30	0 10	0 03	Q.00	0.6
0 30	0 15	0 05	0 01	7 3
0.30	C 15	0.05	ດ ປາ	2 3
0.30	0.10	0.03	0.00	6.4
0.35	0.00	0 00	0 00	0.0
ύ ΩΟ	0 0 0	0 00	3 00	0.0
0 CC	0 00	0 00	C 00	ΰn
c cc	0 00	0 00	C 00	0.0
C 00	5 65	0.00	0.00	0.0
0 ÚC	ი აა	U (CÚ	U 00	:: 0
5 7 <u>3</u>	07	0 /1	Ŭ 48	100 0
	(Max)			

Manning's n - 0.0877

-

5. R	FAM NAME	LITTLE COTTONWOOD CK						
XS .	LOCATION	700	YDS	U/S	0F	FREEMAN	RESERVO	
YS I	NUMBER	1						

.

WAYER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERKOR
1 76	C 73	Z 79	291 St
: 76	0 71	7 60	265.6%
1 60	0 71	2 42	240 01
1 82	5 /1	2 24	224 78
! 04	0 71	2 06	189-24
1 86	0 71	1 89	165 0%
. 85	0 71	1 71	140 64
1 90	C 71	1 54	116 68
1 92	Ú 71	1 37	93.u¥
1 94	0 71	1.21	69 78
1 96	9 /1	2.05	47.95
. 7	Ú /1	0 99	37 18
1 98	C 71	5 93	30 48
1 99	071	0.87	21 91
7 60	ר ט	0 81	13 61
2 01	0 71	0.75	5.51
2 02	Ç 71	¢ 70	-248
2 03	0 /1	0.64	10 8%
2 04	J 71	r 59	-17.54
2 05	0 71	0 54	-24 81
2 06	0 71	0 49	31 81
2.05	0 71	C 39	-45 61
2 10	0 71	0 29	-59 01
2 12	0 /1	¢ 20	1 9
∠ 14	0 71	0 12	44 ذ8
. 16	0 73	0 ng.	-93-28
Э	U 71	0 02	-97 61
2 20	ול כ	0 00	-99 71
2 72	0 7 <u>1</u>	0 00	-100 CN
2 24	0 /1	0 00	-100 0%
26	0 7 <u>1</u>	0 00	-100 01
	WATERLINE /	T ZERO	
	AREA ERROR	-	2 019

--

-

STARAM NAME LITTLE COTTONWOOD CK X5 GACATION 200 YES U/S OF FREEMAN RESERVOIR X5 NUMBER)

9	TAGING TAB	•G: •E: •W!	.• - lowest .• = Waterl.	Crassline .ne correct	elevation c ed for var.	orrested fo ations in f	r sag ield measure	2d water su:	sface eleva	ations and sag

	91 57 TO	102	AVG	MAX.		NE LIFED	PERCENT	HYDR		AVG
	SATE:	REDER	DEPTH	DEFTH	AREA	PERIM	WET PER	PADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	ΈŢ)	(SQ FT)	(57)	:1;	(PT)	(CFS)	(77. 1880)
•		~ ``								
• 1.	1 4:	6.6.55	0.60	C 61	6 ⁻ 4	11 17	200.0%	2,37	11 90	· • •
	: 4:	10 62	0.59	0 8 O	6 23	11 13	97 68	J 55	11 57	1.86
	1 67	10 45	n 55	0 75	5 75	10/92)7 8 %	0 52	10 11	. 17
	1 52	10 29	0.50	0 70	5 18	10 72	96 0%	5 46	873	1 66
	1 57	10 13	0 46	0 65	4 67	10 52	94 21	0 44	7 44	1.59
	1 60	5.97	0.42	0 60	4 17	10 31	92.38	0 40	6 23	1 4?
	1.57	9 79	0 J8	0.55	3 68	10.09	90.4%	6 36	5 12	قد 1
	1 72	9 52	0.34	0 50	3 19	5,79	87 61	0 33	4 14	2 30
	1 77	9 25	0 2€	0.65	2 72	5 4 R	et 0%	U 29	. 24	1 1.9
	: 81	8 78	0.25	0.40	7.27	9 17	82 18	0 25	2 44	1 03 7
	1 67	8 7 Ú	10 21	0 16	2.83	8 36	79 38	0 21	1 74 .	10 VE /
	2 22	5 38	أحدوك	0 30	1.40	8 50	76 :1	0 15	1 15	0.92
	: 97	6 29	0 16	0 25	1.03	6 39	57 23	0 16	с ві	r: £0
•85•	7 92	5 58	0 13	6 20	0.71	5 67	50 81	0 13	Ú 46	0.69
	2 97	4 91	0 09	0.15	0.45	6 93	\$5 78	0.09	0 2s	0.55
	2 12	4 50	0 05	0 10	. 21 1	6 56	40.9%	0.05	С 116	0 36
	2 17	1 49	0.02	0.05	0 03	2.51	12 58	5 62	0.01	: 2)

$$\frac{2}{2} = 2.0 \text{ m}^{-1}$$

STREAM NAME	LITTLE COTTONNOOD CK					
XS LOCATION	200 YOS U/S OF FREEMAN RESERVOIR					
XS NUMBER	:					

SUMMARY SHEET

MEASURED FLOW (On)	0.46 rfs RECOMMENDED INSTREAM FLOW				
CALCULATED FIOW (Qc) =	6 49 cfs				
(Qm-Qu)/Qm + 100 =	-1.3 %				
		FLOW (CES)	PERTOD		
MEASURED WATERLINE (WIM) -	2 01 57				
CALCULATED WATERLINE (WLc) =	1 02 ft				
(Kim Wike)/Wike = 100 =	-0.3 🕯		· · · · · · · · · · · · · · · · · · ·		
MAX MFASURED DEPTH (Dm) =	0 20 ft				
MAX CALCULATED DEPTH (Dc)+	U 20 EL				
(im-Dt:/Dm + 100	2.2 %				
MEAN VELOCITY.	0 69 St/sec				
MANNING S N=	0.088	·			
SLOPF.	0 026 ft/ft				
4 • Cor =	0 C ofs				
2 5 • 2	1 2 cfs				

RATIONALE FOR RECOMMENDATION

_____ _____ --- -____ __ __ __ __ __ __ __ __ _ __ __ _ _ _ _ _ _ _ - _- __ __ __ _____ _____ -----_____ _ ____ _.___ ___ ____ __ ___ __ _____ - --____ ____._ ------ ____ ___ ___ ___ - --- . _____ - --_____ ____ _____ _ _ ____ _ __ __ __ __ __ ... ____ _ ..__ _ _____ - ____ ______ _ ___ .___ .___ .___ .___ .___ .___ .___ - _____ _____ _____ _____ ____ __ - __ _ __ __. -----_____ - -- ---_..__ __ _ _ ___ .__ .___ _ ___ _ ___ _ ___ _ - -- --_ ____ _ - -____. _ . _ _ _ _

RECOMMENDATION BY

AGENCY

.

DATE

OWCB REVIEW BY

DATE

PROOF SHEET

LOCATION INFORMATION		INPUT: DATA		# DATA POINTS-			25			

		FEATURE		VE:	87	WATER				TAFE IN
STREAM NAME	LITTLE COTTONWOOD CK		DIST	DEP	тн	DEPTR	VEL	A	c	WATER
XS LOCATION	200 YDS U/S OF FREEMAN RESERVOIR				*****					
XS SUMBER	1	5	0 00) D	50	0 00	U 00	0.00	0.00	C (1)
		13	1 00	1.	30	00 0	0 00	0.00	n eo	6) (C
DATE	10/16/97		1.30	: 1	45 1	0 00	0.00	0 00	0 AC	a 05
OBSERVERS	ESPEGREN, UPPENDAHL, IA		3 00	1	95	0 0 C	0.00	0.00	0 00	0.00
		ĸ	3 40	2	υC	C 00	n ()n	0 00	n an	5 92
1/4 SFC			4 00	2	ព ន	0 05	0 00	0 02	U 60	2 01
SECTION			4 30	2	15	2 10	0.00	0 03	0.00	2 66
(Tel)			4 60	2	15	0 10	0.51	0 03	0 02	2.06
FANGE			4 90	2 :	20	C 20	0-16	0.06	0.91	2 (1
I'M			5 20	2	15	U 15	6 74	0.05	0 07	2.2.
			5 50	2	15	U 15	1 17	n 05	0.05	2 01
0.001014	MUFFAT		5 8 0	2	រប	0.20	0.91	C 03	0.03	3 01
WATERSHED	PORTIFICATION CK		6 10		10	6 20	1 31	0.06	U CC	2 01
DIVISION	£		640	2	15	0.15	1 €1	J 75	с ск	2 01
10.4 CCDL	21185		6 70	2	25	0.05	161	0.05	0.08	2 01
			7 00		20	0 20	1 43	0 06	0 09	2 02
OSOS MARY	FREEMAN RESERVOIR	BK	7 30	2 :	15	0 15	0 25	0.05	0.01	2,62
USES MAP	POUTE N F.	BR	7 EG	2	:5	0 15	0 03	0.05	0.00	2 01
			7 90	2.	10	0 10	5.5	0 03	ច ស្ដ	2 01
SUPELEMENTAL FATA	n la	BR	6 20	2	15	0 15	ບໍ່ 25	U 05	c (c)	2 01
	•		5 50	2	15	C 15	0.25	0.05	0 01	2, 01
			8 80	2	10	0.10	0 07	0 03	0 00	2 (1)
DAPL NT	0 0105	W	3 :0	2 (00	0 00	0.00	0 00	0.00	0.00
TENSION	17.5		10 00	2 (85	0.00	0 0 0	0 00	0 00	0 00
			11 00	1	65	0 0 0	0 00	0 00	0.00	0.00
CPANNEL PROFILE I	ATA	۱G	11 20	1 4	40	e oo	n uc	0.00	0.00	0.00
			13 00	5.0	во	s 00	0.00	0.00	0.00	7. <u>0</u> 0
SLOPE	0.026	s	14 10	0.6	5 U	0.00	0.00	C C0	0.00	0.00

