

United States Department of the Interior

BUREAU OF LAND MANAGEMENT Colorado State Office 2850 Youngfield Street Lakewood, Colorado 80215-7093

www.blm.gov/co

In Reply Refer To: 7250 (CO-932)

DEC 1 1 2009

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its recommendation for an instream flow water right for the upper Animas River, located in Water Division 7.

Location and Land Status: The Animas River starts in the San Juan Mountains east of Silverton and flows downstream to the Durango area. This recommendation covers two stream reaches located upstream from Silverton. The upper reach begins at the confluence with Minnie Gulch and extends to the confluence with Cunningham Creek. The lower reach begins at the confluence with Arrastra Creek.

In the upper reach, approximately 25 percent of the 2.25-mile reach is located on federal lands managed by the BLM, while the remaining 75 percent is located on private lands. In the lower reach, approximately 50% of the 2.25-mile reach is located on federal lands managed by the BLM, while the remaining 50% is located on private lands.

Biological Summary: These segments of the Animas River are moderate gradient streams with moderate to large substrate size, often punctuated by large boulders within the stream channel. Many portions of the stream channel have been affected by historic mining that moved bedload materials. Natural hydrologic processes since the mining activity ceased have created a natural stream channel, but some portions of the river are still highly braided and lack good width to depth ratios.

Water quality in the stream segment is affected by heavy metals from both natural sources and historic mining activities within the watershed. Minnie Gulch, Maggie Gulch, and Cunningham Creek contribute water to the river that has lower concentrations of heavy metals, so water quality improves as you move downstream through the two reaches.

Fish surveys have documented naturally reproducing populations of brook trout in both stream

reaches. Brook trout are the trout species that are most tolerant of heavy metal loads, but they indicate that the stream has sufficient macroinvertebrates to provide for fish forage, and that the stream has basic ecologic functions. Brook trout are not found either immediately above or below these two reaches, indicating that heavy metal loads in those locations are too high for fish habitat. The two recommended reaches provide an important connectivity between good fish habitat found in Minnie Gulch, Maggie Gulch, and Cunningham Creek. The Colorado Water Conservation Board (CWCB) has previously appropriated instream flow water rights on all three of these important tributaries, based upon recommendations from the BLM and the Colorado Division of Wildlife.

The riparian community consists primarily of willows and potentilla. As you move downstream and the water quality improves, the riparian community is more vigorous and has succeeded in converting the stream from a braided system to a channelized environment that is more favorable to fish populations.

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	07/28/2004	37.55	15.0-93.9	15.62	Out of range
BLM	10/20/2004	18.10	7.2-45.3	Out of range	11.37
BLM	10/20/2004	13.81	5.5-34.5	8.80	6.80

R2Cross Analysis. Upper Segment - BLM collected the following R2Cross data from the creek:

The BLM's data analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

12.2 cubic feet per second is recommended during the high temperature period from May 1 through October 31. This recommendation is derived by averaging the results of the data sets. The recommendation is driven by the depth criteria. Given the wide creek channel in riffle habitats, 12.2 cfs is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population.

9.1 cubic feet second is recommended for the period from November 1 to April 30. This recommendation is derived by averaging the results of the data sets. This recommendation is driven by the wetted perimeter criteria, and should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Lower Segment - The BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	07/28/2004	39.80	15.9-99.5	31.73	Out of range
BLM	10/20/2004	39.33	15.7-98.3	16.32	Out of range
BLM	10/20/2004	39.08	15.6-97.7	22.69	Out of range
BLM	10/23/2008	24.63	9.9-61.6	22.43	13.92
BLM	10/23/2008	22.68	9.1-56.7	32.17	12.23

The BLM's data analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

25.0 cubic feet per second is recommended during the high temperature period from May 1 through October 31. This recommendation is driven by the depth criteria. This recommendation was derived by averaging the results of the data sets. Given the wide creek channel in riffle habitats, 25.0 cfs is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population.

13.0 cubic feet second is recommended for the period from November 1 to April 30. This recommendation was derived by averaging the results of the data sets. A 60% wetted perimeter criteria was used, because the channel exceeds 40 foot width on average. This recommendation is driven by the average velocity criteria, and should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Water Availability: The BLM has identified a handful of decreed stream diversions located upstream from the proposed stream reaches. Further analysis would be required to determine in what seasons these diversions are operated and whether the decreed uses are consumptive:

Hematite Gulch Hydro – 6 cfs, conditional Burrows Creek Diversion – 1 cfs, conditional Mineral Point Ditch – 11 cfs, absolute Hematite Creek Pipeline – 0.5 cfs, absolute Highland Mary Pipeline – 8 cfs, absolute Pride of the West Pipeline – 0.5 cfs, absolute Cole Ranch Animas Diversion – 0.5 cfs, absolute Cole Ranch Minnie Diversion – 2.5 cfs, absolute Hewett Diversion – 0.233 cfs, absolute

For water availability analysis, the BLM recommends using the Animas River gage at Howardsville (USGS 09357500). This gage is located in the middle of the two recommended stream reaches and had a long period of record from 1935 to 1982. The gage record indicates that recommended flow rates are available during most hydrologic conditions. **Relationship to Management Plans:** The BLM land use plan that covers this management unit is currently under revision. Under the new plan, many historical management actions are expected to continue. For example, the BLM will continue to cooperate with the Upper Animas Stakeholders Group to implement projects within the watershed that are designed to minimize acid mine drainage. The BLM will continue to provide recreation access along this stream segment for informal camping, hiking, and fishing. The river corridor will also continue to be managed as part of the Alpine Loop Scenic byway. If further water quality improvements result in additional stream reaches of the Animas being able to support fish populations, the BLM may bring forth additional instream flow recommendations at that time.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section were included with BLM's draft recommendation in February 2009. We thank both the Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely,

Inda anonia

Linda Anañia, Deputy State Director, Natural Resources and Fire

cc: Mark Stiles, San Juan Public Lands Center Matt Janowiak, Columbine Field Office Kelly Palmer, San Juan Public Lands Center Shauna Jensen, Dolores Field Office

DRAFT INSTREAM FLOW RECOMMENDATION

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its recommendation for an instream flow water right for the upper Animas River, located in Water Division 7.

Location and Land Status. The Animas River starts in the San Juan Mountains east of Silverton and flows downstream to the Durango area. This recommendation covers two stream reaches located upstream from Silverton. The upper reach begins at the confluence with Minnie Gulch and extends to the confluence with Cunningham Creek. The lower reach begins at the confluence with Arrastra Creek.

In the upper reach, approximately 25 percent of the 2.25-mile reach is located on federal lands managed by BLM, while the remaining 75 percent is located on private lands. In the lower reach, approximately 50% of the 2.25-mile reach is located on federal lands managed by BLM, while the remaining 50% is located on private lands.

Biological Summary. These segments of the Animas River are moderate gradient streams with moderate to large substrate size, often punctuated by large boulders within the stream channel. Many portions of the stream channel have been affected by historic mining that moved bedload materials. Natural hydrologic processes since the mining activity ceased have created a natural stream channel, but some portions of the river are still highly braided and lack good width to depth ratios.

Water quality in the stream segment is affected by heavy metals from both natural sources and historic mining activities within the watershed. Minnie Gulch, Maggie Gulch, and Cunningham Creek contribute water to the river that has lower concentrations of heavy metals, so water quality improves as you move downstream through the two reaches.

Fish surveys have documented naturally reproducing populations of brook trout in both stream reaches. Brook trout are the trout species that are most tolerant of heavy metal loads, but they indicate that the stream has sufficient macroinvertebrates to provide for fish forage, and that the stream has basic ecologic functions. Brook trout are not found either immediately above or below these two reaches, indicating that heavy metal loads in those locations are too high fish habitat. The two recommended reaches provide an important connectivity between good fish habitat found in Minnie Gulch, Maggie Gulch, and Cunningham Creek. The CWCB has previously appropriated instream flow water rights on all three of these important tributaries,

based upon recommendations from BLM and the Colorado Division of Wildlife.

The riparian community consists primarily of willows and potentilla. As you move downstream and the water quality improves, the riparian community is more vigorous and has succeeded in converting the stream from a braided system to a channelized environment that is more favorable to fish populations.

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	07/28/2004	37.55	15.0-93.9	15.62	Out of range
BLM	10/20/2004	18.10	7.2-45.3	Out of range	11.37
BLM	10/20/2004	13.81	5.5-34.5	8.80	6.80

R2Cross Analysis. Upper Segment - BLM collected the following R2Cross data from the creek:

BLM's data analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

12.2 cubic feet per second is recommended during the high temperature period from May 1 through October 31. This recommendation is derived by averaging the results of the data sets. The recommendation is driven by the depth criteria. Given the wide creek channel in riffle habitats, 12.2 cfs is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population.

9.1 cubic feet second is recommended for the period from November 1 to April 30. This recommendation is derived by averaging the results of the data sets. This recommendation is driven by the wetted perimeter criteria, and should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	07/28/2004	39.80	15.9-99.5	31.73	Out of range
BLM	10/20/2004	39.33	15.7-98.3	16.32	Out of range
BLM	10/20/2004	39.08	15.6-97.7	22.69	Out of range
BLM	10/23/2008	24.63	9.9-61.6	22.43	13.92
BLM	10/23/2008	22.68	9.1-56.7	32.17	12.23

Lower Segment - BLM collected the following R2Cross data from the creek:

BLM's data analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

25.0 cubic feet per second is recommended during the high temperature period from May 1 through October 31. This recommendation is driven by the depth criteria. This recommendation was derived by averaging the results of the data

sets. Given the wide creek channel in riffle habitats, 25.0 cfs is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population.

13.0 cubic feet second is recommended for the period from November 1 to April 30. This recommendation was derived by averaging the results of the data sets. A 60% wetted perimeter criteria was used, because the channel exceeds 40 foot width on average. This recommendation is driven by the average velocity criteria, and should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Water Availability. BLM has identified a handful of decreed stream diversions located upstream from the proposed stream reaches. Further analysis would be required to determine in what seasons these diversions are operated and whether the decreed uses are consumptive:

Hematite Gulch Hydro – 6 cfs, conditional Burrows Creek Diversion – 1 cfs, conditional Mineral Point Ditch – 11 cfs, absolute Hematite Creek Pipeline – 0.5 cfs, absolute Highland Mary Pipeline – 8 cfs, absolute Pride of the West Pipeline – 0.5 cfs, absolute Cole Ranch Animas Diversion – 0.5 cfs Cole Ranch Minnie Diversion – 2.5 cfs Hewett Diversion – 0.233 cfs

For water availability analysis, BLM recommends using the Animas River gage at Howardsville (USGS 09357500). This gage is located in the middle of the two recommended stream reaches and had a long period of record from 1935 to 1982. The gage record indicates that recommended flow rates are available during most hydrologic conditions.

Relationship to Management Plans. The BLM land use plan that covers this management unit is currently under revision. Under the new plan, many historical management actions are expected to continue. For example, BLM will continue to cooperate with the Upper Animas Stakeholders Group to implement projects within the watershed that are designed to minimize acid mine drainage. BLM will continue to provide recreation access along this stream segment for informal camping, hiking, and fishing. The river corridor will also continue to be managed as part of the Alpine Loop Scenic byway. If further water quality improvements result in additional stream reaches of the Animas being able to support fish populations, BLM may bring forth additional instream flow recommendations at that time.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section were included with BLM's draft recommendation in February 2009. We thank both the Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy

Smith at 303-239-3940.

Sincerely,

Linda Anania Deputy State Director Resources and Fire

cc: Mark Stiles, San Juan Public Lands Center Matt Janowiak, Columbine Field Office Kelly Palmer, San Juan Public Lands Center Shauna Jensen, Dolores Field Office

APPENDIX 6A

FISHERIES REPORT

Current and Historical Review of Animas Watershed Fisheries

Prepared for Animas River Stakeholders Group July 2000

A Collaborative Preparation by:

William Simon, Animas Watershed Coordinator Barb Horn, Colorado Division of Wildlife David Wegner, EMI, Inc.