CHECKED BY.	DATE	TOTALS	0 7:	3 48	
ASSIGNED TO	DATE				

-

				DISCHA	ANGE/CH	OSS SECT	ION NO	TES			
REAM NAME	LATE	•	at yes size	section -	Ciee		S-SECTION N	io į	DATE	TH SHEET	Lor
BINNING OF M	AEASUREMENT	EDGE OF	WATER LOOKING	DOWNSTREAM	LEP / RIC	iHT Gage Re	ading		TIME 13	42	
Slake (S) Gressline (Gl	Dietance From	Width (ft)	Total Vertical	Water Deolh	Depth	Revolutions		Velocit	y (fl/sec)	-	
Waterline (W) Rock (R)	initiat Point (ft)		Depth From Tape/Inst	(†)	Obser- vation		Time	At Point	Mean in Vertical	A/88 (11 ²)	Discharge (cfs)
S	Ö		5		(m)		(380)		ve neu		
6	Ĩ		1.3								
	1.3		195								
NЛ	374	• 3	2.00	4						A	4
	4.0	. 45	2.05	,05				Θ		.023	<i>₽</i>
	4.3	.]0	2,15	.10				Ô		630	$\mathbf{\Phi}$
	9 (-							.51		,030	.015
		30	2,20	.20						,060 646	.010
	•	30	2.15	.15				1.17		. 645	, (° 5 <u>5</u> 1) 5 3
		30	2.10	. 10				, ()]	_	.030	.027
		22	2.2	1997) 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1				1.11		,060	,067 ·
	(s , 7	.30	2.16					$1, 0 \neq 1$		1.045	.075
.)	9.U	. 30	2.20	·				5		.060	.086
	$\vec{\tau}$. 30 . 30	2.15	- 1 <u>5</u> 						,045	,011
	1	20						يس ^{ور} : 10		1.045 0.045	,001 003
$_{i}$ $<$	8.2	. 30	2.15	115				Ð		.045	A I
		, <u>, ,</u> ,		- 1 S	l			e 25		.045	,011
\mathbf{x}	3 E 19 1	~	21.1					->7		030	,002
	$i_{\mathcal{O},\mathcal{O}}$		1.85								$\boldsymbol{\Theta}$
	11 5		1.65				<u> </u>				
(=)	17		- 1.40 - 1.40	ł			Ì				
5	14.1		0.6								
										1	
		1	 								
	Ì]	į						
	1		{								
				1		-	-				
			- 	į							
									1		I
			· · · · ·		-				_		i
DTALS		-	. ^ •			1	i	:			X42 1

Little Cotton way Creek

• • • • • • •		
	***************************************	******
- 	COLORADO WATER CONSERVATION BOARD	•
- ii	NSIREAM FLOW / NATURAL LAKE LEVEL PROGRAM	•
-	STREAM CROSS-SECTION AND FLOW ANALYSIS	•

LOCATION INFORMAT	10N	
	•••	
STREAM NAME	LITTLE COTTONNOOD CK	
XS LOCATION	AT IS SOUNDARY BELOW RESERVOIR	
XS NUMBER	2	
DATE	10/16/97	
GBSERVERG	ESPECIELN, UPPENDAUL TA	
1/4 SEC		
SECTION		
IMP		
RANGE		
۶ ۱		
WATERCORT	MOTIVE CONTRACTOR	
DIVISION	FORTFICATION CK	
DOM CODY		
	6 * 7 0 9	
USGS MAP	FREEMAN RESERVOIR	
USES MAP	ROUTT N F	
SUPPLEMENTAL DATA	NOTE	
	Leave TAPE WT and TENSION	
	at defaults for data collecte	đ
TAPE WT	0 0106 with a survey level and rod	
TENSION	17	
CHANNEL PROFILE DA	ATA .	
	••	
STOPE	0 ()NB	
NOTE DATA OUTOUTS		
TALA CHECKED) UT , .	DATE .
ACCIONED TO		
ASSTORED TO		DATE

.

STREAM NAME	LITTLE COTTONWOOD OK
XS DETATION	AT FS BOUNDARY BELOW RESERVOIR
XS MIMBER	2

INFUT DATA		4 0	ATA POL	NTS-	31	VALUES	COMP	UTED FROM R.	AW FIELD D	ата	

FEATURE			VERT	WATER		WETTE	D	HATER	AREA	ç	N Q
	DIS	17	DEPTH	DEPTH	VE:	FERI	e.	DEFTH	(Am.)	((m)	CELL

s	3 0	0	لان ن	0 00	0 00	5	00	Ú NŊ	0 O C	0.00	0.01
G	n 3	С	1 05	0 00	0 00	o	00	0 00	0.00	ບ ວວ	0.0%
	: 0	0	1 20	U 00	0 0C	5	00	0 ÚU	0.00	0 00	C 0%
	2 0	0	1 20	S 00	0.00	0	00	0 00	0.00	0,00	0 ON
	3 0	C	1 20	n CC	00 0	2	00	0.00	0.00	0.00	C C%
к	4 Ú	Ú	1 2.5	0 00	0.00	0	00	0 O C	0 00	0.00	0.03
	ذ 4	C	1.30	Ú 05	0 00	5	50	0.05	9 e1	0.00	0.01
	4 €	6	1.40	0.15	0 00	Ũ	22	0 15	0.05	0 00	0.01
	4 3	0	10	0.15	0 00	د	30	0 15	0.05	0 00	S. 68
	5 🕽	:0	1.45	0.20	00 5	0	3 C	0 20	0 06	0 00	0.01
	5 5	0	1 55	0 30	0 00	5	32	U 30	0 00	0 00	0.0%
	58	C	1 50	0.25	C 03	ō	20	2 25	C 67	J JŪ	0 28
	61	.0	1 60	0 40	0 04	8	32	0 40	0 12	0 00	0.41
	64	0	: 65	0.45	0 38	U	20	0 45	0 13	U 05	4 24
	67	'n	1.65	3 40	0 35	C	30	0 40	0.12	0 04	3 61
	7 0	:0	. GÚ	0.55	1 33	0	34	0 55	C 17	0 22	18 🕫
	2	0	1 75	0 50	1 45	0	50	0.50	0 15	0 22	17 91
	70	.ŋ	1 60	v 55	: :7	ç	2 Ú	0.55	C 17	0 19	15 91
	7 9	0	1 70	0.45	1 30	υ	32	0.45	0-13	0 18	14 44
	8 2	'n	1 65	0.45	1 17	Ċ	30	0.45	0 13	0 16	12 04
	8 5	e -	1 60	0.35	0 77	v	30	0 35	0 11	0 :0	8 51
	8 6	i U	1 55	0.35	0 46	0	30	C 35	0 11	0 0 c	4 01
	91	n.	1 50	U 15	0 OŻ	ຸດ	30	0 23	0 07	0 00	0.18
	94	5	1 40	C 15	0 00	0	32	0 15	C.04	0.00	u 0%
	97	10	: 35	0 10	0 00	0	30	0 10	U 03	C 00	0.01
	10-0	c	1 30	¢ 05	0 00	υ	30	C 05	C 02	5 00	0 Ú%
w	10 4	U U	1 25	0 00	0 00	0	4 Ú	0 00	n co	0 00	2.5%
G	11 3	c	1 05	0 00	Ú 00	n	00	0 00	n ùù	5 00	0.0%
	:2 0	00	0 H D	0 00	0 00	٥	00	ດ ເວ	a co	0 00	0.0%
	13 0)C	0 70	0.00	0 00	n	00	C QC	0 ÚU	0.00	0.04
s	13.6	5	0 75	c cc	0 00	c	<u>00</u>	0 00	ດ ນວ	0.00	0.08
	FOTALS -					6	57	0 55	د ۱ ۵	: 22	100-0%
								(Max)			

Manning's n = 0.0854

s

w 1 G

.

S : G

STREAM NAME	WITCLE COTTONWOOD CK
AS LOCATION	AT FS BOUNDARY BELOW PESERVOIR
NS NIMBER	5

WATER DISS COMPARISON TABLE

WATER	MEAS	COMP	ARFA
LINE	AREA	λκελ	ERROR

: 01	1 83	4 18	128 28
1.03	1 +3	3 96	116 24
1 05	د ٦ . ٢	3 75	104 41
1 07	1 83	3 53	92 BN
: 09	1 83	3 32	E1 3 %
1 11	. 83	3 12	10 DN
1 ! 3	7 53	2 31	58 98
1 11	1 83	7 71	47 91
1 17	1 83	2 5:	37 14
1 19	1 83	2 32	26 51
1 71	1 93	2 13	16 58
: 22	רא ו	2 66	12 44
1 23	1 83	: 99	8 5%
1 24	2 83	1 92	4.2%
1 25	1 80	: 85	1.01
1 26	: 93	1 /9	-2 -3
1 77	1 81	1 72	-6 0%
5 28	. 83	1 66	-9.4%
1 20	1 83	1 6C	12 78
1 30	1 83	1 54	13.98
1 91	1 43	: 49	-19 3%
2 3.4	1 R.3	7 ۋ 1	-25 21
1 35	1 83	1 26	-31 11
1 27	3 83	1 16	-36-84
1 39	1 63	1 06	42 41
1.41	ר א נ	0 26	-47.7%
1 45	i 93	∿ 87	-52 58
1.45	1 82	Ú 78	-57 2%
1 47	1 83	0 70	-6 - 1 4
1 49	1 83	0 62	-66 CN
1 51	1 85	0.55	-20 21
W P	TERLINE AT	2ERD	
ኢፍ	EA ERROR -		1 254

STREAM NAME	LITTLE COTTONWOOD CK
XS LOCATION	AT FS BOUNDARY BELOW RESERVOIR
XS NUMBER	2

	DIST TO	10P	AVG	MAX		WETTED	PERCENT	HYDR		AVG
	WATER	MIDIN	CE PTH	DEPTH	AREA	PERIM	WFT PFF	240103	FICW	VELACTIV
	(FI)	(FT)	(F1)	(87)	(SQ FT:	(rT)	(%)	(FT)	(CFS)	(FT/9EC.
		••••••								
•ئە	1 05	10 66	0 34	3 76	3 66	10 65	100.0%	4د ()	2 76	0 75
	1 10	10/32	031	0 71	3.19	10 53	96 BN	0 20	2 74	5 75
	: 15	2 95	0.27	0 66	2 68	10 14	35.2%	0 26	1 72	U 64
	1 20	5.3	0 23	0 51	2 1)	5 71	89 2%	0.23	: 27	0.58
WI •	1 25	é 57	Ú 28	0 56	1.8?	6 74	61 9 %	0 27	1 20	0.65
	1 30	5.81	C 74	0 51	52	5 97	54 98	U 7.6	C 95	0 63
	1 35	> 32	0 23	0.46	1 25	5 47	±20,3¥	0 23	0 72	C 56
	1 40	4 99	0 20	2.41	0.99	5 02	46 1 t	U 20	0.52	0 53
	1 45	4 13	0 19	0 26	j 77	4 ?F	39.14	3 10		v 50
	- U	3 8Ŭ	C 15	0 31	C.57	3.92	26 0%	IJ 15	0 25	0.43
	1.55	3 02	0 13	C 26	0 40	3 11	28 68	C 13	C 16	5 43
	1.60	ž 49	0 11	0 21	0 26	2 56	23 5%	U 10	0.09	0.34
	1 65	1 92	0 08	C 16	0 15	1 59	18 28	0 08	C 04	0.25
	1 70	1 19	0 U7	9 11	0 08	1 73	11, 3%	0 07	0 02	0.25
	. 75	0 90	C 03	C C6	C 03	6 93	۲ ن ۲	C C3	0 00	C 16
	1 80	ΰ 17	0 01	0 01	0 00	0 18	178	n 00	0 00	0 N 5

.

-

STEEAM NAME	LITTLE COTTONWOOD CK
XS LOCATION	AT IS BOUNDARY SELOW RESERVOIR
XS NUMBER	2

SUMMARY SHEET

MEASURED FLOW (Qm) =	1 22 cfs	LOW .				
CALCULATED FLOW (Qc)+	1 20 cis					
(Qm-Qc)/Qm + 100 +	1 7 8					
		FLOW (CFS)	FFRICD			
MEASURED WATERLINE (WIM) =	1 26 ft					
CALCULATED WATERLINE (WLC) -	1 25 £t					
(Wim-Wic)/Wign • 100 =	06%					
MAX MEASURED DEPTH (D+) =	C 55 £0					
MAX CALCULATED DEPTH (Dc) -	C 56 fr					
(Dm-Dc)/Dm • 100	-] A #					
MFAN VEROCITY-	0.65 tt/sec					
MANNTNOIS	Q 095					
SLOFE-	0 000 ft/1t					
4 • Qm =	0.5 ofs					
2 5 * Cm-	3 G ofs					

RATIONALE FOR RECOMMENDATION

_ __ __ __ __ __ __ _____ _____ _____ ___ - -------_______ _ _ _ _ _ _ ____ _ -----_ _ _

RECOMMENDATION BY		AGENCY	DATT
CWCB REVIEW BY			DATE

PROOF SHEET

LOCATION INFORMA	אסנ ב	INPUT DATA		DATA POI	NTS-	31			
		***			*****				
		FEATURE		VERT	WATER				TADE TO
STREAM NAME	I ITTLE COTTONWOOD CK		DIST	DEPTH	DEPTH	VEL	Y	0	WATER
XS COCATION	AT ES BOUNDARY BELOW RESERVOI	*****			*****				
XS NOMBER	2	5	<u>n (</u>)	1 00	0 00	0 00	0 00	0.05	ບ ດິດ
		16	0.30	1 05	0 C()	0.00	0.00	0.00	0.0
DATE	10/16/97		1 00	1 20	0 00	0 00	0 00	0 00	0 00
ORSERVERS	ESPEGREN, UPFENDAHL, TA		2 00	1 20	0 00	0 00	0 DC	0.00	0.00
			5 00	1 20	0 00	0 00	C 00	C CO	5 (C
1/4 SEC		ω.	4 00	1 25	U 00	0 00	0 00	0.00	0.00
\$507105			4 3C	1 30	0 05	0.00	0.01	0.00	: 15
THE			6 EN	1 40	0.15	Ο, ŪĊ	0 05	0.00	1 76
RANGE			4 90	1 40	0 15	C 30	3 35	0.00	1 26
FM			5 20	1 45	0 20	0 00	0.06	0 00	1 25
			5 50	: 55	0.50	Ú UC	0 09	0 00	÷€
COURTY	MOFFAT		5 8C	1 50	Ú 25	0 03	0 07	0.00	1 26
WATERSHED	FORTIFICATION CK		\$ 10	1	0 40	C Ch	ć it	J	1.21
DIVISION	5		€ 40	: 65	0.45	0.26	0 13	0 05	1 21
DOM CODE	21185		ί.70	1 65	0.40	0.35	0 12	0 04	26
			7 00	1 80	0.55	1 33	0 17	0 22	1 26
USOS MAF	FREEMAN RESERVOIR		7 36	1 75	0.56	1 45	n 15	6 22	1.26
USES MAP	POUTT N F		7 60	1 80	0 55	1 17	0 :7	0 I 9	. 75
			7 90	1 70	0.45	1 30	0 13	0.18	i 26
SUPPLEMENTAL DAT.	A		8 20	1.65	0.45	1 17	0.13	÷ 16	1 21
	-		6 50	1 60	0.35	ė 99	0 11	0 10	ŕ
			8 80	1 55	0.35	C 46	0.11	0.05	1 21
IAPE WI	0 0106		9.10	: 50	0.25	0 02	0.07	0 00	1 26
TENSION	27		9 40	1 40	0.15	0 00	0.04	0.00	1 26
			9 70	1 35	\circ α	c 00	0 03	(-0.0)	1 7 6
CHANNEL PROFILE	PATA		10 00	: 30	0.05	0 00	C 02	0 00	1 76
		W	10 40	1 25	0.00	Ο ÚÚ	U 00	0 00	0.00
SLOPE	U 708	1 G	11 OC	1 05	0 00	C 00	0.00	ŋ ýñ	$\phi_{-}(t)$
			12 00	0.80	0 00	U CO	0 00	0 00	e 00
			12 00	0 70	υ ης	0.00	0 00	0.00	0 00
CHECKED BY	DATE.	3	13.60	0.75	C 00	6 00	0.00	0 00	0.00
ASSIGNED TO	DATE								

_____ -

TOTALS 1 83 1 72

COMMENTS

TAEAM NAME		•	S. C. A. L.	e de	$\langle \boldsymbol{\kappa} \rangle$	CROS	SSISECTION	^{NO} 7	DATE	SHEFT	L or t
GINNING OF I	EASUREMENT	EDGE OF V	VATER LOOKING (OWNSTREAM	LEFT	GAT Gage Re	adıng		1 /5/14. TIME 10	1. 19(U) 1. 19(U)	
Stake (S) Grassline (G) Waterline (W) Rock (R)	Outance From Initial Point	Width (ft)	Total Vertical Depth From Tape/inst	Water Depih (II)	Depth of Obser- vation	Revolutions	Time	Yelocit	y (tt/sec) Mean in	Area (It ²)	Discharge {cfs}
Rock (R)	Pom ()312243と92581470569		10000 1000000	······································	vation (ft)		Time (soc)	AT POINT	Mean in Vertical	100 	(cls) (cls)(
25 5	19 72 73 19 19 10 10 11 12 13 6	30000000000000000000000000000000000000	1,70 1,65 1,60 1,60 1,60 1,60 1,60 1,60 1,60 1,60	45	-			1.30 1.17 .99 .99 .99 .02 .02 .00		- 153 - 153 - 155 - 155	, 1753 , 1374 , 1674 , 1674 , 1975 , 1976 , 1976 , 1976
DTALS			··· · · ·								(727)

•

WATE	WATERNAME	ATICOOS	AMPDAT SPEC	COMM	
66705	FREEMAN RESERVOIR	15 B6	8/2/1981 CRN	CO RIVER CUTTHROAT	
66705	FREEMAN RESERVOIR	15 B6	8/2/1981 MAC	LAKE TROUT (MACKINAW)	

_

APPENDIX – C Water Availability Analysis

_ _

_---

Excered	Avg Day Miax Day # Months SCies Month Min Month Max Month Asy Month Exceed∞noes	Station Name Station ID Param Statistic Stati County Latitude Longitude Longitude Longitude Elevation Start Year Start Year Num Years arca 1 37 sq n arca 1 37 sq n
inues January 1% 10% გე. გე. გე. გე. გე. გე. გე. გე. გე. გე.	90% 90% 90%	MU FK FISH STREAM H Mean CO ROUTT ROUTT January
1 1 5 6 Feb	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 NR BUFFA 5230750 _OW CFS 40 79 54 106 41 30 106 41 30 1084 1595 12 12 12 12 12
nuary 187 1124 120 101 101 015 015 015 015 015	00000000000000000000000000000000000000	LO PASS CO Juany JIO Ma
0031-20 0031-20 003234 2024-35 2024-2024-25 20	0 2/8 0 0/7 0 0/7 1 18 0 0/75 0 474 0 474 0 474 0 474 0 474 0 28 0 28 0 28 0 28 0 28 0 29 0 29 0 29 0 29 0 27 0 27 8 0 27 8 0 27 8 0 07 7 0 0 7 0 0 0 7 0 0 0 7 0 0 0 0	244 24
pril 108 75 11 26 11 21 5 98 1.35 1.35 0 26 0 71 0 26 0 71 0 26	00000000000000000000000000000000000000	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
lay 165 - 3 197 7 5 108 37 85 95 26 53 26 53 1 36 1 36 1 36 1 36 1 36	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	41 41
June 214 88 185 85 156 95 28 05 11 98 11 98 11 98 3 21 3 21	25 25 57 57 57 57 57 57 57 57 57 5	
July 215 21 95 73 52 37 18 69 5 895 2 99 2 99 1 46 0 87 0 87 0 954	0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15	July 341
August S 8.67 4.48 3.24 1.42 1.42 0.54 0.54 0.54 0.54 0.54 0.34	0 20 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
eptember 8 5-1 3 5-1 7 5-1 7 5-1 7 9-1 7 9-1 6 50 0 4-5 0 3-24 0 30	0 0 0 0 0 0 0 0 0 0 0 0 0 0	epitember Octobe
n → → → → → → → → → → → → → → → → → → →	0 140 0	2 2 2
40vember Dec 2 52 2 58 2 58 2 58 2 58 2 58 2 58 1 12 1 12 1 12 0 15 0 11	0 1/2 0 1/2 0 1/2 0 1/2 0 203 0 1/1 0 203 0 1/2 0 203 0 203 0 0 0 203 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	lovember 3.40
ی بیست 2 1 2 1 2 5 2 1 1 2 5 2 1 1 2 5 2 1 1 2 5 2 1 1 2 5 2 1 2 5 2 1 2 5 2 1 2 5 5 1 2 5 5 5 1 2 0 5 1 2 0 5 1 1 2 0 5 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	0 313 0 449 0 300 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0	(mbe) 341