6.1.2 Upper Animas River, Minnie Gulch to Cement Creek in Silverton (Segment 3a)

Trout populations in this section of the Upper Animas River are dominated by brook and rainbow trout (when stocked) with an isolated capture of a native cutthroat trout. Trout samplings are summarized by year and life stage in Table 6.3.

Species	1976	1984	1992	1994	1996	1997	1998
Age	Smith	Western Aquatics	CDPHE	Cadmus Group	CDOW	CDOW	CDOW
Rainbow				•			
Larval	0		0			0	
YOY	0	NFC	0	NFC	NFC	0	NFC
Juvenile	0		0			0	
Adult	4		12			1	
Brook							
Larval		0	0	0		0	0
YOY	NFC	0	9	4	NFC	0	1 7 9 ¹
Juvenile		0	37	0		1	73
Adult		4	45	10		0	87
		(+4 seen)		(seen)			
Cutthroat							
Larval							1
YOY	NFC	NFC	NFC	NFC	NFC	NFC	0
Juvenile							0
Adult							0

Table 6.3Upper Animas River, below Minnie Gulch (Segment 3a). Troutpopulation dynamics for 1976-1998.

¹Sampled at A45: upstream of P & G Mill tailing pond above Howardsville

In terms of actual numbers of trout captured in this area, brook trout predominate. This is in part attributed to the availability of beaver pond habitat in side channels above Silverton and the brook trout's ability to withstand higher metal concentrations, and habitat less suitable for other trout species. The rainbow trout sampled in 1992 were likely remnants of the CDOW stocking efforts and likely do not reflect natural reproduction of that species in the upper Animas River.

A study by the Department of Interior (unknown author, 1968) reported one fish captured through three electroshocking efforts. The report suggested the section may support very low numbers of trout on a "put and take" (the fish are put in for the purpose of being caught by fisherman before they would over winter) basis if population of bottom organisms were not limited by toxic metals. In 1976 Smith (1976) referred to this section of the Animas to be "essentially dead". Conditions apparently have substantially improved over the years. Data collected by CDOH (1992), Japhet (1998), and Brantliner (1998) indicate that brook trout are not only

present but are now self sustaining in the mainstem Animas River above Silverton (Table 6.5). Rainbow trout are no longer being stocked and therefore have not recently been captured.

SUMMARIES OF RECENT FISH SURVEYS FOLLOWS:

6.1.2.1 SMITH, 1976. Samples collected with electrofishing by Norwin Smith in 1976 (Silverton to Animas Forks) found a total of four adult rainbow trout with an average length of 8.2 inches. Smith concluded that this segment would essentially be devoid of life (fish) if it weren't for stocking. These observed fish were likely stocked fish from the 1976 summer planting when a total of 3,180 rainbow trout, with an average size of 8.9 inches, were planted in this segment of the river. Tributary sample results are as follows:

Segment 2 tributaries:

- Burrows Creek no fish collected
- Horseshoe Creek no fish collected
- Cinnamon Creek no fish collected
- Picayne Gulch no fish collected
- Animas River, South Fork no fish collected

Segment 3 tributaries:

- Minnie Gulch (2 sites) cutthroat (23) estimated 8.2 lbs./acre and 8.6lbs/acre biomass
- Maggie Gulch no fish collected
- Stony Gulch no fish collected
- Cunningham Creek (3 sites) brook trout (13), rainbow trout (1) 58 fish total with an estimated 8.6lbs/acre biomass
- Arrastra Creek no fish collected

6.1.2.2 CDOW, 1987. In 1987 personnel with the CDOW sampled Maggie Gulch and Cunningham Creek above Silverton. Six fish were sampled in Maggie Gulch yielding an estimated biomass for brook trout of 9.4 lbs./acre and cutthroat trout of 22.9 lbs./acre (Horn, 1988). Cunningham Gulch yielded sixteen brook trout (39.2 lbs./acre) and one cutthroat trout. It was concluded by Woodling (1988) that limited natural reproduction of brook trout was occurring in Cunningham Creek, predominately associated with beaver pond habitats in the lower reaches. Both researchers concluded that habitat improvements could be made and water quality improvements in Cunningham would result in higher fish productivity.

6.1.2.3 Colorado Department of Health, 1992. Samples collected with electrofishing by the Colorado Department of Health in 1992 identified mostly brook trout at three locations above Silverton, sites A68, A55, A53, A40, and A45. This survey yielded biomass estimates of 32.3, 6.3,11.4, 15.2, and 16.3 lbs. per acre respectfully (combined brook and rainbow trout). In 1992 CDOW stocked the upper Animas River with cacheable size rainbow trout in July prior to the sampling effort, thus affecting the rainbow sampling results. Results of this survey are presented in Table 6.5.

6.1.2.4 Cadmus Group, 1994. Adult Trout Sampling. In mid-July of 1994 the Cadmus group sampled four locations for adult trout using a timed backpack electofishing method. The results of this sampling event are presented in Table 6.4.

74 Adult Hout Electosnocking Results. Captu	ited of Signited
Animas River 1 mile below confluence	20 brook trout
with Maggie Gulch	
Animas River immediately upstream of the	2 brook trout
USGS gage at Howardsville extending	
upstream to below the Howardsville bridge	
Animas River 1.5 to 2.0 miles below USGS	2 brook trout
gage	
Immediately upstream of Lakawanna	3 brook trout
bridge	
	 Animas River 1 mile below confluence with Maggie Gulch Animas River immediately upstream of the USGS gage at Howardsville extending upstream to below the Howardsville bridge Animas River 1.5 to 2.0 miles below USGS gage Immediately upstream of Lakawanna

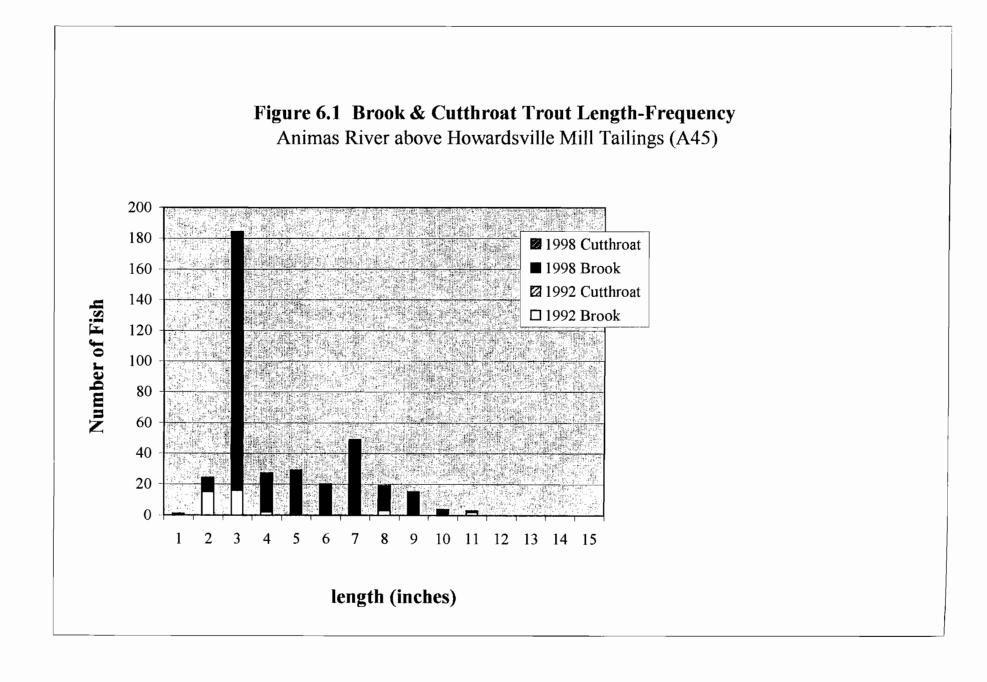
Table 0.4 1994 Adult Front Electosnocking Results. Captured of Sign	Table 6.4	1994 Adult Trout Electoshocking Results: Captured or Sighted
---	-----------	--

The Cadmus group was surprised to find that the Animas between Howardsville and Maggie gulch contained a brook trout fishery. They concluded that results suggest that "brook trout are capable of limited, but sustainable recruitment and maintenance". They also noted that a lack of brown, cutthroat, and rainbow trout suggests physical or chemical limitations to these species.

6.1.2.5 Colorado Division of Wildlife, 1998. The most quantitative sampling done to date on the upper Animas River occurred in 1992 (CDOH, 1992) and 1998 (Japhet, 1998). These sampling efforts were conducted in the area above Cataract Gulch and P & G Mill tailings ponds (Howardsville, site A45) in a riffle section located adjacent to a series of beaver dam pools. In 1998, the predominant species collected in the sampled 1000' stretch using streambank multi-pass generator assisted electrofishing, were small brook trout (average 3.8 inches in length) and one native trout (1.5 inches in length). The biomass of the brook trout sampled was calculated to be 20.9 lbs. per acre which is at the low end of the spectrum for a high elevation fishery. Table 6.5 provides quantification of the results of these two sampling events plus others as listed.

Table 6.5Combined CDOH (1992) and CDOW (1998) Fish Sampling Results,Segment 3a

Site ID	Date	Brook # and (lbs/acre)	Rainbow # and (lbs/acre)	Cut-throat # and (lbs/acre)	Location
A40a	1992	28 (15.2)			above Maggie Gulch
A45	1992	41 (16.3)*			above P&G Mill
A45	1998 CDOW	333(20.9)*		1.0	above Cataract Creek (above P&G Mill)
A53	1992	15(7.6)			below P&G tailings
A53a	1992	18 (11.4)			below Cunningham
A55a	1992	21.0 (4.9)	1.0	1.0 (.2)	above Arrastra Gulch


A68	1992	34.2 (6.2)	36.8	above 14 th street

Į

Î

*Although the numbers of individuals is accurate the biomass might not be calculated in the same fashion possibly explaining the huge increase in numbers in 1998 but small increase in biomass.

The length frequency distribution of the trout captured in 1992 is compared to those captured in 1998 in Figure 6.1 below.

6.1.2.6 Cadmus Group, 1994, Fry Sampling. The Cadmus Group collected samples with a 15 foot, one-sixteenth inch mesh seine and a dipnet at 16 locations. Only seven trout fry were collected. Results are presented in Table 6.6.

Î

l

Site	Location	Results
AFS1	Animas River, immediately downstream of	1 - post larval fry
	Lackawanna bridge	
AFS2	Animas River 100 yds. below	No collection
	Howardsville bridge	
AFS3	Animas River 0.25 miles below	No collection
·	Howardsville bridge	
AFS4	Animas River side tributary from beaver	No collection
	pond, 0.5 miles below Howardsville bridge	
AFS5	Cunningham Creek upstream of confluence	3 - fry
	with Animas River	
AFS6	Lowermost beaver pond on Cunningham	No collection
	Creek above confluence with Animas River	
AFS7	Northern side channel of Cunningham	No collection
	Creek 100 yards above confluence with	
	Animas River	
AFS8	Cunningham Creek 50 yards above	No collection
	confluence with Animas River	

Table 6.6Cadmus Group Upper Animas River Fry Sampling Results, May 23& 24, 1994.

HAR2	Animas River immediately upstream of the USGS gage at Howardsville extending upstream to below the Howardsville bridge	No collection
HAR3	Animas River 1.5 to 2.0 miles below USGS gage	No collection
AFS9	Animas River upstream of Howardsville bridge and 5.0 miles above Cement Creek confluence	No collection
AFS10	Animas River 5.3 miles above Cement Creek confluence, .3 miles above AFS9 (same site as CDOH (1992) and CDOW (1998) site.	3 - fry collected
AFS11	Animas River 100 yards upstream of Maggie Gulch, 6 miles above Cement Creek confluence	No collection
HAR1	Animas River 1 mile below confluence with Maggie Gulch	No collection
AFS12	Animas River 5.5 miles above Cement Creek confluence (just below Maggie Gulch)	No collection

AFS13	Animas river 100 yards downstream of	No collection
	gaging station (A72), 1.6 miles below	
	Cement Crk, 50 yds. Below railroad bridge	

They did note "many fish in pond" near Howardsville but were unable to identify or quantify the species present (these beaver ponds are known to contain numerous brook trout).