																			Faceedenays	Max Month	Min Month	Skow Month	SDev Month	# Months	Min Day	Max Dav	Avg Üav	# Days		ален 282 жд.п	Num Years	End Year	Start Year	Elevation	Long.tude	Latitude	County	SIDIC	Statistic		Station Name
39%	95%	(A()9)	80*3	50%	20:5	10%	5%	1.0	, lariuary	ςųγ.	95%	%00 %	80°	50%	2012	10 [%]	5*S	٩,٠٢											January	1. 2 5							ROUT		neau	CTDI AM	GRANITE
Ú 31	034	E C 34	042	0 85	1 15	1 77	7 42	163	10	0 17	6;0	0 19	0 23	047	0 6 3 8	07	0 7 B	61}		627 0	6195	-0.349	0 133	=	017	50	0468	341	Fel		12	1935	1964	9875	106 41 31	40 25 35					C NR BIT FAL
0 29	0.33	042	049	0.87	1 16	1 25	1 31	1 38	bruary Mu	0 1-5	0 15	U 23	0.27	(1 48	() 64	0.64	0.72	076		0 70 5	0 178	-0 408	017	1	015	n 76	0.463	310	onuany Ma												D PASS, CO
073	033	035	044	0 %	- 24	178	2 18	7.90	arch A	0 14	018	U 191	0 74	0.53	074	8/60	12	ユウ		1 15	0 19	0 54	0 X94	=	013	10	0 56	ŝ	arch A												
0 42	1) 47	03	O A(i	1.31	363	635	14 71	53 55	011	n 23	0 <u>2</u> 6	0.32	044	072	•7	ω J	8 1	35		5	(1333	273	283	=	0 13	40	213	3.6	501												
073	1 05	163	349	15 70	65.00	8170	04 4 1	136 50	Jay	0 404	0 601	50	192	5.08	358	40	ر ې	75 18		34 35	\' 4	ь УЧ	12 08	11	0.31	HU HU	17.65	34	∕a;												
25.9	13 25	18 15	30 A.7	72 62	114 30	137 99	1.53 8.	187.0	JUNC	3 59	73	5	:7	41)	63	7÷	875	101		714	17 19	(+ 231	17 82	=	P.) 09	126	42.5	5	June												
1 73	2 0 2	5.5	345	8 35	25.42	14	2012	111 32	ÝI'L	1) 984	1 1	13	10	45	14	228	58 ØC	61.59		32 97	207	171	9 83	=	ŝ	69	ű T	341	والاندال												
0 89 0	102	1 11	1.24	2 00	3/8	5 ý9	797	11.87	Nuclust	0 4 3 8	0 \$	U 61	0.632	1 -	20%	3 3	4 39	ט א		2.95	075	0 791	0 854	Ξ	0.46	75	1 55	<u>34</u>	August S												
078	0 84	U 87	194 1	149	-> 35	345	4.35	82 6	schlember Oct	043	045	048	(+ 52	0.82	13	6 1	24	17 4 4		2 05	0.515	0 678	0.473	11	U 41	¢; V	18	330	September Öct												
0.57	074	078	087	133	3 63	1 35	50/	10 6	uber N	0 314	0.41	Q 43	048	073	••	24	279	4 96		N 55	0422	0 539	0 825	11	9.0	ι, Ω	61 L	ž	UDer N												
05)	067	078	080	145	2 18	2.24	2 80	401	ovember Dev	1) 278	0.37	(I 43	Q 49	08	- N	14	16	513		147	0393	0 125	0379		0.14	27	60	300	ovember Liec												
033	0.38	0 40	073	1 14	1 66	182	213	2 18	cember	Q 184	0 21	0 221	0.402	0 63	0 516	_	12	17		1 15	0 214	191	0 277	11	0 17	12	0 64 1	2	20mber												

_ __

Little Cottonwood Creek Analysis Basin Area 1.42 sq. mi MO Fk Fish C 0.21 0.17 0.21 0.18 0.21 0.18

•

Average		Granite Creek		MO Fk Fish C
0 22	0 24	0 4 7	0 21	0 20
0.21	0 24	048	018	0 17

						Arenue
02	0 22	0 24	0 47	0 21	020	_
02	0.21	0 24	048	018	0 17	February
02	0.24	0 27	053	0 21	0 20	March
0 4 0 2	0.37	036	0 72	0 37	036	Apni
0	5.86	4 36	8 65	736	7 10	May
0 4	23.03	20 14	40 00	25 91	25 00	June
04	2.04	2 32	4 60	176	170	v Anr
04	0.47	0 55	1 10	95 0	038	fuguet
	_	-	_	_	_	September
02	0.34	041	0 82	026	025	0 G
02	036	037	073	035	034	ober 1
0	0.4(040	080	0 39	<u>بر</u> ٥	Vovember
02	0.31	0 32	063	9 031	3 0 30	December

-

Precipitation Yampa--59265

17 no	1994	17 89	h ave
16	1993		
16	1992		
19	1991		
no da	1990		
18	1989		
18	1988		
13	1987		
16	1986		
19	1985		
16	1984		

- -

Station **GRANITE C NR BUFFALO PASS, CO.** Parameter STREAM FLOW CFS Year 1984-1995 State CO County. ROUTT

Monthly Statistics

ID 09238770 Statistic. Mean Latitude 40 29 35 Longitude 106 41 31 Elevation 9875 00 Drainage Area: 2 82

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann .
# Days	341	310	341	330	341	330	341	341	330	341	330	341	4017
Avg Day	0 468	0 468	0 560	2 13	17 69	42 26	9 64	1 55	1 06	1 19	0.900	0 64 1	6 54
Max Day	0 900	0 760	1 60	40 00	80 00	126 0	69 00	7 50	6 50	5 50	2 70	1 20	126 0
Min Day	0 170	0 150	0 130	0 180	0 310	2 80	0 960	0 460	0 4 1 0	0 260	0 240	0 170	0 130
# Months	11	11	11	11	11	11	11	11	11	11	11	11	11
SDev Month	0 183	0 170	0 294	2 83	12 08	17 82	9 83	0 864	0 473	0 825	0 379	0 277	1 12
Skew Month	-0 349	-0 408	0 640	2 73	-0 091	0 231	171	0 794	0678	0 6 3 9	0 125	0 191	0.091
Min Month	0 196	0 178	n 190	<u>0 333</u>	2 AQ	17 19	2 07	0 750	0 515	0 422	0 3 95	Ū214	ວົບາ
Max Month	0 729	0 706	1 16	10 20	34 35	7140	32 97	2 95	2 05	2 50	1 47	1 15	821
Exceedences													l
1%	0 900	0 760	1 60	35 00	75 18	103 0	61 59	6 54	5 4 4	4 96	2 21	1 20	73 83
5%	0 780	0 720	1 20	8 10	52 00	87 50	38 85	4 39	2 40	2 79	1 60	1 20	44 00
10%	0 700	0 690	0 978	3 50	45 00	76 00	29 80	3 30	1 90	2 40	140	1 00	24 00
20%	0 638	0 640	0 740	2 00	35 80	63 00	14 00	2 08	1 30	2 00	1 20	0916	4 00
50%	0 470	0 480	0 530	0 720	8 65	40 00	4 60	1 10	0 820	0 7 3 0	0 8D0	0 630	0 800
80%	0 230	0 270	0 240	0 4 4 0	1 92	17 00	1 90	0 682	0 520	0 480	0 490	0 402	0 480
90%	0 190	0 230	0 191	0 320	0 900	10 00	1 30	0610	0 480	0 430	0 430	0 221	Ú 360 I
95%	0 190	0 180	0 180	0 260	0 60 1	7 30	1 1 1	0 560	0 460	0 4 1 0	0 370	0 2 1 0	0 230
99%	0 170	0 160	0 140	0 230	0 404	3 59	0 984	0 488	0 4 3 0	0 314	0 278	0 184	0 180

-- - --

Station MD FK FISH C NR BUFFALO PASS, CO. Parameter STREAM FLOW CFS Year 1984-1995 State CO County ROUTT

Monthly Statistics

ID 09238750 Statistic Mean Latitude 40.29 54 Longitude. 106 41 30 Elevation Drainage Area 1 37

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
# Days	341	310	341	330	341	330	341	341	330	341	330	341	4017
Avg Day	0 205	0 192	0 228	1 55	1177	25 68	5 06	0 486	0 377	0 558	0 437	0 315	3 90
Max Day	0 450	0 500	0 700	66 00	56 00	97 00	65 00	2 80	3 20	3 10	1 40	0 570	97 00
Min Day	0	0	0 030	0 070	0 290	<u>0 500</u>	0 120	0 070	0.080	0 1 1 0	0 170	0	o
# Months	11	11	11	11	11	11	11	11	11	11	11	11	11
SDev Month	0 105	0110	0 110	2 4 1	763	12 25	7 51	0 223	0 183	0 424	0 172	0 078	0 774
Skew Month	0 681	1 18	1 18	2 93	0 24 1	-0 362	2 56	0 165	-0 281	0 983	0411	0 129	0 208
Min Month	0 062	0 054	0.075	Ú 26Ú	1 80	6 42	0 295	0 126	0 1 1 3	0 172	0 203	0194	Z 55
Max Month	0 426	0 4 5 3	0 474	8 56	24 4 1	42 13	25 90	0 827	0 577	1 38	0 727	0 4 4 9	4 94
Exceedences												• • • •	
1%	0 450	0 500	0 652	29 10	44 59	79 70	57 59	2 16	2 34	2 66	1 10	0 550	50.00
5%	0 400	0 440	0 479	4 70	34 00	57 50	25 90	1 20	0 940	1 40	0 755	0.519	28.00
10%	0 340	0 320	0 350	3 00	29 00	50 00	14 00	0 947	0 800	1 19	0 690	0 450	13.00
20%	0 280	0 270	0 280	160	23 00	42 00	5 00	<u>0</u> 600	0 5 1 0	0 930	0.600	0.390	1.86
50%	0 200	0 170	0 200	0 360	7 10	25 00	1 70	0 380	0 250	0 340	0 380	0.300	0.350
80%	0 100	0 120	0 150	0 260	1 42	7 50	0 560	0 2 5 0	0 160	0 190	0 300	0.240	0 190
90%	0 031	0 040	0 1 10	0 230	0 450	3 10	0 390	0 160	0 130	0 160	0 230	0 190	0 150
95%	0 010	0 030	0 070	0 190	0 370	1 80	0 220	0 120	0 0 0 0	0 130	0 200	0 150	0 100
99%	0	0	0 054	0 070	0 302	0 860	0 144	0 090	0 080	0 1 1 4	0 190	Ú 104	0 020