6.1.2.7 Brantlinger, 1998, Upper Animas Fry Sampling

Fry collections from backpack electroshocking in the Upper Basin in 1998 by Brantlinger indicates that the brook trout are dominating the fish assemblage and that natural reproduction is occurring at several sites. Table 6.7 summarizes this data.

Table 6.7 1998.	Brantlinger's fry electrofishing resul	ts from the Upper Animas River,
Date	Location	# of fry captured

Date	Location	# of fry captured
9/8/98	Animas River above Minnie	None
	Gulch (Segment 2)	
9/8/98	Animas River above Arrastra	None caught, 2 observed
	Creek (Segment 3a) 100' 2 pass	
9/8/98	Animas River above Boulder	4 brook trout
	Creek (Segment 3a) 100' 3 pass	
9/9/98	Animas River above Cunningham	27 brook trout
	Creek (Segment 3a) 100'- 4 pass	
9/10/98	Animas River above Maggie	24 brook trout
	Gulch (Segment 2) 3 pass 100'	
9/8/98	Animas River above 14 th Street	20 brook trout fry
	Bridge (Segment 3a)	3 brook trout adult
	100' 2 pass	
9/8/98	South Mineral Creek	24 brook trout fry
	(Segment 9a) 100' one pass	5
9/?/98	Arastra Gulch (spot locations)	No fish taken

The Upper Animas River, below Minnie gulch and above the confluence with Cement and Mineral Creeks, reflects a riverine ecosystem that has been naturally and anthropogenically impacted by elevated levels of metals and minimal habitat resulting in low productivity. Historic stocking of catchable rainbow trout had seasonally augmented a resident brook trout population. Recent data indicates that brook trout have been able to increase their population and biomass, particularly above Howardsville.

6.1.3 Cement and Mineral Creeks (Segments 7, 8,9a, 9b).

Limited surveys of the fishery in Cement and Mineral Creeks have been conducted although those plus observations of many are probably enough to conclude a lack of fish. The earliest documented sampling effort occurred in Cement Creek in 1984. Western

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER CONSERVATION BOARD			L	.004		N IN	IFOF	RMA ⁻		ł						2	SION	OF WIL
STREAM NAME AWING	ns Piver.	- be	edw	°O.A.	¢``.	M.	nni	60) r	la	7:7-1	e (<u>.</u>	ch	C	7055- 5	ECTION	NC I
CROSS SECTION LOCATION	2,001 200				4-7					n f			e e e					
	φ α																	
DATE 7/28/04 OBSEF	the states of		-	1.	.15-	/) WNSH	· · ·		· · · ·									
LEGAL 7 % SECTI	NW		0	5 (WNSH			? (N/	S	RANGE			<u>с Е</u>	<u></u>		N.	r-1,
COUNTY San J	a a n		N i Y	NO	21		- WA	TER DIV	ISION	7	1			00w w	ATER C	ODE.	38	011
MAP(S).	· ·	7,5	5′			_												-in-
USFS:										1	n en District	021	37.		$\langle l \rangle$		246. 19	-> -)-/
				SUF	PLE	ME	NTA	L DA	ТА					,				
SAG TAPE SECTION SAME AS	ES NO ME	TER TYP	E:	10	sh	- 1	u _c	131	611	CII								
AETER NUMBER:	DATE RATE	D:		1~		B/SPIN:	<u> </u>	-				770	- F	4	TAPE	TENSI	NC:	YEC
CHANNEL BED MATERIAL SIZE					Torrene		РНОТС				- -		NUMBE					
			(СНА	NNE	EL P	ROF	ILE	DATA	4								
STATION	DISTANCE FROM TAPE)		ROD	READI	NG (tt)		1				x	ò				1	EGEND
X Tape & Stake LB	0.0		5	511	vye	yee						-		·····			- s:	ike 🛞
X Tape & Stake RB	0.0			SV	15	eve	্ব											tion (1)
Tape LB/RB	0.0		1	<u>, 4</u>) /	.44				•	وسران	TAPE		E	E]			oto (ĵ)→
2 wS upstream	· · · ·			1011	<u>60</u>			1					*					
3 WS Downstream	65'			7.3							~		¢∮	_			Direc	tion of Frow
SLOPE 1.3	8/130.0		,	01	06	>					(f)							
			AQ	UAT	ICS	AMF	LIN	G SI	лим	ARY								
STREAM ELECTROFISHED: YE	S/NO DISTANCE	ELECTR	ROFISH	ED	f1		F	ISHCA	иснт	YES/NO	>		WATER	RCHEN	ISTRY	SAMPL	ED YE	INC
	LENGTH	FREQU	ENCY	DISTR	IBUTIC	ON BY (DNEIN	CH SIZ	E GROI	UPS (1.	0-1.9.2	2.0-2,9.	ETC.)	1 ¹				
SPECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	,,	12	13	14	15	>15	TOTAL
																	1	
									[<u>}</u>					<u> </u>	<u> </u>	

AQUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME

enddisfly,	stonefly - not	as abuildant	ne dribudories	
·				

COMMENTS

TOS	-120 NG	
······································	7.9	Access permanent, obtained crew
	32 A 2 A S	anvade landenmer.

CHARGE/CROSS SECTION ... OTE

STREAM NAM	= Ann	nas	Pisci			c	ROSS-SE	ECTION	NO	DATE	DI/ SHEE	<u>, 1</u> or _/
EGINNING OF	MEASUREMEN	EDGE OF	WATER LOOKING D	OWNSTREAM	LEFT / A	ібнт Баде	e Readir	ng:	0.4.	TIME 2:1		
6 Stake (S	Distance	Width	Totai	Water	Depth	Revolutio	ns		Velocit	y (ft/sec)		
Stake (S Grassline (C Waterline (M Rocx (R	() Insta	(11)	Vertical Depth From Tape/Inst (ft)	Depth (ft)	of Obser- vation (ft)		1	ime sec)	At Point	Mean in Vertical	Area (n ²)	Discharg (cts)
2.5	Carrie		12.55]
	10		2.68									l
	1.3		:1,5 0								<u> </u>	1
<u> </u>	2.0	· · · · ·	4.74									
<u> </u>	14.6		1						i			
	5.0			1.					Ç		1	· · · · · · · · · · · · · · · · · · ·
\sim	4.5			. 15					1.57		1	
	14.2			1 1 6	· · · · · · · · · · · · · · · · · · ·				1.22		<u> </u>	
	95		.,	140			<u>-</u>		2.24		1	
····	11.0		7,16	,70	,				1.5.4	· ·		
	12.5		7,08	.60					1.65			<u> </u>
	16.0			<u>,80</u>		_			2.43			
1670.4 ₀			7.32						-2.11			
	10110		1 321	.93					1.1.24			
	2.5		7.13	, ap					2.31			
	1 20,0		1.7.2.5	.95					2.31/		 	
				- <u>80</u>	·						<u> </u>	
		an a	<u></u>	- <u>80</u>	[- <u> </u>	<u></u>	2.22			
	1111	· .	7.09	75					1.96			
	26.1		1.13	-70 CA	<u> </u>		i					:
	215	w	1,16	180	l				1.05			
······································	12 P D 12 (5)		6.96	. <u>~70</u> .60	· · · · · · · · · · · · · · · · · · ·				2.11			<u> </u>
	-2-1-5-		7.08	.50					2.15		<u> </u>	
-			7.28	. 20	1	-			1.00			
			-1						1.73		1	1
	2, 2, 2,		2.79	4.					1.115			
			67	fr								
<u></u>	1.12,2		6,47./ C, *:	- Ø					- 1			
<u></u>	City I		2									
	57.5		41.2.5						-			
<u> </u>			1									
TOTALS												

		11	NST	RE#	AM I		FO FO W D	R		MIN	ATI	ON	S				and, a	COL	DELLOO ELLOO
COLORADO WATER CONSERVATION BOARD)			1	LOC	ATIC	N IN	FOF	MA	TION	1							NON	OF WIL
STREAM NAME. AND AND A	250 N°95	s 12. Q.					CALL.								1101	n c	nossis DD	ECTION	NO <u>5</u>
COUNTY San	TION				5. 3 ^as 7,	1	DWNSHI	۰ ، ·	4 TER DIV			RANGE	S	0	21	10 HATER C 3 C	00E	3	1, 011
					SUF	PLE	EMEN	ITAI	DA	TA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION HETER NUMBER: CHANNEL BED MATERIAL SIZE							B/SPIN:		\$	ec	TAPE V	VEIGHT.			s'loct	TAPE	TENSI	ON:	YE
					СНА	NN	EL PF	ROF	ILE	DAT	Ą					_			
STATION		ISTANCE	ft)		ROD	READ	ING (II)					() (******** 3 6	(c)			a met William		EGEND
X Tape & Stake LB		0.0					<u>'y.c.</u>	· · · · ·			<u></u>							- su	ake 🛞
X Tape & Stake PE		0.0)	eye						w					Sia	
WS @ Tape LB/RB		0.0			- 2::		1.01						TAPE	18	72			Pr	1010 (1)-+
2 WS Upstream 3 WS Downstream		100			0 ©	<u>.</u> 3. 1							5/	-75	\leq	/		Direc	ction of Ficw
SLOPE	03/	200,	0	⊥ ≏,		2:_0	<u> </u>						6		1	\mathbb{O}			
	,					IC S	AMP	LIN	G SL	јмм	IARY								
STREAM ELECTROFISHED: Y	ES/NO	DISTANC									YES/N				R CHEN	AISTRY	SAMPL	ED	
SPECIES (FILL IN)		LENGTH	- FREQ	2	DISTR		DN BY O	6 F	TH SIZ	E GRO	UPS (1.	10	2.0-2.9. 1 1	ETC.)	13	14	15	>15	TOTAL
	neur	215		_															
<u> </u>															ļ				
.50	NVC.	¥																	
AQUATIC INSECTS IN STREAM			-	NTIFIC	ORDE	RNAM	1E				<u> </u>			L		·			
in any fly,	ca	ddis	.+ [.	1															
• •			1			С	DMM	ENT	S										
Ph= 7.8	TK)5:2	230	2	<	N	p: :		<u> </u>	-									
														-					
														_•					
								2 4											

	-				DISCHA	RGE/CR	oss	SECT	101	OTES			
S	TREAM NAME.	Anim	nas	(Ziver	* 4.~			CROS	S-SECTION	INC 3	DATE. 10 - Zo -	54 SHEET	OF
86	GINNING OF N	EASUREMENT	EDGE OF V (0.0 AT STA	VATER LOOKING D	OWNSTREAM	LEFT / RIG	нт	Gage Re	ading:		time 11.0		
Features	Stake (S) Grassline (G) Waterline (W) Rock (R)	Dustance From Initui Point (ft)	Widtn (ft)	Total Verticat Depth From Tape/Inst (tt)	Water Deptn (ft)	Deptn of Obser- vation (ft)	Revo	lutions	Time (sec)	Velocit At Point	y (ft/sec) Mean in Vertical	Area (it ²)	Diacharge (cfs)
	LS G	0.0		548									
	W	8.C 22.0 25.3		634 6.42 7.10									
		27.0		7.20	D,1 0.2			_		Ø 0,51			
		31.0 33.0		7.30 7.24	0.2					0.60			
		35.0 37.0		7.38	0,30					4			
		39.0 41.0 4130		7.29 7.29 7.33	0.10 0,20		-			1.4 B			
	· · · · · · · · · · · · · · · · · · ·	45.0		7.56	0,25					1. bu			
		51.0		7.61	0,60			······································	 	1.05			
	-56->	53.0 55.0 57.0	7,90	7.84 8.08 8.10	0.30	50.8				1.91			
	- 58) -60)	59.0 61.0	-8.02) -8,117	7.82	0,75	<u><1.1</u>				1.27	K 1.53		
		63.0 65.0		7.42 7.16						0 55 Ø	2		
	W G	68.5 69.7		1.06									
	<u>nzs</u>	-72.51		5.76 4.60									
	7												
									500000000000000000000000000000000000000				
-	TOTALS:			Gage Reading	0.45	CALCULAT		ERFORME	D BY:	L	CALCULATIONS	CHECKED BY:	States of the local states
' <u>F</u>	nd of Measu	ement Tim	·//:20	Gage Reading	1: <u>1 1 1</u> :								