APPENDIX – D Diversion Records

44 856 ALISPAW SPG	4	47 LITTLE COTTONWOOD CK	41	NW SW	12	9 N	90 W S 9	0.0	17 C	S,C	26664	26298	10502	0	44559.28763		W0331-72	1	0
44 REF ALICDAW CDC		42 LITTLE COTTONNIOOD CK	41	MM CW	12	0.14	0.0 W 0.0	0.0	17.0	C C AD	26664	24209	10500	0	44550 20742		100221-22	2	0 ARANDONED 10/14/1990
44 GOD ALISPAW SPG	2	47 LITTLE COTTONWOOD CK	41	NU SW	12	714	70 W 3 7	0.0	10.0	3,0,40	20004	20270	10002	0	44337.20703	405	W0331-72	-	
44 542 BAKER COTTONWOOD D		47 LITTLE COTTONWOOD CK	41	NE NE	20	9.14	AD M 2 184	4	2.2 L	2	12868	12570	842	U	30831.19102	190	CM00A5		0
44 542 BAKER COTTONWOOD D	1	47 LITTLE COTTONWOOD CK	41	NE NE	20	9 N	90 W S 189	1	1.3 C	S,C	12868	12570	842	0	30831.19103	195	CA0692	2	0
44 542 BAKER COTTONWOOD D	1	47 LITTLE COTTONWOOD CK	41	NE NE	20	9 N	90 W S 189	2	2.2 C	S.TF	12868	12570	842	0	30831.19103	195	W0577	3	4400650
44 E42 PAKED COTTONNIOOD D	1	42 LITTLE COTTONNIOOD CK	41	ALC: ALC	20	0.14	00 W C 190		12.0	S.C.AD	12040	10670	040	0	30921 10101	105	0.4/14/00/21		A ADANDONED 1 3 CES (MACH/21)
44 S42 BAKER COTTONWOOD D		47 LITTLE COTTONWOOD CK	41	NE NE	20	714	70 W 3 107		1.3 G	3,0,40	12000	12370	042	0	30631.19102	195	04010071		0 MBMRDONED 1.3 CF.3 (84CW71)
44 542 BAKER COTTONWOOD D	1	47 LITTLE COTTONWOOD CK	41	NE NE	20	9 N	90 W S 189		2 C	S	26449	22160	14001	0	40421.32262	12	CA2259	5	0
44 542 BAKER COTTONWOOD D	1	47 LITTLE COTTONWOOD CK	41	NE NE	20	9 N	90 W S 189		3 C	S.C	26449	22160	14001	0	40421.32262	0	CA2259	6	0 DILIGENCE 86CW93, 93CW34
44 E42 PAKED COTTONNIOOD D	1	42 LITTLE COTTONNIOOD CK	41	ALC: ALC	20	0.14	00 W C 190		2.0	S.C.AD	26.640	22160	14001	0	40421 22241		020140024	2	a ABAND 3 0 CES 46/2000
44 542 BRER COTTORINOOD D		41 ETTEL COTTONWOOD CK		THE THE	2.0				20	3,0,00	20447	22.100	14001		40421.02202		730110034	'	0
44 1390 BAYSINGER SPRING NO 2	4	47 LITTLE COTTONWOOD CK	41	NW NW	28	9 N	90 W S 19	0.0	45 C	S	33969	33603	32888	0	51864.51149		92CW0020	1	0
44 998 DRY COTTONWOOD DITCH	1	47 LITTLE COTTONWOOD CK	41	SW SW	1	9 N	90 W S 1	2.	33 C	S	4242	4183	-2829	0	22444.15432	NONE		1	0
44 999 DRV COTTONWOOD DITCU	1	47 LITTLE COTTONWOOD CK	41	SW SW	1	9 N	90 W S 1	6.	67 C	\$	26449	22160	10002	0	40421 28259	29	CA2259	2	0
44 770 DRT COTTONICOD DITCH		47 ETTEL COTTONWOOD CK		511 511							20447	22100	17770		4042.1.002.07	20	GPG2.37	÷.	ACTUALLY A COOND BT OF DW DATUED THEN AD BUT COOPED AD
44 1998 DRY COTTONWOOD DITCH 2	1	47 LITTLE COTTONWOOD CK	41	NE NE	3	8 N	90 W S 1	2.	33 C	S,AP	4242	4183	-2829	0	22444.15432	NONE		1	4400998 ACTUALLY A SECOND PT OF DIV RATHER THEN AP, BUT CODED AP.
44 1998 DRY COTTONWOOD DITCH 2	1	47 LITTLE COTTONWOOD CK	41	NE NE	3	8 N	90 W S 1	6.0	67 C	S.AP	26449	22160	19998	0	40421.38255	28	CA2259	2	4400998 ACTUALLY A SECOND PT OF DIV RATHER THEN AP, BUT CODED AP.
44 3687 DRY COTTONWOOD RES	3	47 LITTLE COTTONWOOD CK	41	SW SE	11	9 N	90 W S 1	53.	33 A	S	4242	4183	-2009	0	22444.16252	NONE	CA0012	1	0
44 2729 EDEEMAN DESERVICID	2	42 LITTLE COTTONNIOOD CK	41	MM CW	4	0.14	00 W C 54	127	00 A	6	26440	22160	22200	0	41550	40	042250	1	
44 JIDD THE EMPIRICULAR FOR	2	41 ETTEL COTTONWOOD CK					0711 0 00	1313	w/ M	2	20447	22100	2.32.70		41337	40	GPG2.37		-
44 2076 GRANDMAW WYATTS SPG	4	47 LITTLE COTTONWOOD CK	41	SW NW	11	9 N	90 W S 891	0.0	22 C	S	29220	28855	1948	0	47116.20209		79CW0114	1	0
44 917 JOHNSON & WYATT ENLD	1	47 LITTLE COTTONWOOD CK	41	NE NE	11	9 N	90 W S 1	0.0	06 C	S CA	12624	12064	2295	0	21225 20646	1204	70/10/112	2	0
44 617 JOHNSON & WTATTENED		47 LITTLE COTTONWOOD CK	41	NE NE		714	70 W 3 I	0.1	00 C	3,04	13034	13004	2303	0	31323.20046	1204	790/00113	3	-
44 817 JOHNSON & WYATTENLD	1	47 LITTLE COTTONWOOD CK	41	NE NE	11	9 N	90 W S 1	1.2	25 C	S	13634	13064	Z385	0	31325.20646	120A	CA0692	1	0
44 817 JOHNSON & WYATT ENL D	1	47 LITTLE COTTONWOOD CK	41	NE NE	11	9 N	90W S 1	0.4	67 C	S,C	13634	13064	2385	0	31325.20646	120A	CA0692	2	0
ALC ADDRESS TO BE DECK		13 LITTLE COTTONNOOD OF		AUX				~	50 A		20254	00001	20070		10100		04.01410.020		A DILICENCE RICH17
44 4380 LITTLE BUCK RES	3	47 LITTLE COTTONWOOD CK	41	NW SE	9	9.14	90 W S X	2	A UC	5,U	29951	29080	14824	U	48120		81CW0272		0 DEGENCE BOOWIT
AA A290 LITTLE BLICK DES	3	47 LITTLE COTTONWOOD CK	41	NW SE	0	9 N	90 W S Y	2	50 A	SCAR	20051	20596	20950	0	49120		91CW0272	2	A DILIGENCE 86CW17, ABANDONED 250 AE ON 4/6/90
A AND LITTLE DOUR RED	2	47 LITTLE COTTONWOOD CK		NE CE		0.00		100	(0.A	5,0,00	40/04	420/4	21027		91005 01711	40044	010/02/2		
44 30% LITTLE COTTONWOOD CK RES	3	47 LITTLE COTTONWOOD CK	41	NE SE	9	9.14	40 W 2 I	4333	03 A	5,U	13634	13054	5485	U	31325.21744	120H	CM00A5	2	0
44 3696 LITTLE COTTONWOOD CK RES	3	47 LITTLE COTTONWOOD CK	41	NE SE	9	9 N	90W S 1	433.	63 A	S,C,AB	13634	13064	3483	0	31325.21744	120H	84CW0071	3	0 84CW71 ABANDONED 433.63 AF
44 3696 LITTLE COTTONWOOD CK RES	3	47 LITTLE COTTONWOOD CK	41	NE SE	9	9 N	90 W S 1	49	38 A	S	13634	13064	3493	0	31325 21744	120H	CA0692	1	0
44 407 MCDONALD & HALL D	1	42 LITTLE COTTONNIOOD CK	41	CE NE	20	0.11	00 W S 1		50 C	- -	12624	12044	2017		21225 21026	1200	CA0402		-
44 077 MCDORAED & PIACE D		47 LITTLE COTTONWOOD CK	41	JE NE	20	714	70 W 3 I	0.3	38 G	3	13034	13004	2017	0	31323.21076	1200	CP0072		-
44 697 MCDONALD & HALL D	1	47 LITTLE COTTONWOOD CK	41	SE NE	20	9 N	90 W S 1	0	3.5 C	S,C	13634	13064	2817	0	31325.21078	120C	CA0692	4	0
44 697 MCDONALD & HALL D	1	47 LITTLE COTTONWOOD CK	41	SE NE	20	9 N	90W S 1	0	0.5 C	S,CA	13634	13064	2817	0	31325.21078	120C	W0477	6	0
44 697 MCDONALD & HALL D	1	47 LITTLE COTTONWOOD CK	41	SE NE	20	9 N	90 W S 19	1	1.5 C	S	27029	26664	26789	0	45050		W0476-73	3	0
44 698 MCDONALD DITCH	1	47 LITTLE COTTONWOOD CK	41	SW NE	9	9 N	90W S 1	1.3	25 C	S	13634	13064	2687	0	31325.20948	120B	CA0692	1	0
44 408 MCDONALD DITCH	1	47 LITTLE COTTONNIOOD CK	41	CW MC		0.11	00.W C 1		16 C	C AD	12624	12044	24.07	0	21225 20049	1000	940140021	2	A ARANDONED 35CES RACW71
44 075 INCOORALD DITCH		47 LITTLE COTTONWOOD CK	41	211 112	7	714	70 W 3 I	0.	25 0	3,90	13034	13004	2007	0	31323.20740	1200	DACIMOD11	3	0 40400420 200 0 40471
44 698 MCDONALD DITCH	1	47 LITTLE COTTONWOOD CK	41	SW NE	9	9 N	90 W S 19	5	56 C	s	22160	18034	21058	0	39319	85	CA1278	2	0
								-		-				-				-	-
44 698 MCDONALD DITCH	1	47 LITTLE COTTONWOOD CK	41	SW NE	9	9 N	90W S 1	5	5.6 C	S,C	22160	18034	21058	0	39319	85	CA1278	4	0
44 698 MCDONALD DITCH	1	47 LITTLE COTTONWOOD CK	41	SW NE	9	9 N	90 W S 1	5	5.6 C	S,CA	22160	18034	21058	0	39319	85	CA12/8	5	0
44 2204 VACINITAINED DEC. 22	2	42 LITTLE COTTONNIOOD CK	41	ALC CIM		0.14	0.0 W 0.0		1.4	6	20214	20051	21200	0	49212 20440		0001000004	1	
44 3374 VISIN IPHNER RES 75	3	47 LITTLE COTTONWOOD CK	41	NE SW	7	714	70 10 5 7		1.4	2	30310	27751	21300	0	40212.37047		020700230		0
44 3395 VISINTAINER RES 74	3	47 LITTLE COTTONWOOD CK	41	SE SW	9	9 N	90 W S 9		1.4	S	30316	29951	17351	0	48212.35612		82CW0236	1	0
44 3396 VISINTAINER RES 75	3	47 LITTLE COTTONWOOD CK	41	NE SE	9	9 N	90 W S 9		1.4	s	30316	29951	20301	0	48212 38562		82CW0236	1	0
44 2207 VACINITAINED DEC 24	-	47 LITTLE COTTONNOOD CK	41	NE SE	è	0.14	00.W S 0		IE A	-	20214	20051	10051	-	40010.07111		0001400004		-
44 3377 VISIN IPHNER RES 70	3	47 LITTLE COTTONWOOD CK	41	NE JE	7	714	70 10 5 7		1.2 M	2	30310	29931	10031	0	40212.37112		020700230		0
44 3398 VISINTAINER RES 77	3	47 LITTLE COTTONWOOD CK	41	NF NW	10	9 N	90 W S 9		3.4	s	30316	29951	14449	0	48212 3271		82CW0236	1	0
44 3370 HOR PRICE 112 11	2	41 ETTEL COTTONWOOD CK			10				20	2	30310	A 7721			402.12.32.71		020770230		-
44 3399 VISINTAINER RES 78A	3	47 LITTLE COTTONWOOD CK	41	SE NW	10	9 N	90W S 9		3 A	S	30316	29951	14842	0	48212.33103		82CW0236	1	0
44 3400 VISINTAINER RES 78B	3	47 LITTLE COTTONWOOD CK	41	SW SW	10	9 N	90W S 9		1 A	S	30316	29951	21804	0	48212.40065		82CW0236	1	0
44 2401 VICINITAINED DEC 20	2	47 LITTLE COTTONNIOOD CK	41	MM ME	15	0.11	0.0 1 10.00		2.4	6	20214	20051	14000	0	40212 22142		0001400004	1	
44 5401 VISIN LAINER RES 79	3	47 LITTLE COTTONWOOD CK	41	NW NE	15	914	40 W 2 4		ZA	2	30310	29951	14852	U	48212.33143		82CW0235		0
44 3402 VISINTAINER RES 80	3	47 LITTLE COTTONWOOD CK	41	SW NW	15	9 N	90 W S 9		1.4	s	30316	29951	21050	0	48212 39311		82CW0236	1	0
	-									-	10			-					
44 3403 VISINTAINER RES 81	3	47 LITTLE COTTONWOOD CK	41	SW NE	15	9 N	90 W S 9		1.4	S	30316	29951	23944	0	48212.42205		82CW0236	1	0
44 3404 VISINTAINER RES 82	3	47 LITTLE COTTONWOOD CK	41	NE SE	15	9 N	90 W S 9		1.4	s	30316	29951	17411	0	48212 35673		82CW0236	1	0
··· ··································	-			E		1.14				-	30310								*
44 3405 VISINTAINER RES 83	3	47 LITTLE COTTONWOOD CK	41	NE SW	15	9 N	90 W S 9		5 A	S	30316	29951	13029	0	48212.3129		82CW0236	1	0
44 3379 VISINTAINER RES 94	3	47 LITTLE COTTONWOOD CK	41	NE SW	26	9 N	90W S 9		1.4	5	30316	29951	20318	0	48212.38579		82CW0237	1	U
44 2200 MEINTAINED DES 05		42 LITTLE COTTONINOCO CH	41	ALC: ALC:	24	0.14	00.W S C		1.4	5	20214	20051	21092	0	40212 20242		000000000	1	0
44 DOOL NOW TANKED DEC. 01	3	47 LITTLE COTTONWOOD UK		NE NW	20	7 19	10 M 3 7		12	ž	30310	27731	21002	0	+0212.37343		02.0770237		
44 ABOLVIND LAINER REN 96	3	47 THEF COLLONWOOD CK	41	NF SE	26	9 N	90 N N 9		1.0	2	30316	29951	18791	0	as(717-3,01b)		8/0 300237	1	4