COLORADO WATER

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO W		LOCATION INFORMATION																	
STREAM NAME	Aninas	12:0	er	_)	ber	hve	er	Λ	1a	19	, C	4	NI:	en en i	с.	CI	ROSS-S	ECTION	NO L
CROSS-SECTION LOC		<u> </u>				ir ai				~ (<u> </u>			- <u></u>
	Mi	nnie		~	let														
DATE 10-20-04	OBSERVERS.	$2 \leq$	mi	5L	5	3. 7	<u>[</u> <+	1.40		0		Au	115-						
EGAL	Section:	NW	ECTION	•	3	1 "	WNSH		4	2 <u>N</u>	s	RANGE			6 E	O	РМ	N, 1	M
COUNTY Sam	Juan	WATERSHE	• A	115	$VV^{+}c$	25		WA	TEA DIV	ISION		!			DOW W	ATER C	ODE.	38 t	211
USGS:	Howar	iveb	lle		7,5	51													
USFS:																,			
					SUF	PPLE	ME	ΝΤΑ	LDA	ТА									
SAG TAPE SECTION SA	MEAS YES N	0 M	ETER T	PE:	M	0.6	st.	1	10	3.	r v10	i.							· · · · · ·
ETER NUMBER:		DATE RAT				CALIB	/SPIN:				TAPE W	1.	52.2 V	Joer 1	J C C		5 U		YE CI
CHANNEL BED MATER	IAU SIZE RANGE	ilich	De	sel	dr	. 65.		PHOTO	GRAPH	IS TAKE	NYES	QUIVE		NUMBE	ROFP	нотос	RAPHS		5
0						NNE		POF			- <u>-</u>								
											-	Ø 1939.AF 388		-		na kata ng	-		
STATION	FR.	OM TAPE	t)			READI							۲	•				ļ.,	EGEND
Tape & Stake LE		0.0				NºC.												- Sia	ке 🛞
X Tape & Stake FE		0.0				we.			E		, 5 -		. w	~				Sia	
) WS @ Tape LB/R		0.0		6	45		<u>, 41</u>	5					2 કે	$\langle \! \langle \! \rangle$				Ph	010
2) WS Upstream 3) WS Downstream	1	<u>00</u> 00		+		<u>5, 5</u> 7, 3												Direc	tion of Ficw
		200		0.	00	17	2						٥	s),	<i>i</i>				
		20						<u>_</u>											
						IC S			GSU	лмм	ARY								
STREAM ELECTROFIS	HED TESNO	DISTANC	E ELECI	TROFIS	HED			F	ISH CA	JGHT: (ESIO)		WATER	CHEN	ISTAY.	SAMPL		NO
SPECIES (FILL IN)		LENGTH	· · · · · ·		1	F			CHSIZ	EGROU	·····	0-1.9.2	2.0-2.9.	ETC.)					
<u> </u>		1.150000	1	2	3	4	5	6	7	8	9	10	! 1	12	13	14	15	>15	TOTAL
<u> </u>	WALLS SI	d												<u> </u>					
AQUATIC INSECTS IN S	STREAM SECTION B	YCOMMON	ORSCI	ENTIFIC			E										L		
mayfly		•																	
	and the second of							E N17									·		
					_			ENT											
TDS: Z	<u>(40 }</u>	h= 8	<u>, O</u>			CIL	22	<u> </u>	<u></u>	****									
											-								
				_															·

DISCHARGE/CROSS SECTIO. JOTES

STREAM NAME.	Avin	105	River				CROS	S-SECTION	NO L	DATE. 10 - 20-	CL SHEE	T OF
BEGINNING OF M			ATER LOOKING D		LEFT / RIG	ант Ga	ge Re	ading:	20	ME. 1;1		
o Stake (S)	Distance From	Width (ft)	Totai Vertica!	Water Depth	Depth	Revoluti	ons		Velocity	(ft/sec)		
0 Stake (S) Grassline (G) to Waterline (W) 0 Rock (R)	Initiai Point (ft)		Depth From Tape/Inst (11)	(ft)	Obser- vation (ft)			Time (sec)	At Point	Mean in Vertical	Area (it ²)	Diacharge (cfs)
LS	0,0		4.00									
ی ک	2.3		<u>4.52</u>									<u> </u>
Ŵ	5.0		5.81	~~					d -		 	
	7.3		<u>(0,415</u>	_Ø_		 			- 	1		
						• • • •			· · · · · · · · · · · · · · · · · · ·		1	
	6.0		7.87	0.2					1 1		1	į
	9.8		1.00	0,5			_		0,57		i ,	
	19 0		6, 8Z	5.35					1			
	110		7.02	050					0.77	ļ		
	12.0		7,08	0.40					5 24	1	ļ	
	13.0		6.98	0.50		 	<u> </u>		0,77	<u></u>	<u> </u>	
	1-1-0		-1,05	<u> </u>					1 21	1	 †	
·····	15.0		6,99	0.60					1,80			
	17.0		6.915	0.50					1.74			
			6,90	0,40					5.311	•		i i
19.57	8.0	-7.10)	7,14	0.75	<u>(c.</u>]			1.87	1.87		1	· · · · · · · · · · · · · · · · · · ·
	20.0		1, 16	0.80		1			209	·	· · · · · · · · · · · · · · · · · · ·	
	-20,5		7,08	0,70		<u> </u>		 	2.03	1	; ;	
	21,0		6.76		-	1		 	7 03	}	<u></u>	
	215		<u>h 72</u>	0,50		<u> </u>		 	1.10	*	<u> </u>	
	22.0		7-24	0.75	 , _ _,,				1,17	. 	<u> </u>	
	24.0		6.75	0.55					1.2.1	+	<u> </u>	
	-75.0		7, 03	0.60				<u> </u>	1.42	-		1
	26,0		6.87 6.58	0.40					1.42	<u> </u>		
	27. d		6.52	0.30		L			K	1 	<u> </u>	
	26,0 27.0 28.0 240		6.45	010					R R			
	30.6		6.45	-2					1 D	+		
	36,4		5 74			1					1	
	40.0		5.65									
G 125	41.6	· .	4.52									
125	47.8		4.5D									
										+		
						<u> </u>		 	 			
TOTALS												
End of Measur	ement Tim	ne: 1: 720	Gage Reading	0.8"	CALGULAI	TIONS PERF	ORME	D BY:	C	ALCULATIONS	CHECKED BY	· · · · · · · · · · · · · · · · · · ·

				VERT	WATER			-	Tape to
Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
					ita Points = 34		~ ~~	0.00	0.00
STREAM NAME: Animas River-between Maggie and Minnie		LS	0.00	4.00			0.00	0.00	0.00
XS LOCATION: 250' downstream from conflu. w/ Minnie	1	G	2.30	4.52			0.00	0.00	0.00
XS NUMBER: 4			5.00	5.81	0.00	0.00	0.00	0.00	0.00
DATE: 10/20/04		W	7.30	6.45	0.00	0.00	0.00	0.00	0.00
OBSERVERS: R. Smith, S. Jensen, C. Gunn			8	6.87	0.40	0.27	0.34	0.09	6.47
			9.00	7.00	0.50	0.57	0.50	0.29	6.50
1/4 SEC: NW			10	6.82	0.35	0.00	0.35	0.00 0.39	6.47 6.52
SECTION: 31			11	7.02	0.50	0.77 0.24	0.50 0.60	0.39	6.48
TWP: 42 N			12	7.08	0.60	0.24	0.60	0.14	6.48
RANGE: 6 W			13	6.98	0.50		0.60	0.47	6.45
PM: N.M.P.M.			14 15	7.05 6.99	0.60 0.60	1.24 1.80	0.60	1.08	6.39
COUNTY: San Juan			16	7.00	0.60	1.80	0.60	1.12	6.40
WATERSHED: Animas			17	6.95	0.50	1.94	0.50	0.97	6.45
DIVISION: 7			18	6.90	0.40	2.34	0.40	0.94	6.50
DOW CODE: 38.11			19	7.14	0.40	1.89	0.56	1.06	6.39
USGS MAP: Howardsville 7.5			19.5	7.10	0.70	1.87	0.35	0.65	6.40
USFS MAP:			20	7.16	0.80	2.09	0.40	0.84	6.36
Level and Rod Survey			20.5	7.08	0.70	2.03	0.35	0.71	6.38
TAPE WT: 0.0106			21	6.96	0.50	2.03	0.25	0.51	6.46
TENSION: 999999			21.5	6.92	0.50	1.16	0.25	0.29	6.42
			22	6.93	0.50	1.79	0.38	0.67	6.43
SLOPE: 0.009]ft / ft			23	7.24	0.75	1.29	0.75	0.97	6.49
			24	6.95	0.55	1.24	0.55	0.68	6.40
			25	7.03	0.60	1.42	0.60	0.85	6.43
CHECKED BY:DATEDATE			26	6.87	0.40	0.87	0.40	0.35	6.47
			27	6.82	0.30	0.00	0.30	0.00	6.52
ASSIGNED TO:DATEDATE			28	6.58	0.10	0.00	0.10	0.00	6.48
			29	6.45	0.00	0.00	0.00	0.00	0.00
		w	30.6	6.45	0.00	0.00	0.00	0.00	0.00
			36.4	5.94			0.00	0.00	0.00
		-	40	5.65			0.00	0.00	0.00
	1	G	41.6	4.52			0.00	0.00	0.00
		RS	47.8	4.50			0.00	0.00	0.00
						Totols	10 70	10.01	
						Totals	10.73	13.81	

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:		r-between Maggie and Minnie eam from conflu. w/ Minnie
DATE: OBSERVERS:	20-Oct-04 R. Smith, S.	Jensen, C. Gunn
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 31 42 N 6 W N.M.P.M.	
COUNTY: WATERSHED: DIVISION: DOW CODE:	San Juan Animas 7 38.11	
USGS MAP: USFS MAP:	Howardsville 0	7.5
SUPPLEMENTAL DATA	-	*** NOTE *** Leave TAPE WT and TENSION
TAPE WT: TENSION:	0.0106 99999	at defaults for data collected with a survey level and rod
CHANNEL PROFILE DATA	<u>\</u>	
SLOPE:	0.009	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:		DATE

STREAM NAME:
XS LOCATION:
XS NUMBER:

Animas River-between Maggie and Minnie 250' downstream from conflu. w/ Minnie 4

	# DATA POINTS=				
FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	
LS	0.00	4.00			
1 G	2.30	4.52			
	5.00	5.81		0.00	
W	7.30	6.45	0.00	0.00	
	8.00	6.87	0.40	0.27	
	9.00	7.00	0.50	0.57	
	10.00	6.82	0.35	0.00	
	11.00	7.02	0.50	0.77	
	12.00	7.08	0.60	0.24	
	13.00	6.98	0.50	0.94	
	14.00	7.05	0.60	1.24	
	15.00	6.99	0.60	1.80	
	16.00	7.00	0.60	1.87	
	17.00	6.95	0.50	1.94	
	18.00	6.90	0.40	2.34	
	19.00	7.14 7.10	0.75	1.89	
	19.50 20.00	7.16	0.70	1.87	
	20.00	7.18	0.80 0.70	2.09 2.03	
	20.50	6.96		2.03	
	21.00	6.92	0.50 0.50	1.16	
	21.50	6.92	0.50	1.18	
	22.00	7.24	0.50	1.79	
	23.00	6.95	0.75	1.29	
	25.00	7.03	0.55	1.42	
	26.00	6.87	0.60	0.87	
	20.00	6.82	0.40	0.07	
	28.00	6.58	0.30	0.00	
	29.00	6.45	0.00	0.00	
w	30.60	6.45	0.00	0.00	
	36.40	5.94	0.00	0.00	
	40.00	5.65			
G	40.00	4.52			
RS	47.80	4.52			
	47.00	4.00			