WD ID WRNAME STRTYPE WRSTRNO WRSTRNAME CTY Q10 Q40 Q160 SEC TS RNG PM USETYPE DCRAMT DCRUNITS ADJTYPE ADJDATE APRODATE ORDNO ADMINNO PRIORNO CANO SEQNO PLANS ALTERID COMMENT

19 2005 PATE 1					a 2. I. ≪ 3.		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	۲. ۳.				Konday.
ght Name Struct Steam			95)	Decreed U Adj	Adjudicath	Prev Act	Appropri	o Admin	òĽ	Court Sec	۰ ۹	A
Type & Name			Cuces	Amcuni Type	[vale	Cate	540	Number	Number	Case	-	<u>ھ</u>
CR DITCH 1 SS DENNES GUILCH		20 20 20 20 20 20 20 20 20 20 20 20 20 2	N SOM N	A CONCILIES	0401 M40	0401/1060	08/01/10/36	40421 32354		CA2260	۲.	C
ОПОММООВ ВПСН 1 47 ЦПЦЕ СОПОМИОО ОПОММООВ ВПСН 1 47 ЦПЦЕ СОПОМИОО	CC 41 SWS	:-∞ :≳¥	N 90W 5 1	2 3300 CS 2 3300 CSAP	0812191 0812191	1161/71/90	CHC1/1852	2244 15432 2244 15432	NON		¥ 	2 2 85503
00 PT OF D/Y RATHER THEN AP, BUT CODED AP 2011 ONWOOD RES 3 3 47 11111 F COTTONWOOD	CK 41 SWS	1 1 1	1 V 20 V	51330 AC	1101% 1/1011	060401011	06.001894	0 22444 16252	NONF	CAM12	-	c
	4 PEN	:8: :8:	N 90 W S 189	2 2000 CS	SE211-1935	05/31/1934	04/21/1902	50151 IE80C 0	195	1.A0692		00
COTTONWOOD 0 1 47 LITTLE COTTONWOOD 1 47 LITTLE COTTONWOOD 1 47 LITTLE COTTONWOOD	CK 41 NEN	9 8 8 8 9 9	N 90W S 189	1 3000 CS.C 2 2000 CS.TF	03/2/1935 03/2/1935	1051/1050	2061/12/20	1019112306 1 2081139123	8: S	CA0692 W0677	₽ ~~	00650
COTTONWOOD 1 47 LITTLE COTTONWOO ES IMPENDIO	CA 21 NEN	9 8	N 90 W S 189	1 3000 CS C.AB	03/2:v1535	05/31/1934	04/21/15/02	30831 19103	3	84CW0071	ন্দ	0
ON& WYATTENLD 1 47 LITTLE COTTONWOO	CK 4: NEN	4E 11 9	N 90 W S 1	1 2500 CS	04/2/v1937	10:07/1935	07/12/1906	31325 20646	1204	CA0692	-	G
ON& WATTENLD 1 47 LITTLE COTTONWOO	CK 11 NEN	9 5	N 90W S 1	0.5700 CS.C	04/2/1937	10,07/1936	02/12/1906	0 31325 20646	1204	CA0652	2	0
UN & WYATTENLU 1 4/ LITTLE CUTSONWOO JALD DATCH 1 4/ LITTLE COTTONWOO	CK 4: NEN CX 4: SWN	i i i i i i i i i i i i i i i i i i i	1 S M S N	0.0600 CS.CA	265175290	3261//201 3261//201	00/12/1300	0 31375 20646 0 31325 20948	52	75CW0113 CA3692	- m	
MLD DITCH 1 47 LITTLE COTTONWOO	CK 41 SWN	5 5 5	N 90W S 1	0.2500 CS.AB	04/2011937	1007/1935	06/10/1/20	31325 20948	1208	84CM0071	~ ~	• •
SB4CW/I NALD& HALED 1 47 LITTLE COTTONWOO	CK 41 SF N	5 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	N 90W S 1	0.500 CSCA	04/06/1937	204074025	06/17/1607	B1015 21078	1200	7720W	ų	c
HALD & HALL D : 47 LITTLE COTTON WOO	2 3 3 3 3 3 3 3 3 3 3	1 1 2 2 2 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3	1 S M OS X	05000 CS.C	04/25/1957	10071:535	06111150	3132521078	ž Š	CAGGET		0
		6 8 9	N 50W S 1	0.5600 CS	04/25/1537	10.07/1935	205172180	31325 21078	2	CA0692	-	0
COTTONWOOD CK RES 3 4/ TITLE CUTTONWOOD		אית און עוג	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	43.5000 AS	04/24/1937	5261/2001	001/71/200	11325216		CAD692	- ~	.
COTTONWOOD CK RES 3 47 LITTLE COTTONWOO	CK 41 NE SI	5 5 5 5 5	1 S M 06 N	433 6300 AS.C.AB	04/291937	507/1935	6051/#1/20	3132521744	HOZI	84CW0071	. 	• •
	UK 51 SWN	5 5 5	2 60 W S 19	5.62M CS	0401.1050	05/16/1949	DR/DK/1967	00000 61162 0	д,	CA1278	~	c
INALD DITCH 1 47 LITTLE COTTONWOOD	CK 41 SWN	14 9 9 9 2	N 90 W 51	5 6000 CS.C	0961 10/60	05/16/19/9	08/26/1957	39319 00000	8	CA1278		0
	CC I SWN	ມ ອີຍ ອີຍ	N 90W S 1	5 8000 CS CA	09:01.1560	05/16/1949	08.26/1957	3315 00000	8	CA1278	ŝ	00
K UI UNWUUU 1 1 4/ UI ILE UU I UNWUU \$2000	CK AI NEW	2 2	KOI C MINE N	5 WW 13.140	716116:00	12:01:11:00		70776 I 78A5 (K)	AUWUJA	~	5
R COTTONWOOD D 1 47 LITTLE COTTONWOOD	CK 41 NR N	9 8 9	N 90 W S 189	2 0000 CS	CS/CC:15/2	0461-10450	8621/10/20	0 40421 32262	12	(A2259	ŝ	0
R COTTONWOOD D 1 47 LITTLE COTTONWOOD	CK 41 NE N	5	691 S M 06 N	3 0000 CS.C	2791-0520	05/01/15/60	05/01/1938) 404 21 32262	124	CA2259	م	0
COTTONWOOD DITCH 1 47 LITTLE COTTONWOO	CK 41 SWS	5 I MS	N 90W S 1	6 6700 CS	05/30/1972	0961/10/60	10:01/1954	38255	R	CA2259	2	0
JUTONWOOD JITCH 2 1 4/ LITTLE COTTONWOOD WID BT OF DV PATHER THEN AD BUIL CONFOLAD	CK 4: NE N	μ Ω	N 50W S1	6 6700 CS.AP	05/30/1972	09:01/1950	10:01/1954 (040421 38259	2	CA2259	∓ ∾	1266001
NUTTUTUTUV PARAGENTER AT, BUTUUDEU AT JAN RESERVOR 3 47 LITTLE COTTONWOO	CK 11 NWS	5M 6 9	N 89 W S 56	137 0500 AS	05/30/1972	0901/1060	10/14/1963	41559 00000	9	CA2259	••	0
AW SPG 4 47 LITTLE COTTONWOOD	CK 41 NWS	W 12 9	6 S M 06 N	00170 CS C.AB	1231/1521	1231/1971	10:01/1928	44559 28763	!	W0331-72	~	0
41550 AV SPG A 27 LITTLE CATTONIMOOD	CK 1: Nin C		0 2 M 10 N		C1011011C-	12010121	1001100	1 44640 28763		62"1ELUM	-	-
			5. S M06 N	1 5000 CS	225, 11021	12/31/1972	D6/C5/1973 (45050 02000		W2476-73	- ო	0 (3
DMAW WYATTS SPG 4 47 LITTLE COTTONWOOD	CK 41 SWN	W 11 3	N 90 W S 891	0 0220 CS	12/31/ 979	12/31/1978	02/01/10/20	47116 20209		79CM0114	-	0
EBUCK RES 3 47 LITTLE COTTONWOOD	CK 11 NW SI	5 5 9	N 90 W S X	250 2000 AS C	12/31/ -581	12/31/1980	05/30/1981	9 4 8:22 00000		81CW0272	-	0
E BUCK RES 3 47 LITTLE COTTONWOON	CK 41 NWS	6 5 10	N 90W 5 X	250 0000 AS.C.A3	12/31/.961	12/31/1980	09/30/1981	0 48120 30000		B1CW0272	2	0
7 ABANDUNED ZNI AF UN 45/50 FAINER BCS R3 2 AT LITTLE COTTONNION	UX 11 HIE 0	0 21 10	e como a	5,0000, 4.0	12/21/11/082	17/21/1480	093011035	1 48212 11200		RXXM036		c
TANER RES 77 3 47 LITTLE COTTONWOOD		01 M	6 S M 06 N	3 0000 AS	12/31/1982	12/31/1981	605.00220	9 48212 32710		82CW0236	·	0
AINER RES 784 3 47 LITTLE COTTONWOOD	CK 41 SEN	M 10 8	6 5 M 06 N	3 0000 AS	12/31/1982	12/31/1581	08/19/1940	9 48212 33103		82CM0236	_	0
TAINER RES 79 3 47 LITTLE COTTOMWOOL	CK 41 NWN	ጠ እጉ የ	N 90W 59	2 0000 AS	12/31/1982	12/31/1981	05/28/1940	0 48212 33:43		82CWC235	- •	00
ANDER RES 82 3 47 LITTLE COTTONWOOD		5 0		1 0000 AS	12/01/1982	12/31/15/01	2061/10/60	0 48212 35672		82CM0236		00
AINER RES 96 3 47 LITTLE COTTONWOOD	CK 41 NESC	9 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 S M 06 N	1 0000 AS	12/31/1982	12/31/198:	06/12/1951	0 452:237052		82CM0237	-	0
AINER RES 75 3 47 LITTLE COTTONWOOD		ი ი ყ.	5 S M 05 N	1 5000 AS	23:/1982	12/31/1981	C&11/1951	0 48212 371:2		82CM0236		0
AINER RES 75 3 47 LITTLE COTTONWOOD		50 57 57 57	555306 Z	3 000 4 S	12/31/1582	12/21/15/01	252117270	0 48212 JB552		820MU235 82:5M22317		⇒⊂
AINER RES 80 3 47 LITTLE COTTONWOOD	CK 41 SWN	5 91 W	6 S M OS N	10000 AS	201/1382	12/31/19/81	C&181957	48212 39311		62CM0236		0
AINER RES 55 3 47 LITTLE COTTONWOOD	CK 41 NE N	6 92 M	5 S M 06 N	1 0000 AS	12/31/1382	1231-1981	2561:61:60	0 48212 39343		82CM0237		6
AINER RES 73 3 47 LITTLE COTTONWOOD		5 0 5 M	6 S M 06 N	1 (000) AS	12/31/1482	12/11/1961	0461/22//0	0 48212 39649 0 48212 40066		82CW0236 82CM0235		
ANER RES 81 3 47 LITTLE COTTONWOOD	CK 41 SWN	E 15 9	6 S M OS N	1 0000 AS	12/31/1 382	12/31/1981	07/21/1965	0 48212 42205		82CM0236		• •
KGER SPRING NO 2 4 47 LITTLE COTTONWOOD	CK 41 NWN	5 82 83	61 S M 06 N	0 2450 CS	12/31/1/92	12/31/1991	01/15/1990	5186451149		92CW0020	-	0