TOTALS -----

VALUES COMPUTED FROM RAW FIELD DATA

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00	0.40	0.00	0.00	0.0% 0.7%
0.82	0.40	0.34	0.09	
1.01	0.50	0.50	0.29	2.1%
1.02	0.35	0.35	0.00	0.0%
1.02	0.50	0.50	0.39	2.8%
1.00	0.60	0.60	0.14	1.0%
1.00	0.50	0.50	0.47	3.4%
1.00	0.60	0.60	0.74	5.4%
1.00	0.60	0.60	1.08	7.8%
1.00	0.60	0.60	1.12	8.1%
1.00	0.50	0.50	0.97	7.0%
1.00	0.40	0.40	0.94	6.8%
1.03	0.75	0.56	1.06	7.7%
0.50	0.70	0.35	0.65	4.7%
0.50	0.80	0.40	0.84	6.1%
0.51	0.70	0.35	0.71	5.1%
0.51	0.50	0.25	0.51	3.7%
0.50	0.50	0.25	0.29	2.1%
0.50	0.50	0.38	0.67	4.9%
1.05	0.75	0.75	0.97	7.0%
1.04	0.55	0.55	0.68	4.9%
1.00	0.60	0.60	0.85	6.2%
1.01	0.40	0.40	0.35	2.5%
1.00	0.30	0.30	0.00	0.0%
1.03	0.10	0.10	0.00	0.0%
1.01		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
22.07	0.0	10.70	10.01	100.00
22.07	0.8 (Max.)	10.73	13.81	100.0%
	(wax.)			

Manning's n = Hydraulic Radius= 0.486019426

0.0677

Animas River-between Maggie and Minnie 250' downstream from conflu. w/ Minnie 4

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
5			
	10.73	10.80	0.7%
6.20	10.73	17.09	59.3%
6.22	10.73	16.55	54.3%
6.24	10.73	16.02	49.4%
6.26	10.73	15.50	44.5%
6.28	10.73	14.98	39.6%
6.30	10.73	14.46	34.8%
6.32	10.73	13.96	30.1%
6.34	10.73	13.45	25.4%
6.36	10.73	12.96	20.8%
6.38	10.73	12.47	16.2%
6.40	10.73	11.98	11.7%
6.41	10.73	11.74	9.5%
6.42	10.73	11.51	7.3%
6.43	10.73	11.27	5.0%
6.44	10.73	11.03	2.9%
6.45	10.73	10.80	0.7%
6.46	10.73	10.58	-1.3%
6.47	10.73	10.37	-3.4%
6.48	10.73	10.15	-5.4%
6.49	10.73	9.94	-7.3%
6.50	10.73	9.73	-9.3%
6.52	10.73	9.30	-13.3%
6.54	10.73	8.88	-17.2%
6.56	10.73	8.47	-21.1%
6.58	10.73	8.06	-24.9%
6.60	10.73	7.65	-28.7%
6.62	10.73	7.24	-32.5%
6.64	10.73	6.84	-36.2%
6.66	10.73	6.44	-40.0%
6.68	10.73	6.04	-43.7%
6.70	10.73	5.64	-47.4%

WATERLINE AT ZERO	
AREA ERROR =	

6.453

Animas River-between Maggie and Minnie 250' downstream from conflu. w/ Minnie 4

Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

-	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(F⊺)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	4.52	39.30	1.94	2.72	76.42	40.44	100.0%	1.89	243.26	3.18
01	5.45	36.02	1.15	1.79	41.27	36.66	90.6%	1.13	93.01	2.25
	5.50	35.85	1.10	1.74	39.47	36.46	90.1%	1.08	86.68	2.20
	5.55	35.67	1.06	1.69	37.69	36.26	89.6%	1.04	80.53	2.14
	5.60	35.50	1.01	1.64	35.91	36.05	89.1%	1.00	74.57	2.08
	5.65	35.29	0.97	1.59	34.14	35.82	88.6%	0.95	68.85	2.02
	5.70	34.56	0.94	1.54	32.39	35.08	86.7%	0.92	63.96	1.97
	5.75	33.84	0.91	1.49	30.68	34.34	84.9%	0.89	59.27	1.93
	5.80	33.11	0.88	1.44	29.01	33.60	83.1%	0.86	54.77	1.89
	5.85	32.32	0.85	1.39	27.37	32.80	81.1%	0.83	50.52	1.85
	5.90	31.52	0.82	1.34	25.77	31.99	79.1%	0.81	46.48	1.80
	5.95	30.73	0.79	1.29	24.22	31.20	77.1%	0.78	42.60	1.76
	6.00	29.98	0.76	1.24	22.70	30.44	75.3%	0.75	38.88	1.71
	6.05	29.24	0.73	1.19	21.22	29.68	73.4%	0.71	35.33	1.67
	6.10	28.49	0.69	1.14	19.78	28.92	71.5%	0.68	31.97	1.62
	6.15	27.74	0.66	1.09	18.37	28.17	69.6%	0.65	28.77	1.57
	6.20	26.99	0.63	1.04	17.00	27.41	67.8%	0.62	25.75	1.51
	6.25	26.24	0.60	0.99	15.67	26.65	65.9%	0.59	22.91	1.46
	6.30	25.50	0.56	0.94	14.38	25.89	64.0%	0.56	20.23	1.41
	6.35	24.75	0.53	0.89	13.12	25.14	62.2%	0.52	17.72	1.35
	6.40	24.00	0.50	0.84	11.90	24.38	60.3%	0.49	15.37	1.29
WL	6.45	21.67	0.50	0.79	10.73	22.04	54.5%	0.49	13.82	1.29
	6.50	21.20	0.46	0.74	9.66	21.55	53.3%	0.45	11.77	1.22
	6.55	20.73	0.42	0.69	8.61	21.07	52.1%	0.41	9.87	1.15
	6.60	20.35	0.37	0.64	7.58	20.67	51.1%	0.37	8.09	1.07
	6.65	20.06	0.33	0.59	6.57	20.35	50.3%	0.32	6.44	0.98
	6.70	19.76	0.28	0.54	5.58	20.04	49.6%	0.28	4.95	0.89
	6.75	19.47	0.24	0.49	4.59	19.73	48.8%	0.23	3.62	0.79
	6.80	19.18	0.19	0.44	3.63	19.42	48.0%	0.19	2.47	0.68
	6.85	18.01	0.15	0.39	2.69	18.23	45.1%	0.15	1.57	0.58
	6.90	16.58	0.11	0.34	1.83	16.77	41.5%	0.11	0.87	0.48
	6.95	13.10	0.08	0.29	1.08	13.26	32.8%	0.08	0.42	0.39
	7.00	7.76	0.07	0.24	0.54	7.88	19.5%	0.07	0.19	0.35
	7.05	3.93	0.06	0.19	0.25	4.01	9.9%	0.06	0.08	0.33
	7.10	2.35	0.04	0.14	0.10	2.40	5.9%	0.04	0.02	0.24
	7.15	0.68	0.04	0.09	0.03	0.70	1.7%	0.04	0.01	0.23
	7.20	0.24	0.02	0.04	0.00	0.26	0.6%	0.02	0.00	0.14

2. Univerter perimeter = 5,80 cds

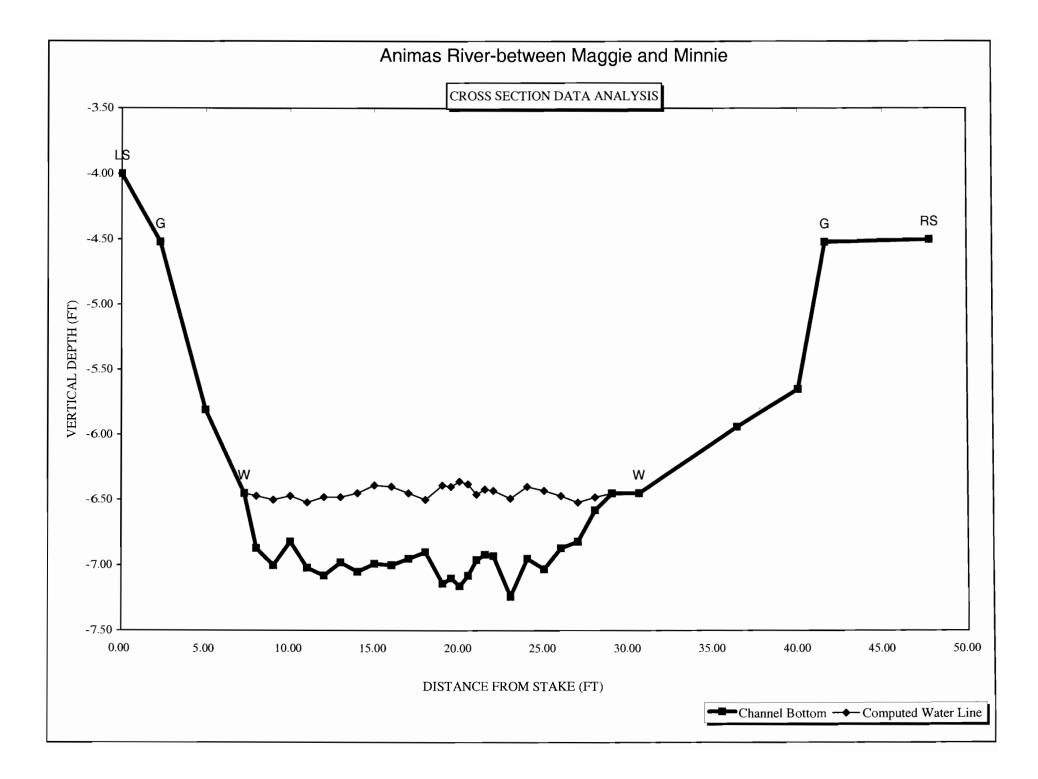
3. $1 \frac{F}{/560} \frac{1}{100} \frac{1}{100} \frac{6.44}{500} \frac{0.02}{0.09} \frac{x}{1.65} = 0.36 + 6.44 = 6.80 \frac{1}{5}$

STREAM NAME:	Animas River-between Maggie and Minnie
XS LOCATION:	250' downstream from conflu. w/ Minnie
XS NUMBER:	4

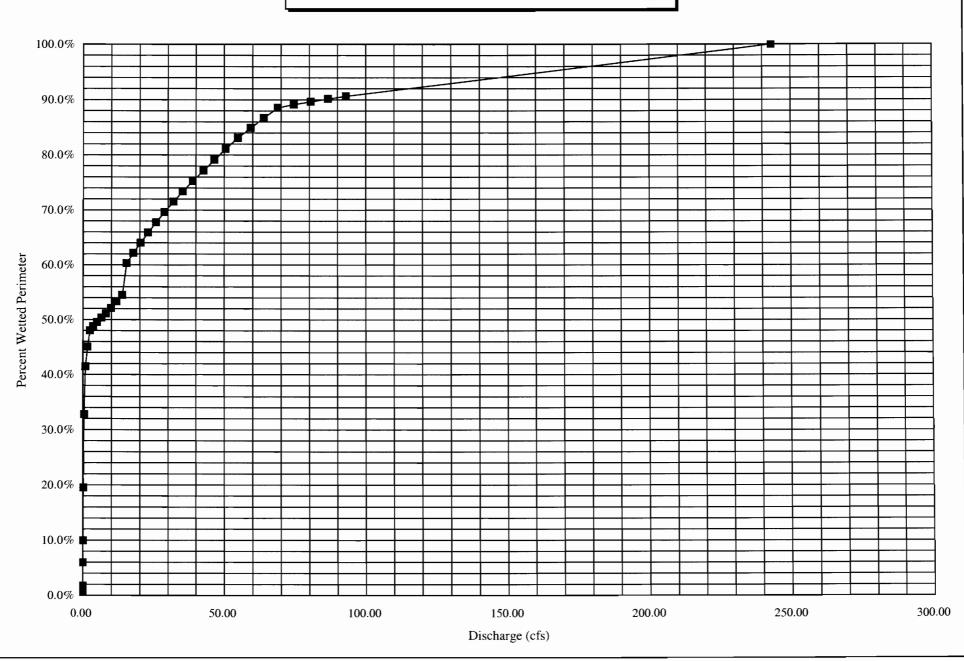
SUMMARY SHEET

MEASURED FLOW (Qm)=	13.81	cfs	R
CALCULATED FLOW (Qc)=	13.82	cfs	=
(Qm-Qc)/Qm * 100 =	-0.1	%	
			F
MEASURED WATERLINE (WLm)=	6.45	ft	=
CALCULATED WATERLINE (WLc)=	6.45	ft	
(WLm-WLc)/WLm * 100 =	-0.1	%	
MAX MEASURED DEPTH (Dm)=	0.80	ft	_
MAX CALCULATED DEPTH (Dc)=	0.79	ft	
(Dm-Dc)/Dm * 100	1.7	%	_
MEAN VELOCITY=	1.29	ft/sec	_
MANNING'S N=	0.068		
SLOPE=	0.009	ft/ft	
.4 * Qm =	5.5	cts	
2.5 * Qm=	34.5		
2.0 QIII-	54.5	013	

RECOMMENDED INSTREAM FLOW:



FLOW (CFS)	PERIOD


RATIONALE FOR RECOMMENDATION:

	-	
		-
RECOMMENDATION BY:	AGENCY	DATE:
		0.175
		DATE

Percent Wetted Perimeter vs. Discharge

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	Animas River between Minnie and Maggie Gulch 300' downstream from confl. w/ Minnie Gulch 1				
DATE: OBSERVERS:	28-Jul-04 R. Smith, S. Jensen. C. Hagen				
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 31 42 N 6W NM				
COUNTY: WATERSHED: DIVISION: DOW CODE:	San Juan Animas 7 38011				
USGS MAP: USFS MAP:	Howardsville 7.5 0				
SUPPLEMENTAL DATA	*** NOTE *				
TAPE WT: TENSION: CHANNEL PROFILE DATA	99999	ted			
SLOPE:	0.0106				
TAPE WT: 0.0106 with a survey level and rod TENSION: 99999 CHANNEL PROFILE DATA SLOPE: 0.0106					

Animas River between Minnie and Maggie Gulch 300' downstream from confl. w/ Minnie Gulch 1

	#[# DATA POINTS=			
FEATURE		VERT	WATER		
	DIST	DEPTH	DEPTH	VEL	
LS	0.00	2.50			
	0.60	2.68			
	1.30	4.26			
	2.00	4.74			
1 GL	3.70	5.68			
	4.60	6.29			
WL	5.00	6.49	0.00	0.00	
	6.50	6.65	0.15	0.57	
	8.00	6.58	0.10	1.28	
	9.50	7.01	0.40	2.38	
	11.00	7.16	0.70	1.83	
	12.50	7.08	0.60	1.65	
	14.00	7.22	0.80	2.43	
	15.50	7.32	0.90	2.11	
	17.00	7.32	0.90	1.64	
	18.50	7.13	0.90	2.31	
	20.00	7.35	0.95	2.34	
	21.50	7.32	0.80	1.76	
	23.00	7.19	0.80	2.22	
	24.50	7.09	0.75	1.96	
	26.00	7.13	0.70	1.92	
	27.50	7.16	0.80	1.05	
	29.00	7.15	0.70	1.20	
	30.50	6.96	0.60	2.11	
	32.00	7.08	0.50	2.16	
	33.50	7.28	0.80	1.00	
	35.00	7.00	0.50	1.73	
	36.50	6.79	0.30	0.95	
	38.00	6.62	0.00	0.00	
WL	40.20	6.44	0.00	0.00	
1 GL	44.00	5.92			
	50.10	5.89			
RS	59.50	4.23			
TC	DTALS				

VALUES COMPUTED FROM RAW FIELD DATA

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
1.51	0.15	0.23	0.13	0.3%
1.50	0.10	0.15	0.19	0.5%
1.56	0.40	0.60	1.43	3.8%
1.51	0.70	1.05	1.92	5.1%
1.50	0.60	0.90	1.49	4.0%
1.51	0.80	1.20	2.92	7.8%
1.50	0.90	1.35	2.85	7.6%
1.50	0.90	1.35	2.21	5.9%
1.51	0.90	1.35	3.12	8.3%
1.52	0.95	1.43	3.33	8.9%
1.50	0.80	1.20	2.11	5.6%
1.51	0.80	1.20	2.66	7.1%
1.50	0.75	1.13	2.21	5.9%
1.50	0.70	1.05	2.02	5.4%
1.50	0.80	1.20	1.26	3.4%
1.50	0.70	1.05	1.26	3.4%
1.51	0.60	0.90	1.90	5.1%
1.50	0.50	0.75	1.62	4.3%
1.51	0.80	1.20	1.20	3.2%
1.53	0.50	0.75	1.30	3.5%
1.51	0.30	0.45	0.43	1.1%
1.51		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
33.21	0.95	20.48	37.55	100.0%
	(Max.)			

Manning's n = Hydraulic Radius=

0.0604 0.616561514

Animas River between Minnie and Maggie Gulch 300' downstream from confl. w/ Minnie Gulch 1

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	20.48	17.02	-16.9%
6.31	20.48	25.82	26.1%
6.33	20.48	25.09	22.5%
6.35	20.48	24.36	19.0%
6.37	20.48	23.64	15.5%
6.39	20.48	22.92	12.0%
6.41	20.48	22.21	8.5%
6.43	20.48	21.50	5.0%
6.45	20.48	20.79	1.5%
6.47	20.48	20.09	-1.9%
6.49	20.48	19.39	-5.3%
6.51	20.48	18.70	-8.6%
6.52	20.48	18.36	-10.3%
6.53	20.48	18.02	-12.0%
6.54	20.48	17.69	-13.6%
6.55	20.48	17.35	-15.3%
6.56	20.48	17.02	-16.9%
6.57	20.48	16.69	-18.5%
6.58	20.48	16.36	-20.1%
6.59	20.48	16.03	-21.7%
6.60	20.48	15.71	-23.3%
6.61	20.48	15.39	-24.8%
6.63	20.48	14.77	-27.8%
6.65	20.48	14.17	-30.8%
6.67	20.48	13.58	-33.7%
6.69	20.48	13.00	-36.5%
6.71	20.48	12.42	-39.3%
6.73	20.48	11.85	-42.1%
6.75	20.48	11.28	-44.9%
6.77	20.48	10.71	-47.7%
6.79	20.48	10.15	-50.4%
6.81	20.48	9.60	-53.1%

WATERLINE AT ZERO AREA ERROR =

6.454

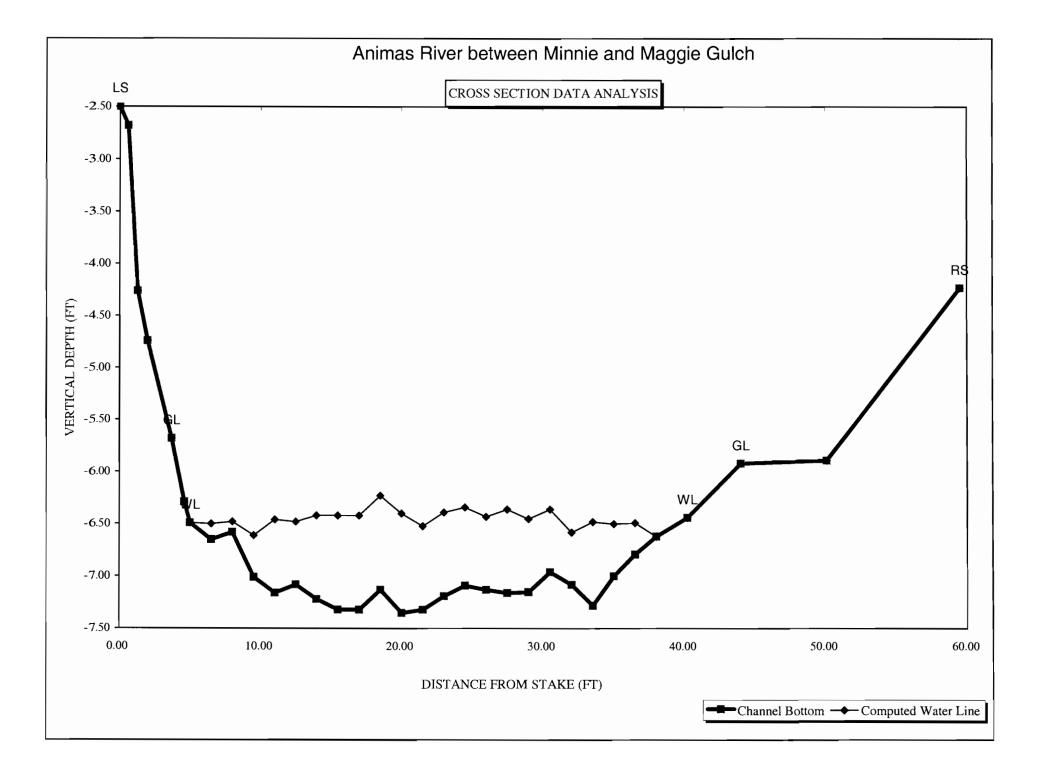
Animas River between Minnie and Maggie Gulch 300' downstream from confl. w/ Minnie Gulch 1