— -

Structure Name: JOH	NSO	1 & 1	NYA.	TT ENL	D						Wate	r Distric	t: 44	ID Number:	817
Source	LITTL	E CO	TTON	woodc	K @ N	lile 17	6 08							Acres Imgated	53
Location:	Q160	Q40	Q10	Section	Twn	shp	Rang	e	PM					CIU	Α
	NE	NE		11	9	Ν	90	W	s						
Distance from section lines	From	N/S II	ne		Fro	m EN	V line								
UTM Coordinates (NAD 83)	Northi	ng (U	TM y)	4515	000 4	Easti	ng (UT	M x)		293594	1 GPS				
Latitude/Longitude (decimal c	togree.	s)		40	7601				-	107 445	3				
Measuring Device/Recorder	2 F T	PARS	SHALL												
Contact.	JOH	NSON	I, HAR	LEY					-	Phone					
Address.	2180	WES	T JOF	RDAN UTA	AH 840)84				Cell Pho	ne				
										E-mail					
Water Rights Summary	Total	Docn	eed Ra	 ste(s)			 Abs		1 310	<u>.</u> 10 Con	d	0 6 1 0 0	AP/EX	r 0 0000	
	Total	Decr	eed Vo	olum a(s)			Abs.		0 000	0 Con	d	0 0000	AP/EX	0 0000	

	Water	Rights	- 7	ransactions	
-	-			-	

Seq	Case Number	Adjudication Date	Appropriation Date	Admin Number	0 #	Priority Number	Decreed Amount	Adj. Type		Uses	Comments
1	CA0692	4/29/1937	7/12/1906	31325 20646	0	120A	1 25 C	S	1		
2	CA0692	4/29/1937	7/12/1906	31325 20646	Û.	1 <u>20</u> 4	0.67 C	S.C	1		
3	79CW0113	4/29/1 937	7/12/1906	31325 20646	0	120A	0 06 C	S,CA	1		

.

Diversion Summary in Acre-Feet - Total Water through Structure

IYR	FDU	LDU	DWC	Max Q	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Total
1942	06/01	06/25	25	2	0	0	0	0	0	0	0	96.6	0	0	0	0	96 6
1943	05/20	06/ 30	42	3	0	0	0	0	0	0	714	178	0	0	0	0	250
1947	07/20	08/20	32	05	0	0	0	0	0	0	0	0	119	198	0	0	31 7
1960	05/28	06/14	18	3	0	0	0	0	0	0	20 8	40 7	0	0	0	0	61 5
1975	06/12	07/16	35	2	0	Û	0	0	D	0	Û	75.4	63 5	0	0	0	139
1976	07/06	07/25	20	1	0	0	0	0	0	0	0	0	39 7	0	0	0	39 7
197 8	06/17	07/17	31	1	0	0	0	0	0	0	0	27 8	33 7	0	0	0	61 5
1979	C6/11	07/23	43	1	0	0	0	0	0	0	0	36 7	22.8	0	0	0	59 5
1980	06/14	07 <i>1</i> 24	41	2	0	0	0	0	0	0	0	67 4	95 2	0	0	0	163
1981	05/01	06/24	55	1	0	0	0	0	0	0	61 5	47 6	0	0	0	0	109
1982	05/26	06/21	27	13	0	0	0	0	0	0	15 5	54 2	0	0	0	0	69 6
1983	06/10	08/31	80	1	0	0	0	0	0	0	0	41 7	55 5	38 7	0	0	136
1984			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1985	06/01	06/18	18	1	0	0	0	0	0	Û	0	35 7	0	0	0	0	35 7
1986	06/01	07/17	47	1	0	0	0	0	0	0	0	48 4	10 1	0	0	0	58 5
1987	06/01	06/15	15	1	Q	0	0	0	0	0	0	29 8	0	0	0	0	29 8
1989	05/12	05/ 29	18	1	0	0	0	0	0	0	35 7	0	0	0	0	0	35 7
1990	05/01	05/16	16	1	0	0	0	0	0	0	31 7	0	0	0	0	0	31 7
1991	06/01	06/11	11	1	0	0	0	0	0	0	0	21 8	0	0	0	0	21.8
1992	05/25	06/11	18	1	0	0	0	0	0	0	13 9	21.8	0	0	0	0	35 7
1993	06/10	07/01	22	15	0	Ô	0	0	0	0	0	62 5	0 46	0	0	0	62 9
1994	04/30	06/05	37	15	0	0	0	0	0	2 98	92 2	14 9	0	0	0	0	110
1995	07/27	08/08	13	1	0	0	0	0	0	Q	0	0	9 92	10 9	0	0	20 8
2000	05/03	06/12	10	1 32	0	0	0	0	0	0	0	26 2	0	0	0	0	26 2
	— <u>M</u>	lınımum		0	0	0	0	0	ō	0	0		0	0		o	0
	м	laxmun	l I	3	0	0	0	0	0	2 98	92.2	178	95 2	38 7	0	0	249
	A	verage		1 2967	0	0	0	0	0	0 12	14 3	386	14 3	2 89	0	0	70 2

Diversion Comments

Structure Name: JOHNSON & WYATT ENL D

-

IYR	NUC Code	Acres Imgated	Comments
1942		100	
1943		50	
1944		50	
1945		100	
1946		100	
1947		100	
1948	No information available		
1959			
1960		100	
1972	Water available, but not taken		
1973	Water available, but not taken		
1974	Structure not usable		
1975		80	
1976		80	
1977	No water available		
1978		80	
1979		80	
1980		80	
1981		80	
1982		80	
1983		80	
1985		80	
1987		80	
1988	Water available, but not taken	0	
1989		80	
1990		80	
1991		80	
1992		80	
1993		80	
1994		80	
19 95		80	
1996	Water available, but not taken		
1997	Water available, but not taken		
1998	Water available, but not taken	Q	
1999	Water avariable, but not taken	53	
2 00 0		53	
2001	No water available	0	
2002	No water available	0	
2003	No water available	0	
2004	Water available, but not taken	0	

Structure Name: MCDONALD DITCH

.

_

Source	LITTLE COTTON	NOOD CK	@ Mile 173	3 24				A	cres Imgated	101
Location	Q160 Q40 Q10	Section	Twishp	Range	PM				CIU	A
	NE SW	9	9 N	90 W	S					
Distance from section lines	From N/S line		From E/W	(line						
UTM Coordinates (NAD 83)	Northing (UTM y)	451466	3.4 Eastir	ng (UTM x)	28	89739 1 GPS				
Latitude/Longitude (decimal i	degrees)	40 7	561		- 10	07 4908				
Measuring Device/Recorder	2 FT METAL									
Contact	VISINTAINER, DI	EAN			 Pi	 hon e				—
Address	CRAIG COLO				С	ell Phone				
					E	mail				
Water Rights Summary	 Total Decroort Ra			 Abs 1	2 2000	Cond				
<u>-</u>	Total Decreed Vo	lume(s)		4 <i>bs</i>	0 0000	Cond	0 0000	AP/EX	0 0000	

Water Rights -- Transactions

-						water Ki	gnts 1 r	ansactu	ons		
Seq. #	Case Number	Adjudication Date	Appropriation Date	Admin Number	0 #	Pnonty Number	Decreed Amount	Аф Туре		Uses	Comments
1	CA0692	4/29/1937	5/10/1907	31325 20948	0	120B	1 25 C	S	1		
3	84CW0071	4/29/1937	5/10/1907	31325 20948	Ō	1208	0 25 C	SIAB	:		ABANDONED 200F3 84CW71
- 4	CA1278	9/1/1960	8/26/1957	39319 00000	0	85	56C	S.C	1		
2	CA1278	9/1/1960	8/26/1957	39319 00000	0	85	56C	S	19		
5	CA1278	9/1/1960	8/26/1957	39319 00000	0	85	56C	S.CA	1		

Diversion Summary in Acre-Feet - Total Water through Structure

IYR	FDU	LDU	DWC	Max Q	Nov	Dec	Jan	Feb	Mar.	Apr	May	June	July	Aug	Sept	Oct	Total
1942	05/19	06/25	38	19	0	0	0	0	0	0	49 0	916	0	0	. 0	0	141
1943	05/10	06/20	42	2	0	0	0	0	0	0	87 3	793	0	Û	0	0	167
1946	05/01	06/15	46	2	0	0	0	0	0	0	89 3	29 8	0	0	0	0	119
1947	06/20	10/31	134	2	0	0	0	0	0	0	0	43 6	122	122	119	122	532
1960	05/28	06/14	18	15	0	0	0	0	0	0	10 9	27 8	0	0	0	0	38 7
1961	05/27	05/27	1	39	0	0	0	0	0	0	7 74	0	0	0	0	0	7.74
1962	05/15	06/14	31	4	0	0	0	0	0	0	126	90.8	0	0	0	0	218
1963	05/14	06/17	35	5 86	0	0	0	0	0	0	168	37 2	0	0	0	0	206
1964	06/15	07/08	24	4	0	0	0	0	0	0	0	126	56 5	0	0	0	183
1965	06/03	06/29	27	25	0	0	0	0	0	0	0	130	0	0	0	0	130
1966	05/06	06/11	37	2 1	0	0	0	0	0	0	82 9	10 9	0	0	0	0	93 8
1967	05/20	06/12	24	28	0	0	0	0	0	0	66 6	65 3	0	0	0	0	132
1968	06/01	08/01	62	21	0	0	0	0	0	0	0	107	44 6	0 99	0	0	154
1969	05/26	07 <i>1</i> 01	37	28	0	0	0	0	0	0	33 3	111	0 99	0	0	0	146
1970	05/28	07/09	43	29	Û	0	0	0	0	0	23 0	172	47 0	0	0	0	243
1971	06/08	07/05	28	32	0	0	0	0	0	0	0	129	4 96	Q	0	0	135
1972	05/25	06/21	28	32	0	0	0	0	0	0	44 4	89 7	0	0	0	0	134
1973	06/11	06/28	18	5	0	0	0	0	0	0	0	178	0	0	0	0	179
1974	04/25	06/30	67	3 53	0	0	0	0	0	42 0	217	197	0	0	0	0	457
1975	05/22	07/16	56	82	0	0	0	0	0	0	69 4	273	260	0	0	0	603
1976	06/02	07/25	54	3	0	0	0	0	0	0	0	172	65 5	0	0	0	238
1977	04/25	06/06	43	32	0	0	0	0	0	30 9	53 1	786	0	0	0	0	91 9
1978	06/12	08/10	60	2 32	0	0	0	0	0	0	0	82 2	33 5	4 96	0	0	121
1979	06/08	09/06	91	3 25	0	0	0	0	0	0	Ó	125	52 6	30 7	5 95	0	215
1980	06/04	07/08	35	15	0	0	0	0	0	0	0	80 3	21.8	0	0	0	102
1982	05/26	07/21	57	4	٥	0	0	0	0	0	47 6	238	166	0	0	0	452
1983	06/15	07 <i>1</i> 28	44	4	0	0	0	0	0	0	0	126	70 4	0	0	0	197

									M	Α	M	•}	.)	<u>۸</u>	5	ŋ	
Structu	ire Na	me: N	ACD	ONALD	DITCH	1				• \		Nater I	District	: 44	ID Nu	mber:	698
1984			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1985	06/10	06/19	10	3	0	0	0	0	0	0	0	59 5	0	0	0	0	59 5
1986	05/10	06/22	44	2	0	0	0	0	0	0	87 3	87 3	0	0	0	0	175
1987	05/02	06/10	40	3	0	0	0	0	0	0	154	21 8	0	0	0	0	177
1988	05/07	06/22	47	25	0	0	0	0	0	0	123	76 4	0	0	0	0	200
1989	04/14	05/26	43	2	0	0	0	0	0	674	103	0	0	0	0	0	171
1990	04/07	06/10	65	3	0	0	0	0	0	142	134	9 92	0	0	0	0	288
1991	04/30	06/17	49	3	0	Û	0	0	0	5 95	152	26 8	0	0	Û	0	185
1992	04/13	06/15	64	13	0	0	0	0	0	44 6	78 6	38 7	0	0	0	0	162
1993	05/05	06/28	55	5	0	0	0	0	Ó	0	267	69 4	0	0	0	0	337
1994	04/09	06/08	61	10	0	0	0	0	0	436	202	28 8	0	0	0	0	667
1995	04/10	05/19	25	12	0	0	0	0	0	261	222	0	0	0	0	0	484
1996	04/08	06/12	66	12	0	0	0	0	0	547	491	95 2	0	0	0	0	1135
1997	04/12	05/09	59	12	0	0	0	0	0	452	497	58 2	0	0	0	0	1008
1998	04/25	06/23	60	10 34	0	0	0	0	Q	123	484	140	0	0	0	0	747
1999	04/23	06/11	36	10.34	0	0	0	0	0	164	229	109	0	0	0	0	503
2000	04/26	06/09	45	5.02	0	0	0	0	0	498	123	4 46	0	0	0	0	177
2001	04/20	06/07	49	29	0	0	0	0	0	63 3	137	6.94	0	0	0	0	207
2002	03/29	05/24	57	2 09	0	0	0	0	12 4	124	91 9	0	0	0	0	0	228
2003	04/27	06/18	53	2 65	0	0	0	0	0	210	156	52 4	0	0	0	0	230
_2004	04/18	06/02	46	2 48	0	0	0	0	0	639	123	4 92	0	0	0	0	192
	M	เกเสบสา	<u> </u>	0	0	0	0	0	0	0	0	i	0	0	0	0	0
	M	laxmum		12	0	0	0	0	12 4	547	497	273	260	122	119	122	1134
	A	verage		4 0288	0	0	0	0	0 26	55 0	105	77 5	197	3 33	2 60	2 56	266

Diversion Comments

IYR	NUC Code	Acres	Comments
		Imgated	
1942		100	
1943		70	
1944		70	
1945		70	
1946		100	
1947		100	
1948	No information available		
1959	No information available		
1960		125	
1963			
1964			
1966		80	
1967		80	
1968		80	
1970		80	
1971		80	
1972		80	
1973		80	
1974		80	
1975		80	
1976		107	
1977			
1978		107	
1979		107	
1980		107	
19 81	Water available, but not taken		

-

- _____

Structure Name: MCDONALD DITCH

- -

1982	100
1983	100
1985	108
1987	200
1988	200
1989	200
1990	200
1991	200
1992	200
1993	200
1994	200
1995	200
1996	101
1997	101
1998	101
1999	101
2000	101
2001	101
2002	101 I shut this ditch off 5-24-02
2003	101
2004	101

									A				
Durce LITTLE COTTONWOOD CK @ Mile 177 41											Acres in	igateo	
Q160 Q4) Q10	Section	Twn	shp	Ranç	e	PM					CIU	Α
SW NV	I	6	9	Ν	8 9	w	S						
as From N/S line From E/W line													
3) Northing (UTM y) 4515362.4				Easting (UTM x)				95218 3 Spa					
Latilude/Longitude (decimal degrees)							-1	07.4262					
COLO D	 WC						 P	hone		_		_	_
							С	ell Phone					
				E-mail									
 Total De	mod R	ate(s)			Ahs		0 0 00 0	Cond	0.0000		 0.0		
Total Decreed Volume(s)					Ahe	13	7 0900	Cond	0 0000	AP/EX	0.0	000	
	EMAN R LITTLE CO Q160 Q40 SW NW From N/S Northing (degrees) COLO DO	EMAN RESER	EMAN RESERVOIR LITTLE COTTONWOOD C Q160 Q40 Q10 Section SW NW 6 From N/S line Northing (UTM y) 4515 degrees) 40 COLO DOW Total Decrood Rate(s)	EMAN RESERVOIR LITTLE COTTONWOOD CK @ M Q160 Q40 Q10 Section Twn SW NW 6 9 From N/S line Fro Northing (UTM y) 4515362 4 degrees) 40 7637 COLO DOW Total Decrood Rate(s)	EMAN RESERVOIR LITTLE COTTONWOOD CK @ Mile 17 Q160 Q40 Q10 Section Twinship SW NW 6 9 N From N/S line From E/W Northing (UTM y) 4515362 4 Easther the test of the test of the test of test	EMAN RESERVOIR LITTLE COTTONWOOD CK @ Mile 177 41 Q160 Q40 Q10 Section Twinship Rang SW NW 6 9 N 89 From N/S line From E/W line Northing (UTM y) 4515362 4 Easting (UT degrees) 40 7637 COLO DOW Total Decrood Rate(s) Abs	EMAN RESERVOIR LITTLE COTTONWOOD CK @ Mile 177 41 Q160 Q40 Q10 Section Twinship Range SW NW 6 9 N 89 W From N/S line From E/W lino Northing (UTM y) 4515362 4 Easting (UTM x) degrees) 40 7637 COLO DOW Total Decrood Rate(s) Abs	EMAN RESERVOIR LITTLE COTTONWOOD CK @ Mile 177 41 Q160 Q40 Q10 Section Twinship Range PM SW NW 6 9 N 89 W S From N/S line From E/W line Northing (UTM y) 4515362 4 Easting (UTM x) 2 Idegrees) 40 7637 -1 COLO DOW P Total Decrood Rate(s) Abs 0 00000	EMAN RESERVOIR Water LITTLE COTTONWOOD CK @ Mile 177 41 Q160 Q40 Q10 Section Twinship Range PM SW NW 6 9 N 89 W S From N/S line From E/W lino Northing (UTM y) 4515362 4 Easting (UTM x) 295218 3 Spontering (UTM x) Northing (UTM y) 4515362 4 Easting (UTM x) 295218 3 Spontering (UTM x) 295218 3 Spontering (UTM x) COLO DOW Phone Cell Phone Total Decrood Rate(s) Abs 0 0000 Cond	EMAN RESERVOIR Water Distric LITTLE COTTONWOOD CK @ Mile 177 41	EMAN RESERVOIR Water District: 44 LITTLE COTTONWOOD CK @ Mile 177 41	EMAN RESERVOIR Water District: 44 ID Num LITTLE COTTONWOOD CK @ Mile 177 41 Acres in Q160 Q40 Q10 Section Twinship Range PM SW NW 6 9 N 89 W S From N/S line From E/W lino Northing (UTM y) 4515362 4 Easting (UTM x) 295218 3 Spotted from PLSS quarters Northing (UTM y) 4515362 4 Easting (UTM x) 295218 3 Spotted from PLSS quarters	EMAN RESERVOIR Water District: 44 ID Number. LITTLE COTTONWOOD CK @ Mile 177 41 Acres imgaled Q160 Q40 Q10 Section Twinship Range PM CIU SW NW 6 9 N 89 W S From N/S line From E/W lino CIU Section Twinship Range PM CIU Northing (UTM y) 4515362 4 Easting (UTM x) 295218 3 Spotted from PLSS quarters Ciu and the section of the sectio

Seq #	Case Number	Adjudication Date	Appropriation Date	Admin. Number	0 #	Pnonty Number	Decreed Amount		Adj. Type	-	Uses	Comments	
1	CA2259	5/30/1972	10/14/1963	41559 0000	0 0	48	137 09 A	S		56			

_

Little Cottonwood Creek 7/26/05

Little Cottonwood Creek Freeman Reservoir 7/26/05