Constant Manning's n

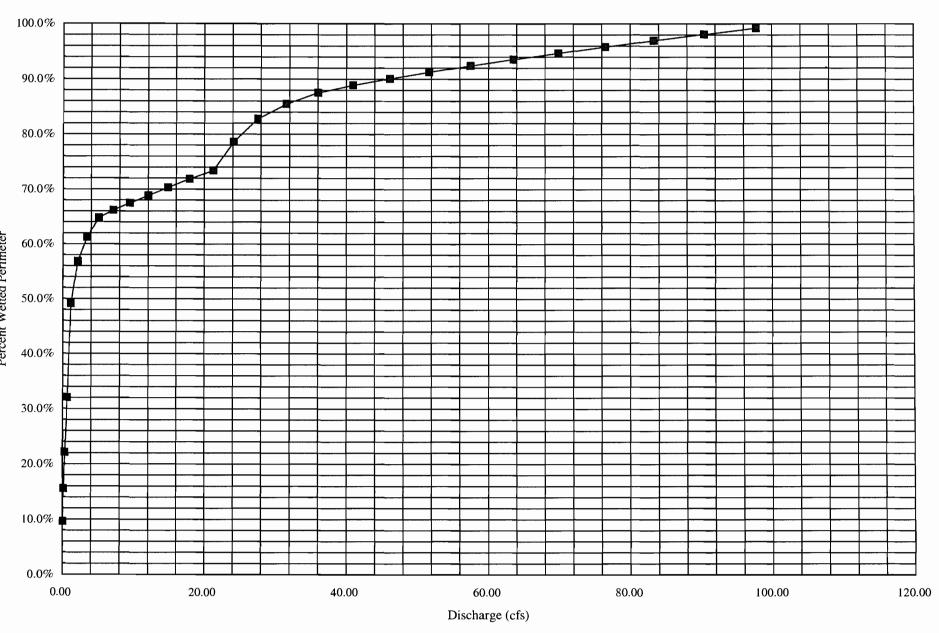
S	TAGING TABL		L* = lowest Gras 'L* = Waterline o			•	ter surface elevati	ons and sag		
-	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
_	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	5.92	39.95	1.02	1.43	40.55	40.36	#DIV/0!	1.00	102.96	2.54
	5.95	39.65	0.99	1.40	39.19	40.05	99.2%	0.98	97.80	2.50
	6.00	39.21	0.95	1.35	37.22	39.59	98.1%	0.94	90.43	2.43
	6.05	38.77	0.91	1.30	35.27	39.13	97.0%	0.90	83.32	2.36
	6.10	38.33	0.87	1.25	33.34	38.67	95.8%	0.86	76.47	2.29
	6.15	37.89	0.83	1.20	31.44	38.21	94.7%	0.82	69.88	2.22
	6.20	37.45	0.79	1.15	29.56	37.76	93.6%	0.78	63.55	2.15
	6.25	37.01	0.75	1.10	27.69	37.30	92.4%	0.74	57.48	2.08
	6.30	36.57	0.71	1.05	25.85	36.83	91.3%	0.70	51.69	2.00
	6.35	36.10	0.67	1.00	24.04	36.35	90.1%	0.66	46.18	1.92
	6.40	35.63	0.62	0.95	22.24	35.87	88.9%	0.62	40.95	1.84
WL	6.45	35.10	0.58	0.90	20.47	35.32	87.5%	0.58	36.03	1.76
	6.50	34.29	0.55	0.85	18.74	34.50	85.5%	0.54	31.58	1.69
	6.55	33.21	0.51	0.80	17.05	33.41	82.8%	0.51	27.56	1.62
	6.60	31.53	0.49	0.75	15.42	31.73	78.6%	0.49	24.14	1.57
	6.65	29.44	0.47	0.70	13.90	29.63	73.4%	0.47	21.26	1.53
	6.70	28.83	0.43	0.65	12.45	29.00	71.9%	0.43	17.93	1.44
	6.75	28.21	0.39	0.60	11.02	28.38	70.3%	0.39	14.85	1.35
	6.80	27.62	0.35	0.55	9.63	27.77	68.8%	0.35	12.02	1.25
	6.85	27.09	0.30	0.50	8.26	27.23	67.5%	0.30	9.44	1.14
	6.90	26.56	0.26	0.45	6.92	26.69	66.1%	0.26	7.12	1.03
	6.95	26.02	0.22	0.40	5.60	26.15	64.8%	0.21	5.08	0.91
	7.00	24.60	0.18	0.35	4.33	24.71	61.2%	0.18	3.44	0.79
	7.05	22.85	0.14	0.30	3.15	22.95	56.9%	0.14	2.12	0.67
	7.10	19.74	0.10	0.25	2.06	19.82	49.1%	0.10	1.15	0.56
	7.15	12.88	0.10	0.20	1.22	12.94	32.1%	0.09	0.64	0.53
	7.20	8.90	0.08	0.15	0.71	8.94	22.1%	0.08	0.33	0.47
	7.25	6.26	0.05	0.10	0.33	6.28	15.6%	0.05	0.12	0.36
	7.30	3.86	0.02	0.05	0.08	3.87	9.6%	0.02	0.02	0.19

0.49	1.15	0.DI	<u>×</u>
0,50	X	0.08	097
0.57	2.12		
0.13+1	.15=(1.	28 UF	5)

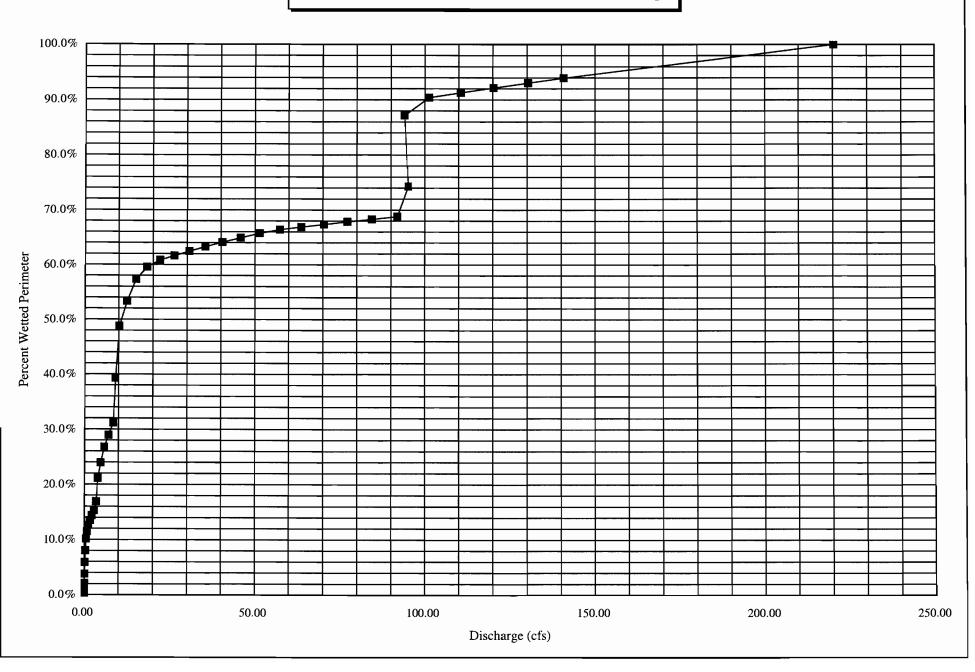
STREAM NAME:	Animas River between Minnie and Maggie Gulch
XS LOCATION:	300' downstream from confl. w/ Minnie Gulch
XS NUMBER:	1


SUMMARY SHEET

MEASURED FLOW (Qm)=	37.55 cfs	RECOMMENDED INSTREAM FLOW:	
CALCULATED FLOW (Qc)=	36.03 cfs		
(Qm-Qc)/Qm * 100 =	4.0 %		
		FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	6.56 ft		
CALCULATED WATERLINE (WLc)=	6.45 ft		
(WLm-WLc)/WLm * 100 =	1.5 %		
MAX MEASURED DEPTH (Dm)=	0.95 ft		
MAX MEASORED DEPTH (DII)= MAX CALCULATED DEPTH (Dc)=	0.90 ft		
(Dm-Dc)/Dm * 100	5.7 %		
	5.7 /6		
MEAN VELOCITY=	1.76 ft/sec		
MANNING'S N=	0.060		
SLOPE=	0.0106 ft/ft		
.4 * Qm =	15.0 cfs		
2.5 * Qm=	93.9 cfs		


RATIONALE FOR RECOMMENDATION:

RECOMMENDATION BY:	AGENCY	 DATE:
CWCB REVIEW BY:		 DATE:



Percent Wetted Perimeter vs. Discharge

Percent Wetted Perimeter

Percent Wetted Perimeter vs. Discharge

				VERT	WATER				Tape to
Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
				Total Da	ta Points = 32	2			
STREAM NAME: Animas River-between Maggie & Cunningham		LS	0.00	5.48			0.00	0.00	0.00
XS LOCATION: 250' downstream from confluence w/ Maggie	1	G	0.80	5.66			0.00	0.00	0.00
XS NUMBER: 3			8.00	6.34			0.00	0.00	0.00
DATE: 10/20/04		w	22.00	6.42			0.00	0.00	0.00
OBSERVERS: R. Smith, S. Jensen,			25.3	7.10			0.00	0.00	0.00
			27.00	7.20	0.10	0.00	0.19	0.00	7.10
1/4 SEC: SW			29	7.32	0.20	0.51	0.40	0.20	7.12
SECTION: 31			31	7.30	0.20	0.60	0.40	0.24	7.10
TWP: 42 N			33	7.24	0.15	0.00	0.30	0.00	7.09
RANGE: 6 W			35	7.38	0.30	0.00	0.60	0.00	7.08
PM: N.M.P.M			37	7.15	0.05	0.00	0.10	0.00	7.10
			39	7.25	0.15	0.00	0.30	0.00	7.10
COUNTY: San Juan			41	7.29	0.10	0.00 1.48	0.20 0.40	0.00 0.59	7.19 7.13
WATERSHED: Animas DIVISION: 7			43 45	7.33 7.56	0.20 0.45	1.48	0.40	1.44	7.13
DOW CODE:			45 47	7.50	0.45	1.37	0.50	0.69	7.17
USGS MAP: Howardsville 7.5			49	7.61	0.25	1.05	1.20	1.26	7.01
USFS MAP:			49 51	7.56	0.55	0.38	1.10	0.42	7.01
			53	7.84	0.80	1.18	1.60	1.89	7.04
TAPE WT: 0.0106			55	8.08	0.90	2.04	1.35	2.75	7.18
TENSION: 99999			56	7.90	0.80	1.56	0.80	1.25	7.10
			57	8.10	1.00	1.91	1.00	1.91	7.10
SLOPE: 0.01 ft / ft			58	8.22	1.10	1.53	1.10	1.68	7.12
			59	7.82	0.75	1.27	0.75	0.95	7.07
			60	8.11	1.05	0.73	1.05	0.77	7.06
CHECKED BY:DATEDATE			61	7.82	0.80	1.49	1.20	1.79	7.02
			63	7.42	0.25	0.55	0.50	0.28	7.17
ASSIGNED TO:DATEDATE			65	7.16	0.05	0.00	0.09	0.00	7.11
		w	66.4	7.06			0.00	0.00	0.00
			68.5	6.72			0.00	0.00	0.00
	1	G	69.7	5.76			0.00	0.00	0.00
		RS	72.9	4.60			0.00	0.00	0.00
					_				
						Totals	16.02	18.10	

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	Animas River-between N 250' downstream from co 3	
DATE: OBSERVERS:	20-Oct-04 R. Smith, S. Jensen,	
1/4 SEC: SECTION: TWP: RANGE: PM:	SW 31 42 N 6 W N.M.P.M.	
COUNTY: WATERSHED: DIVISION: DOW CODE:	San Juan Animas 7 0	
USGS MAP: USFS MAP:	Howardsville 7.5 0	
SUPPLEMENTAL DATA		*** NOTE ***
TAPE WT: TENSION:	at defaults	PE WT and TENSION for data collected /ey level and rod
CHANNEL PROFILE DATA		
SLOPE:	0.01	
INPUT DATA CHECKED B	·:	DATE
ASSIGNED TO:		DATE

STREAM NAME:
XS LOCATION:
XS NUMBER:

Animas River-between Maggie & Cunningham 250' downstream from confluence w/ Maggie 3

32	=	DATA POINTS	# C	
	WATER	VERT		FEATURE
VEL	DEPTH	DEPTH	DIST	
		5.48	0.00	LS
			0.00	
		5.66	0.80	I G
		6.34	8.00	147
		6.42	22.00	W
0.00	0.10	7.10	25.30	
0.00	0.10	7.20	27.00	
0.51	0.20	7.32	29.00	
0.60	0.20	7.30	31.00	
0.00	0.15	7.24	33.00	
0.00	0.30	7.38	35.00	
0.00	0.05	7.15	37.00	
0.00	0.15	7.25	39.00	
0.00	0.10	7.29	41.00	
1.48	0.20	7.33	43.00	
1.60	0.45	7.56	45.00	
1.37	0.25	7.42	47.00	
1.05	0.60	7.61	49.00	
0.38	0.55	7.56	51.00	
1.18	0.80	7.84	53.00	
2.04	0.90	8.08	55.00	
1.56	0.80	7.90	56.00	
1.91	1.00	8.10	57.00	
1.53	1.10	8.22	58.00	
1.27	0.75	7.82	59.00	
0.73	1.05	8.11	60.00	
1.49	0.80	7.82	61.00	
0.55	0.25	7.42	63.00	
0.00	0.05	7.16	65.00	
		7.06	66.40	w
		6.72	68.50	
		5.76	69.70	G
		4.60	72.90	RS

TOTALS -----

Q % Q WETTED WATER AREA PERIM. DEPTH (Qm) CELL (Am) 0.00 0.00 0.0% 0.00 0.00 0.00 0.00 0.0% 0.00 0.00 0.00 0.0% 0.00 0.0% 0.00 0.00 0.00 0.00 0.0% 0.00 1.70 0.10 0.19 0.00 0.0% 2.00 0.20 0.40 0.20 1.1% 0.24 1.3% 2.00 0.20 0.40 0.30 0.00 0.0% 2.00 0.15 0.30 0.60 0.00 0.0% 2.00 2.01 0.05 0.10 0.00 0.0% 0.00 2.00 0.15 0.30 0.0% 0.00 0.0% 2.00 0.10 0.20 2.00 0.20 0.40 0.59 3.3% 0.90 1.44 8.0% 2.01 0.45 2.00 0.25 0.50 0.69 3.8% 1.26 2.01 0.60 1.20 7.0% 0.42 2.00 0.55 1.10 2.3% 2.02 0.80 1.60 1.89 10.4% 2.01 0.90 1.35 2.75 15.2% 1.02 0.80 0.80 1.25 6.9% 1.91 10.6% 1.02 1.00 1.00 9.3% 1.01 1.10 1.10 1.68 1.08 0.95 5.3% 0.75 0.75 1.04 1.05 1.05 0.77 4.2% 1.04 0.80 1.20 1.79 9.9% 2.04 0.25 0.50 0.28 1.5% 0.09 0.00 0.0% 2.02 0.05 0.00 0.00 0.0% 1.40 0.00 0.00 0.00 0.0% 0.00 0.00 0.00 0.0% 0.00 0.00 0.00 0.0% 41.45 16.02 18.10 100.0% 1.1 (Max.) Manning's n = 0.0698

VALUES COMPUTED FROM RAW FIELD DATA

Hydraulic Radius=

0.386462185

STREAM NAME: XS LOCATION: XS NUMBER: Animas River-between Maggie & Cunningham 250' downstream from confluence w/ Maggie 3

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	16.02	16.83	5.0%
6.83	16.02	27.44	71.3%
6.85	16.02	26.56	65.8%
6.87	16.02	25.69	60.4%
6.89	16.02	24.83	55.0%
6.91	16.02	23.97	49.6%
6.93	16.02	23.11	44.3%
6.95	16.02	22.26	38.9%
6.97	16.02	21.41	33.6%
6.99	16.02	20.57	28.4%
7.01	16.02	19.73	23.1%
7.03	16.02	18.89	17.9%
7.04	16.02	18.48	15.3%
7.05	16.02	18.06	12.7%
7.06	16.02	17.65	10.2%
7.07	16.02	17.24	7.6%
7.08	16.02	16.83	5.0%
7.09	16.02	16.42	2.5%
7.10	16.02	16.01	-0.1%
7.11	16.02	15.61	-2.6%
7.12	16.02	15.21	-5.1%
7.13	16.02	14.81	-7.6%
7.15	16.02	14.02	-12.5%
7.17	16.02	13.25	-17.3%
7.19	16.02	12.51	-21.9%
7.21	16.02	11.78	-26.5%
7.23	16.02	11.08	-30.8%
7.25	16.02	10.40	-35.1%
7.27	16.02	9.76	-39.1%
7.29	16.02	9.18	-42.7%
7.31	16.02	8.65	-46.0%
7.33	16.02	8.19	-48.9%

WATERLINE AT ZERO AREA ERROR = 7.100

STREAM NAME: XS LOCATION: XS NUMBER: Animas River-between Maggie & Cunningham 250' downstream from confluence w/ Maggie 3

Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	5.76	67.84	1.29	2.46	87.79	68.66	100.0%	1.28	220.28	2.51
	6.10	63.82	1.03	2.12	65.42	64.50	93.9%	1.01	140.66	2.15
	6.15	63.23	0.98	2.07	62.24	63.89	93.1%	0.97	130.29	2.09
	6.20	62.63	0.94	2.02	59.09	63.27	92.2%	0.93	120.26	2.04
	6.25	62.04	0.90	1.97	55.98	62.66	91.3%	0.89	110.59	1.98
	6.30	61.45	0.86	1.92	52.89	62.05	90.4%	0.85	101.27	1.91
	6.35	59.25	0.84	1.87	49.84	59.83	87.1%	0.83	93.99	1.89
	6.40	50.44	0.93	1.82	47.10	51.00	74.3%	0.92	95.13	2.02
	6.45	46.69	0.96	1.77	44.72	47.23	68.8%	0.95	91.84	2.05
	6.50	46.39	0.91	1.72	42.39	46.91	68.3%	0.90	84.41	1.99
	6.55	46.08	0.87	1.67	40.08	46.58	67.8%	0.86	77.24	1.93
	6.60	45.78	0.83	1.62	37.78	46.25	67.4%	0.82	70.33	1.86
	6.65	45.47	0.78	1.57	35.50	45.92	66.9%	0.77	63.70	1.79
	6.70	45.17	0.74	1.52	33.24	45.60	66.4%	0.73	57.34	1.73
	6.75	44.72	0.69	1.47	30.99	45.13	65.7%	0.69	51.37	1.66
	6.80	44.16	0.65	1.42	28.77	44.57	64.9%	0.65	45.76	1.59
	6.85	43.61	0.61	1.37	26.57	44.01	64.1%	0.60	40.43	1.52
	6.90	43.06	0.57	1.32	24.41	43.45	63.3%	0.56	35.39	1.45
	6.95	42.51	0.52	1.27	22.27	42.89	62.5%	0.52	30.64	1.38
	7.00	41.96	0.48	1.22	20.15	42.33	61.7%	0.48	26.18	1.30
	7.05	41.41	0.44	1.17	18.07	41.77	60.8%	0.43	22.02	1.22
⁺WL⁺	7.10	40.55	0.40	1.12	16.02	40.90	59.6%	0.39	18.27	1.14
	7.15	39.00	0.36	1.07	14.03	39.35	57.3%	0.36	15.03	1.07
	7.20	36.27	0.34	1.02	12.15	36.61	53.3%	0.33	12.41	1.02
	7.25	33.16	0.31	0.97	10.41	33.49	48.8%	0.31	10.17	0.98
	7.30	26.64	0.33	0.92	8.91	26.96	39.3%	0.33	9.07	1.02
	7.35	21.06	0.37	0.87	7.77	21.37	31.1%	0.36	8.42	1.08
	7.40	19.55	0.35	0.82	6.76	19.85	28.9%	0.34	7.02	1.04
	7.45	18.07	0.32	0.77	5.81	18.36	26.7%	0.32	5.75	0.99
	7.50	16.15	0.31	0.72	4.95	16.43	23.9%	0.30	4.75	0.96
	7.55	14.22	0.30	0.67	4.20	14.49	21.1%	0.29	3.91	0.93
	7.60	11.33	0.31	0.62	3.55	11.59	16.9%	0.31	3.44	0.97
	7.65	10.21	0.30	0.57	3.02	10.46	15.2%	0.29	2.82	0.93
	7.70	9.60	0.26	0.52	2.53	9.84	14.3%	0.26	2.18	0.86
	7.75	9.00	0.23	0.47	2.06	9.23	13.4%	0.22	1.62	0.78
	7.80	8.39	0.19	0.42	1.63	8.61	12.5%	0.19	1.14	0.70
	7.85	7.64	0.16	0.37	1.23	7.84	11.4%	0.16	0.76	0.62
	7.90	6.75	0.13	0.32	0.87	6.93	10.1%	0.13	0.46	0.53
	7.95	5.34	0.11	0.27	0.56	5.48	8.0%	0.10	0.26	0.47
	8.00	3.93	0.08	0.22	0.33	4.03	5.9%	0.08	0.13	0.40
	8.05	2.51	0.07	0.17	0.17	2.58	3.8%	0.07	0.06	0.35
	8.10	1.37	0.06	0.12	0.08	1.41	2.0%	0.06	0.02	0.31
	8.15	0.76	0.04	0.07	0.03	0.78	1.1%	0.03	0.01	0.22
	8.20	0.22	0.01	0.02	0.00	0.22	0.3%	0.01	0.00	0.10

1.0.680

0.65 45.76 0.03 $\frac{x}{5.61}$ = 4.21 + 45.76 = 49.97 UFS 0.68 $\frac{x}{5.69}$ 51.37 0.04 5.61

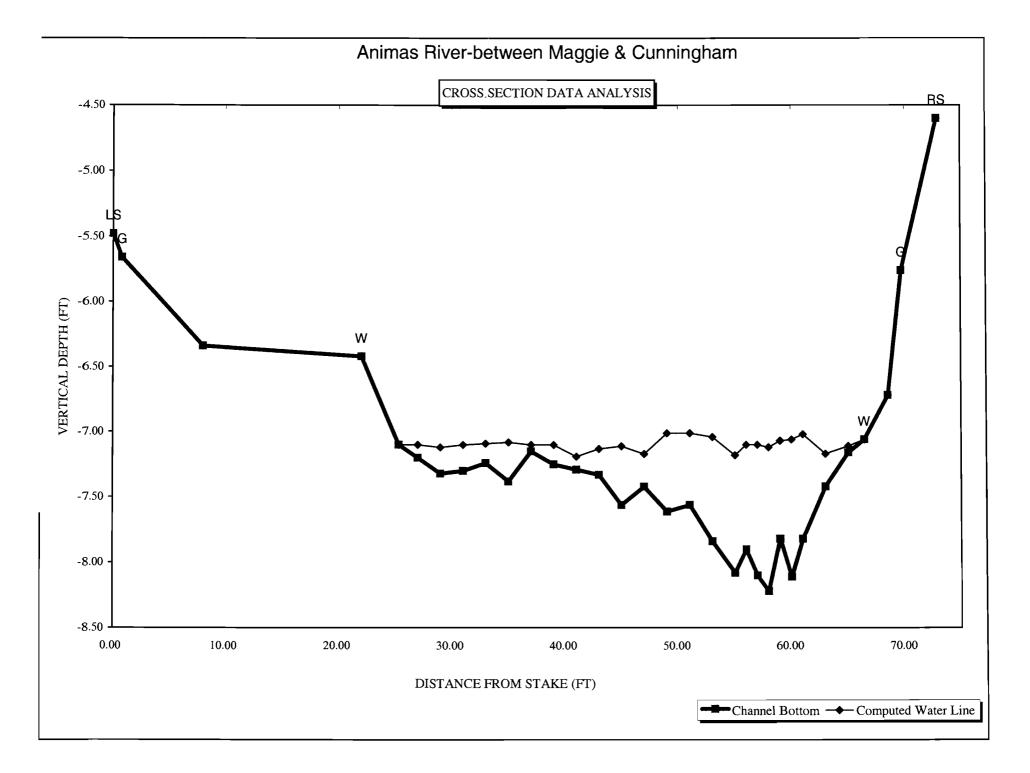
2. 50% Netted perimeter 0.488 10,17 0.012 × = 0.60 + 10.17 = (1.37 cfs) 0.500 × 0.045 2.24 0.33 12.41

3. 1 Ft see \overline{v}), 98 10.17 0.02 \overline{x} = 1.12 1.00 \overline{x} = 0.04 2.24 1.02 1241 0.04 2.24 1.12+10.17 = (11.29 cf3)

STREAM NAME:	Animas River-between Maggie & Cunningham
XS LOCATION:	250' downstream from confluence w/ Maggie
XS NUMBER:	3

SUMMARY SHEET

MEASURED FLOW (Qm)= CALCULATED FLOW (Qc)= (Qm-Qc)/Qm * 100 =	18.10 18.27 -0.9	cfs
MEASURED WATERLINE (WLm)= CALCULATED WATERLINE (WLc)= (WLm-WLc)/WLm * 100 =	7.08 7.10 -0.3	ft
MAX MEASURED DEPTH (Dm)= MAX CALCULATED DEPTH (Dc)= (Dm-Dc)/Dm * 100	1.10 1.12 -1.8	ft
MEAN VELOCITY= MANNING'S N= SLOPE=	1.14 0.070 0.01	ft/sec ft/ft
.4 * Qm = 2.5 * Qm=	7.2 45.3	


RECOMMENDED INSTREAM FLOW:

FLOW (CFS)	PERIOD

RATIONALE FOR RECOMMENDATION:

RECOMMENDATION BY: DATE:
CWCB REVIEW BY: DATE:

