

Greg Espegren Aquatics Specialist Colorado Water Project 1320 Pearl Street, Suite 320 Boulder, CO 80302 303.440.2937

January 4, 2010

Ms. Linda Bassi Mr. Jeff Baessler Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi and Mr. Baessler,

Trout Unlimited in conjunction with the Colorado Division of Wildlife (CDOW) is formally submitting this instream flow recommendation for the South Fork of Slater Creek, located in Routt County, District 6.

Location and Land Status. The South Fork of Slater Creek (South Fork) originates on the northern flank of the Elkhead Mountains just west of Bears Ears Peaks at an elevation of 9,560 feet. It flows generally northward for 5.7 miles to the Routt National Forest boundary at an elevation of 7,700 feet. The proposed ISF reach covers the 1.1 mile reach from its confluence with West Prong South Fork Slater Creek to the USFS boundary. This segment is located entirely on Forest Service Land (Fig. 1).

Biological Summary and R2CROSS Analysis. In July and September of 2009, TU and CDOW collected stream cross sectional data, natural environment data, and other data needed to quantify instream flow needs (Table 1). Previous survey data collected by CDOW indicated the stream supports healthy populations of Colorado River cutthroat trout, brook trout and mottled sculpin.

Table 1. Summary of R2CROSS datasets

10010 11 0011111101	j 01 112 011 0 8 8 4 4 1 1 1			
DATE	MEASURED FLOW (cfs)	MODELING RANGE (cfs)	FLOW MEETING 3 CRITERIA	FLOW MEETING 2 CRITERIA
07/08/09	9.59	3.8 – 24.0	38.8	6.5
09/17/09	1.71	0.7 - 4.3	14.2	4.0
Average	of flows within modeling	Out of range	5.25	

Note: Table entries appearing in italicized font indicated flows that were either not met in R2CROSS staging table or outside of 0.4 to 2.5 times measured flow R2CROSS modeling window.

STATE OF COLORADO

Bill Ritter, Jr., Governor DEPARTMENT OF NATURAL RESOURCES

DIVISION OF WILDLIFE

AN EQUAL OPPORTUNITY EMPLOYER

Thomas E. Remington, Director 6060 Broadway Denver, Colorado 80216 Telephone: (303) 297-1192 wildlife.state.co.us

January 14, 2010

Ms. Linda Bassi Colorado Water Conservation Board Stream and Lake Protection Section 1313 Sherman Street, Room 723 Denver, Colorado 80203

Re: Colorado Division of Wildlife Instream Flow Recommendations for South Fork of Slater Creek.

Dear Linda,

The purpose of this letter is to formally transmit the Colorado Division of Wildlife's (CDOW) support for Trout Unlimited's (TU) Instream Flow Recommendations for South Fork Slater Creek pursuant to Rule 5n of the Rules Concerning the Colorado Instream Flow and Natural Lake Levels. The CDOW believes that South Fork Slater Creek should be considered for inclusion into the Instream Flow Program (ISFP) because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right. As you know, the State of Colorado's Instream Flow Program (ISFP) was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (See §37-92-102 (3) C.R.S.). The statute vests the Colorado Water Conservation Board (Board) with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's ISFP, the statute directs the Board to request instream flow recommendations from other state and federal agencies.

Location and Land Status

The South Fork Slater Creek instream flow recommendations begin at the headwaters of South Fork Slater Creek and extend downstream to the United States Forest Service boundary. The South Fork Slater Creek instream flow recommendation was segmented at the confluence with the West Prong of South Fork Slater Creek. The proposed instream flow segments are located northeast of the Town of Craig. 100% of the proposed segments are located on public lands.

Biological Summary and R2CROSS Analysis

The CDOW and TU worked cooperatively on this recommendation and together have collected stream cross section information, natural environment data, and other data needed to quantify the instream flow needs for these reaches of the South Fork Slater Creek. South Fork Slater Creek is classified as a large stream (between 36 to 59 feet wide) and fishery surveys indicate the stream environment of South Fork Slater Creek supports Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus) and a naturally reproducing brook trout (*Salvelinus fontinalis*) population. The Board staff relies upon the biological expertise of the cooperating agencies to interpret output from the R2CROSS data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools

and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

The results of the R2CROSS data collection efforts for the upper segment indicate that an instream flow recommendation of 4.1 cfs, is required to maintain the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter, and 1.25 cfs, is required to maintain two of the three principal hydraulic criteria. The results of the R2CROSS data collection efforts for the lower segment indicate that an instream flow recommendation of between 14.2 and 38.8 cfs, is required to maintain the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter, and 5.25 cfs, is required to maintain two of the three principal hydraulic criteria. However, both summer flow recommendations from the R2CROSS analysis were greater than 2.5 times the field measured discharge and were outside the modeling accuracy of R2CROSS. Therefore, TU and CDOW used the sum of the summertime instream flow recommendation from West Prong Slater Creek above the Decker Ditch (4.9 cfs) together with the summertime instream flow recommendation from South Fork Slater Creek upstream of West Prong (4.1 cfs) to recommend a 9.0 cfs instream flow during the summer months for this stream reach. However, these results are only based on the physical and biological data collected to date and do not incorporate any water availability constraints.

Water Availability Analysis and Instream Flow Recommendation

The TU staff conducted a preliminary evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation based on an aerial apportionment of USGS gage 09245500 on the North Fork of Elkhead Creek, CO. Subsequent to this preliminary analysis, the CWCB completed their geometric mean analysis of daily flows for South Fork Slater Creek. CDOW and TU used the CWCB's water availability analysis to adjust the seasonality and quantities of the R2CROSS instream flow recommendations so that the estimated daily flow of South Fork Slater Creek reasonably exceeds the recommended instream flow amounts. These seasonal adjustments are reflected in the final instream flow recommendations shown below:

Headwaters to West Prong South Fork Slater Creek

- 4.10 cfs (April 1 through June 30)
- 1.25 cfs (July 1 through July 31)
- 0.65 cfs (August 1 through September 15)
- 1.25 cfs (September 16 through March 31)

West Prong South Fork Slater Creek to USFS Boundary

- 9.00 cfs (March 15 through July 15)
- 2.00 cfs (July 16 through August 15)
- 0.80 cfs (August 16 through October 15)
- 5.75 cfs (October 16 through March 14)

Relationship to State Policy

The CDOW supports the Instream Flow Program because the appropriation of instream flow water rights helps the CDOW meet our statutory mission as described in Title 33 of the Colorado Revised Statutes (CRS):

§33-1-101 – "It is the policy of the state of Colorado that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... that there shall be provided a comprehensive program designed to offer the greatest possible variety of wildlife-related recreational opportunity to the people of this state and its visitors and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife related opportunities."

§33-2-106 – "(1) The division [of Wildlife] shall establish such programs including acquisition of land or aquatic habitat as are deemed necessary for management of nongame, endangered, or threatened wildlife. (2) ... the division may enter into agreements with federal agencies or political subdivisions of this state or with private persons for administration and management of any area established under this section or utilized for management of nongame, endangered, or threatened wildlife."

§33-5-101 – "It is declared to be the policy of the state that its fish and wildlife resources, and particularly the fishing waters within the state, are to be protected and preserved from the actions of any state agency to the end that they be available for all time and without change in their natural existing state, except as may be necessary and appropriate after due consideration of all factors involved."

In addition to meeting the state policy discussed above South Fork Slater Creek satisfies criteria identified by the CWCB for ISF appropriations, including:

- a) The recommendations have broad public support;
- b) The proposed appropriations will have a positive impact on state or local economies;
- c) The recommendations are part of a water acquisition strategy;
- d) The recommendations are part of a collaborative solution to a unique natural resource issue with federal, state or local partners; and
- e) The instream flow amount and timing recommended by TU, CDOW and CWCB staff:
 - Is based upon standard scientific methodology and an accurate R2CROSS analysis;
 - Reflects the amount of water available for appropriation as an instream flow water right; and
 - Is required to preserve the natural environment to a reasonable degree.

TU has provided copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. If you have any questions regarding the provided information or the instream flow recommendations please contact me at (303)-291-7267.

Sincerely,

Mark Uppendahl

Mark Uppendahl Colorado Division of Wildlife Instream Flow Program Coordinator

Cc: Grady McNeill, CDOW Resource Support Section Manager – w/o attachments Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Dave Graf, CDOW Water Resource Specialist – w/o attachments Sherman Hebein, CDOW NW Senior Aquatic Biologist – w/o attachments Ron Velardi, CDOW Northwest Regional Manager - w/o attachments Boyd Wright, CDOW Aquatic Biologist – w/o attachments Bill de Vergie, CDOW AWM Area 6 – w/o attachments Greg Espegren, Trout Unlimited

Stream cross sectional data were analyzed using the R2CROSS program, and the output was evaluated using the methods described in Nehring (1979) and Espegren (1996). The R2CROSS models how average depth, percent wetted perimeter and average velocity vary with discharge. According to the criteria established by Nehring (1979), the relevant minimum requirements are an average depth of 0.2 feet, a wetted perimeter of 50%, and an average velocity of 1.0 ft/sec. Protecting salmonids during the summer season is accomplished by insuring all three criteria are met while during the winter protection can be accomplished by protecting 2 of three criteria.

The R2CROSS data from our two cross sections indicate that the fishery of South Fork Slater Creek can be protected with summer flows between 14.2 and 38.8 cfs and winter flows of 5.25 cfs. However, both summer flow recommendations were greater than 2.5 times the field measured discharge and therefore, were considered outside the modeling accuracy of R2CROSS. Therefore, we used the sum of the summertime instream flow recommendation from West Prong Slater Creek above the Decker Ditch (4.9 cfs) together with the summertime instream flow recommendation from South Fork Slater Creek upstream of West Prong (4.1 cfs) to recommend a 9.0 cfs instream flow during the summer months for this stream reach. TU and CDOW recommend that the CWCB appropriate the following flow amounts to preserve the natural environment of South Fork Slater Creek to a reasonable degree:

- From March 15 through July 15 a flow appropriation of 9.0 cfs is recommended based on maintaining the three principal criteria of average depth, average velocity, and percent wetted perimeter in the two instream flow reaches located just upstream of this reach;
- From **July 16 through August 15** a flow appropriation of **2.0 cfs** is recommended based on water availability limitations;
- From **August 16 through October 15** a flow appropriation of **0.80 cfs** is recommended based on water availability limitations; and
- From October 16 through March 14 a flow appropriation of 5.25 cfs is recommended based on maintaining the average depth and wetter perimeter criteria.

Water Availability. The preliminary instream flow recommendation we submitted in February 2008 was based on an aerial apportionment of USGS gage 09245500 on the North Fork of Elkhead Creek, CO. Subsequent to that preliminary analysis, the CWCB provided us with a geometric mean analysis of daily flows on South Fork Slater Creek. We used the CWCB's water availability analysis to adjust the seasonality and quantities of the instream flow recommendation so that the estimated daily flow through South Fork Slater Creek typically exceeds the recommended instream flow. These seasonal adjustments are reflected in the final instream flow recommendation above.

Relationship to Existing State Policy. TU and the CDOW are forwarding this stream flow recommendation to the CWCB to meet the State of Colorado's policy "that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities." C.R.S. 33-1-101(1). Further,

the CDOW Strategic Plan states "Healthy aquatic environments are essential to maintain healthy and viable fisheries, and critical for self-sustaining populations. The Division desires to protect and enhance the quality and quantity of aquatic habitats." TU and CDOW recommend that South Fork Slater Creek be considered for inclusion in the Instream Flow Program because doing so would help meet these stated policies. Specifically, establishing minimum flows through this reach would preserve the natural environment of the stream to a reasonable degree.

Attached, please find copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. If you have any questions regarding the attached information or the instream flow recommendations, please feel free to contact me at (303) 440-2937.

Trout Unlimited thanks the Colorado Division of Wildlife and the Colorado Water Conservation Board Staff for their support in preparing this recommendation.

Sincerely,

Sincerely,

Aquatic Specialist

Cc: Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Mark Uppendahl, CDOW Instream Flow Program Coordinator

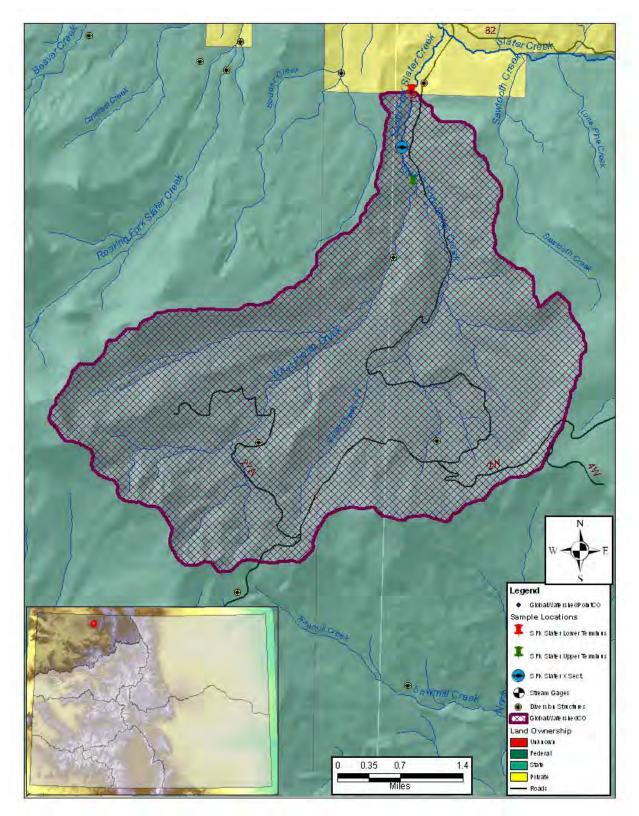


Figure 1. Map of South Fork Slater Creek watershed. Positions of upper and lower termini of the proposed instream flow reach are noted as is the location of the R2CROSS cross section. Additionally, locations known diversion structures are plotted. The watershed's location within Division 6 is indicated by the red box on the inset map of Colorado

STATE OF COLORADO

Bill Ritter, Jr., Governor DEPARTMENT OF NATURAL RESOURCES

DIVISION OF WILDLIFE

AN EQUAL OPPORTUNITY EMPLOYER

Thomas E. Remington, Director 6060 Broadway Denver, Colorado 80216 Telephone: (303) 297-1192 wildlife.state.co.us

January 14, 2010

Ms. Linda Bassi Colorado Water Conservation Board Stream and Lake Protection Section 1313 Sherman Street, Room 723 Denver, Colorado 80203

Re: Colorado Division of Wildlife Instream Flow Recommendations for South Fork of Slater Creek.

Dear Linda,

The purpose of this letter is to formally transmit the Colorado Division of Wildlife's (CDOW) support for Trout Unlimited's (TU) Instream Flow Recommendations for South Fork Slater Creek pursuant to Rule 5n of the Rules Concerning the Colorado Instream Flow and Natural Lake Levels. The CDOW believes that South Fork Slater Creek should be considered for inclusion into the Instream Flow Program (ISFP) because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right. As you know, the State of Colorado's Instream Flow Program (ISFP) was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (See §37-92-102 (3) C.R.S.). The statute vests the Colorado Water Conservation Board (Board) with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's ISFP, the statute directs the Board to request instream flow recommendations from other state and federal agencies.

Location and Land Status

The South Fork Slater Creek instream flow recommendations begin at the headwaters of South Fork Slater Creek and extend downstream to the United States Forest Service boundary. The South Fork Slater Creek instream flow recommendation was segmented at the confluence with the West Prong of South Fork Slater Creek. The proposed instream flow segments are located northeast of the Town of Craig. 100% of the proposed segments are located on public lands.

Biological Summary and R2CROSS Analysis

The CDOW and TU worked cooperatively on this recommendation and together have collected stream cross section information, natural environment data, and other data needed to quantify the instream flow needs for these reaches of the South Fork Slater Creek. South Fork Slater Creek is classified as a large stream (between 36 to 59 feet wide) and fishery surveys indicate the stream environment of South Fork Slater Creek supports Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus) and a naturally reproducing brook trout (*Salvelinus fontinalis*) population. The Board staff relies upon the biological expertise of the cooperating agencies to interpret output from the R2CROSS data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools

and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

The results of the R2CROSS data collection efforts for the upper segment indicate that an instream flow recommendation of 4.1 cfs, is required to maintain the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter, and 1.25 cfs, is required to maintain two of the three principal hydraulic criteria. The results of the R2CROSS data collection efforts for the lower segment indicate that an instream flow recommendation of between 14.2 and 38.8 cfs, is required to maintain the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter, and 5.25 cfs, is required to maintain two of the three principal hydraulic criteria. However, both summer flow recommendations from the R2CROSS analysis were greater than 2.5 times the field measured discharge and were outside the modeling accuracy of R2CROSS. Therefore, TU and CDOW used the sum of the summertime instream flow recommendation from West Prong Slater Creek above the Decker Ditch (4.9 cfs) together with the summertime instream flow recommendation from South Fork Slater Creek upstream of West Prong (4.1 cfs) to recommend a 9.0 cfs instream flow during the summer months for this stream reach. However, these results are only based on the physical and biological data collected to date and do not incorporate any water availability constraints.

Water Availability Analysis and Instream Flow Recommendation

The TU staff conducted a preliminary evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation based on an aerial apportionment of USGS gage 09245500 on the North Fork of Elkhead Creek, CO. Subsequent to this preliminary analysis, the CWCB completed their geometric mean analysis of daily flows for South Fork Slater Creek. CDOW and TU used the CWCB's water availability analysis to adjust the seasonality and quantities of the R2CROSS instream flow recommendations so that the estimated daily flow of South Fork Slater Creek reasonably exceeds the recommended instream flow amounts. These seasonal adjustments are reflected in the final instream flow recommendations shown below:

Headwaters to West Prong South Fork Slater Creek

- 4.10 cfs (April 1 through June 30)
- 1.25 cfs (July 1 through July 31)
- 0.65 cfs (August 1 through September 15)
- 1.25 cfs (September 16 through March 31)

West Prong South Fork Slater Creek to USFS Boundary

- 9.00 cfs (March 15 through July 15)
- 2.00 cfs (July 16 through August 15)
- 0.80 cfs (August 16 through October 15)
- 5.75 cfs (October 16 through March 14)

Relationship to State Policy

The CDOW supports the Instream Flow Program because the appropriation of instream flow water rights helps the CDOW meet our statutory mission as described in Title 33 of the Colorado Revised Statutes (CRS):

§33-1-101 – "It is the policy of the state of Colorado that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... that there shall be provided a comprehensive program designed to offer the greatest possible variety of wildlife-related recreational opportunity to the people of this state and its visitors and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife related opportunities."

§33-2-106 – "(1) The division [of Wildlife] shall establish such programs including acquisition of land or aquatic habitat as are deemed necessary for management of nongame, endangered, or threatened wildlife. (2) ... the division may enter into agreements with federal agencies or political subdivisions of this state or with private persons for administration and management of any area established under this section or utilized for management of nongame, endangered, or threatened wildlife."

§33-5-101 – "It is declared to be the policy of the state that its fish and wildlife resources, and particularly the fishing waters within the state, are to be protected and preserved from the actions of any state agency to the end that they be available for all time and without change in their natural existing state, except as may be necessary and appropriate after due consideration of all factors involved."

In addition to meeting the state policy discussed above South Fork Slater Creek satisfies criteria identified by the CWCB for ISF appropriations, including:

- a) The recommendations have broad public support;
- b) The proposed appropriations will have a positive impact on state or local economies;
- c) The recommendations are part of a water acquisition strategy;
- d) The recommendations are part of a collaborative solution to a unique natural resource issue with federal, state or local partners; and
- e) The instream flow amount and timing recommended by TU, CDOW and CWCB staff:
 - Is based upon standard scientific methodology and an accurate R2CROSS analysis;
 - Reflects the amount of water available for appropriation as an instream flow water right; and
 - Is required to preserve the natural environment to a reasonable degree.

TU has provided copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. If you have any questions regarding the provided information or the instream flow recommendations please contact me at (303)-291-7267.

Sincerely,

Mark Uppendahl

Mark Uppendahl Colorado Division of Wildlife Instream Flow Program Coordinator

Cc: Grady McNeill, CDOW Resource Support Section Manager – w/o attachments Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Dave Graf, CDOW Water Resource Specialist – w/o attachments Sherman Hebein, CDOW NW Senior Aquatic Biologist – w/o attachments Ron Velardi, CDOW Northwest Regional Manager - w/o attachments Boyd Wright, CDOW Aquatic Biologist – w/o attachments Bill de Vergie, CDOW AWM Area 6 – w/o attachments Greg Espegren, Trout Unlimited

Q = 1.7 3/3 = 14.2 2/3 = 4.0

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:		ater Creek (Lower) #2 0 49' 38.8" 107 17' 48.7"
DATE: OBSERVERS:	17-Sep-09 Uppendahl &	Espegren
1/4 SEC: SECTION: TWP: RANGE: PM:	0 0 10 N 88 W 6	
COUNTY: WATERSHED: DIVISION: DOW CODE:	ROUTT SLATER CRE 6 0	EEK
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA		*** NOTE *** Leave TAPE WT and TENSION at defaults for data collected
TAPE WT: TENSION:	0.0106 99999	with a survey level and rod
CHANNEL PROFILE DATA		
SLOPE:	0.02163462	
INPUT DATA CHECKED BY	r:	DATE
ASSIGNED TO:		DATE

STREAM NAME: XS LOCATION: XS NUMBER: South Fork Slater Creek (Lower) #2 below confl. 40 49' 38.8" 107 17' 48.7"

2

DATA POINTS=

37

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
TS	0.00	0.97			0.00		0.00	0.00	0.0%
BS	0.00	1.21			0.00		0.00	0.00	0.0%
БО	0.50	2.11			0.00		0.00	0.00	0.0%
	1.90	2.39			0.00		0.00	0.00	0.0%
	2.50	2.77			0.00		0.00	0.00	0.0%
GL	6.70	3.34			0.00		0.00	0.00	0.0%
GL	7.20	4.32			0.00		0.00	0.00	0.0%
WL	10.20	4.97	0.00	0.00	0.00		0.00	0.00	0.0%
VVL	10.20	5.09	0.10	0.20	0.71	0.10	0.07	0.01	0.8%
	11.60	5.20	0.10	0.43	0.71	0.20	0.14	0.06	3.5%
	12.30	5.15	0.20	0.26	0.70	0.20	0.14	0.04	2.1%
	13.00	5.23	0.25	0.74	0.70	0.25	0.18	0.13	7.6%
	13.70	5.23	0.15	0.39	0.71	0.15	0.11	0.04	2.4%
		5.11	0.15	0.83	0.70	0.15	0.11	0.09	5.1%
	14.40	5.11	0.15	0.64	0.74	0.35	0.25	0.16	9.1%
	15.10		0.35	0.97	0.73	0.25	0.18	0.17	9.9%
	15.80	5.15	0.25	0.67	0.70	0.25	0.18	0.12	6.8%
	16.50	5.21	0.30	0.25	0.71	0.30	0.21	0.05	3.1%
	17.20	5.30		0.25	0.70	0.35	0.25	0.17	9.7%
	17.90	5.29	0.35 0.35	0.78	0.70	0.35	0.25	0.19	11.1%
	18.60	5.30				0.35	0.18	0.15	8.9%
	19.30	5.24	0.25	0.87	0.70	0.25	0.10	0.09	5.0%
	20.00	5.12	0.15	0.81	0.71	0.15	0.14	0.03	2.0%
	20.70	5.17	0.20	0.24	0.70		0.14	0.06	3.3%
	21.40	5.42	0.45	0.18	0.74	0.45			8.7%
	22.10	5.25	0.30	0.71	0.72	0.30 0.20	0.21 0.14	0,15 0.00	0.0%
	22.80	5.16	0.20	0.00	0.71			0.00	0.0%
	23.50	5.12	0.15	0.15	0.70	0.15	0.11		
R	24.20	4.95	0.00	0.00	0.72		0.00	0.00	0.0%
R	24.90	4.99	0.00	0.00	0.00	0.40	0.00	0.00	0.0%
	25.60	5.07	0.10	0.00	0.70	0.10	0.07	0.00	
	26.30	5.08	0.10	0.00	0.70	0.10	0.14	0.00	0.0%
WL	28.40	4.95	0.00	0.00	2.10		0.00	0.00	0.0%
	32.60	4.73			0.00		0.00	0.00	0.0%
	35.40	4.05			0.00		0.00	0.00	0.0%
GL	36.00	3.47			0.00		0.00	0.00	0.0%
	38.00	3.22			0.00		0.00	0.00	0.0%
BS	39.70	2.79			0.00		0.00	0.00	0.0%
TO	OTALS				17.72	0.45	3.43	1.71	100.0%
10	2 1 / ILO				11.12	(Max.)	7.7	10.414	777

Manning's n = Hydraulic Radius= 0.1463 0.19356571 STREAM NAME: XS LOCATION:

South Fork Slater Creek (Lower) #2 below confi. 40 49' 38.8" 107 17' 48.7"

XS NUMBER:

2

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	3.43	3.38	-1.4%
4.72	3.43	8.57	149.9%
4.74	3.43	8.10	136.2%
4.76	3.43	7.64	122.8%
4.78	3.43	7.19	109.7%
4.80	3.43	6.75	96.8%
4.82	3.43	6.32	84.2%
4.84	3.43	5.89	71.9%
4.86	3.43	5.48	59.8%
4.88	3.43	5.08	48.0%
4.90	3.43	4.68	36.5%
4.92	3.43	4.30	25.3%
4.93	3.43	4.11	19.8%
4.94	3.43	3.92	14.4%
4.95	3.43	3.74	9.0%
4.96	3.43	3.56	3.7%
4.97	3.43	3.38	-1.4%
4.98	3.43	3.21	-6.4%
4.99	3.43	3.04	-11.3%
5.00	3.43	2.88	-16.1%
5.01	3.43	2.72	-20.8%
5.02	3.43	2.56	-25.4%
5.04	3.43	2.26	-34.2%
5.06	3.43	1.97	-42.7%
5.08	3.43	1.69	-50.6%
5.10	3.43	1.44	-58.0%
5.12	3.43	1.20	-65.1%
5.14	3.43	0.97	-71.6%
5.16	3.43	0.78	-77.4%
5.18	3.43	0.61	-82.2%
5.20	3.43	0.47	-86.3%
5.22	3.43	0.36	-89.6%

WATERLINE AT ZERO AREA ERROR =

4.967

STREAM NAME:

South Fork Slater Creek (Lower) #2 below confl. 40 49' 38.8" 107 17' 48.7"

XS NUMBER:

2

Constant Manning's n

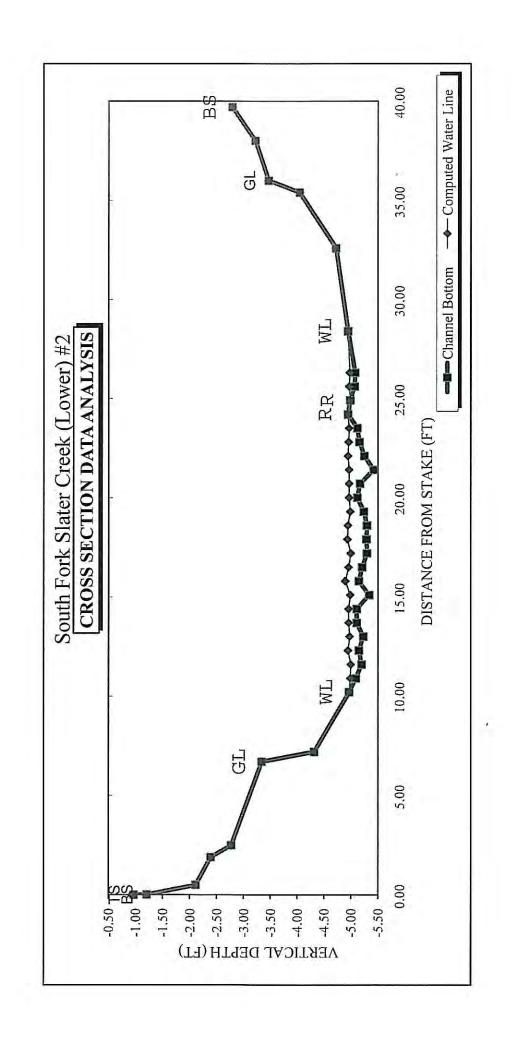
GL = lowest Grassline elevation corrected for sag

STAGING TABLE

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.	aceto	WETTED	PERCENT	HYDR	Or High	AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
L.	3.47	29.23	1.47	1.95	42.89	30.37	100.0%	1.41	80.66	1.88
	3.97	28.47	1.00	1.45	28.54	29.09	95.8%	0.98	42.10	1.48
	4.02	28.39	0.96	1.40	27.12	28.96	95.4%	0.94	38.78	1.43
	4.07	28.26	0.91	1.35	25.70	28.79	94.8%	0.89	35.61	1.39
	4.12	28.03	0.87	1.30	24,30	28.52	93.9%	0.85	32.62	1.34
	4.17	27.80	0.82	1.25	22.90	28,25	93.0%	0.81	29.74	1.30
	4.22	27.56	0.78	1.20	21.52	27.98	92.2%	0.77	26.98	1.25
	4.27	27.33	0.74	1.15	20.14	27.72	91.3%	0.73	24.33	1.21
	4.32	27.10	0.69	1.10	18.78	27.45	90.4%	0.68	21.79	1.16
	4.37	26.68	0.65	1.05	17.44	27.01	88.9%	0.65	19.46	1.12
	4.42	26.24	0.61	1.00	16.12	26.56	87.5%	0.61	17.26	1.07
	4.47	25.80	0.57	0.95	14.81	26.11	86,0%	0.57	15.17	1.02
	4.52	25.37	0.53	0.90	13.54	25,67	84.5%	0.53	13.20	0.98
	4.57	24.93	0.49	0.85	12.28	25.22	83.0%	0.49	11.35	0.92
	4.62	24.49	0.45	0.80	11.04	24.77	81.6%	0.45	9.63	0.87
	4.67	24.06	0.41	0.75	9.83	24.32	80.1%	0.40	8.03	0.82
	4.72	23.62	0.37	0.70	8.64	23.87	78.6%	0.36	6.55	0.76
	4.77	22.62	0.33	0.65	7,48	22.87	75.3%	0.33	5.30	0.71
	4.82	21.44	0.30	0.60	6.38	21.68	71.4%	0.29	4.21	0.66
	4.87	20.25	(0.26)	0,55	5.33	20.49	67.5%	0.26	3.25	0.61
	4.92	19.07	0.23	0.50	4.35	19.30	63.5%	0.23	2.41	0.55
VL*	4.97	17.56	0.20	0.45	3.43	17.78	58.5%	0.19	1.71	0.50
	5.02	15.62	0.17	0.40	2.60	15,83	52.1%	0.16	1.17	0.45
	5.07	13.88	D.13	0.35	1.87	14.07	46.3%	0.13	0.72	0.39
	5.12	11.67	0,11	0.30	1.23	11.85	39.0%	0.10	0.41	0.33
	5.17	8.55	0.08	0.25	0.71	8.70	28.6%	0.08	0.20	0.28
	5.22	5.41	0.07	0.20	0.37	5.52	18.2%	0,07	0.09	0.25
	5.27	3.58	0.04	0.15	0.15	3.65	12.0%	0.04	0.03	0.18
	5.32	0.86	0.04	0.10	0.04	0.90	3.0%	0.04	0.01	0.18
	5.37	0.36	0.03	0.05	0.01	0.38	1.3%	0.03	0.00	0.13
	5.42	0.02	0.00	0.00	0.00	0.02	0.1%	0.00	0.00	0.02

$$\frac{3}{3} = \frac{14.2}{2}$$


$$\frac{2}{3} = \frac{4.0}{2}$$

STREAM NAME: XS LOCATION: XS NUMBER: South Fork Slater Creek (Lower) #2 below confl. 40 49' 38.8" 107 17' 48.7"

2


SUMMARY SHEET

MEASURED FLOW (Qm)=	1.71	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	1.71	cfs		***********
(Qm-Qc)/Qm * 100 =	0.2	%		
			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	4.97	ft		********
CALCULATED WATERLINE (WLc)=	4,97	ft		
(WLm-WLc)/WLm * 100 =	0.1	%		
Attended to the state of the st				_
MAX MEASURED DEPTH (Dm)=	0.45	ft		
MAX CALCULATED DEPTH (Dc)=	0.45			
(Dm-Dc)/Dm * 100	-0.6			
(Bill-Bo)/Bill 100	0.0	70	-	
MEAN VELOCITY=	0.50	ft/sec		
MANNING'S N=	0.146			
SLOPE=	0.02163462	filti		
42012	5.52 105 102			
.4 * Qm =	0.7	cfs		
2.5 * Qm=		cfs		

*				
1.5				
4-				
pair and the same				
RECOMMENDATION BY:		AGENCY		DATE:
CWCB REVIEW BY:				DATE:

				VERT	WATER				Tape to
Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
					ata Points = 37				
STREAM NAME: South Fork Slater Creek (Lower) #2		TS	0.00	0.97			0.00	0.00	0.00
XS LOCATION: below confl. 40 49' 38.8" 107 17' 48.7"		BS	0.01	1.21			0.00	0.00	0.00
XS NUMBER: 2			0.50	2.11			0.00	0.00	0.00
DATE: 9/17/2009			1.90	2.39			0.00	0.00	0.00
OBSERVERS: Uppendahl & Espegren			2.50	2.77			0.00	0.00	0.00
	1	GL.	6.70	3.34			0.00	0.00	0.00
1/4 SEC:			7.20	4.32			0.00	0.00	0.00
SECTION:		WL	10.20	4.97	0.00	0,00	0.00	0.00	0.00
TWP: 10 N			10.90	5.09	0.10	0.20	0.07	0.01	4.99
RANGE: 88 W			11.60	5.20	0.20	0.43	0.14	0.06	5.00
PM: 6			12.30	5.15	0.20	0.26	0.14	0.04	4.95
			13.00	5.23	0.25	0.74	0.18	0.13	4.98
COUNTY: ROUTT			13.70	5.11	0.15	0.39	0.11	0.04	4.96
WATERSHED: SLATER CREEK			14.40	5.11	0.15	0.83	0.11	0.09	4.96
DIVISION: 6			15.10	5.34	0.35	0.64	0.25	0.16	4.99
DOW CODE:			15.80	5.15	0.25	0.97	0.18	0.17	4.90
USGS MAP:			16.50	5.21	0.25	0.67	0.18	0.12	4.96
USFS MAP:			17.20	5.30	0.30	0.25	0.21	0.05	5.00
Level and Rod Survey ▼			17.90	5.29	0.35	0.68	0.25	0.17	4.94
TAPE WT: 0.0106 Lever and Rod Survey 1 lbs / ft			18.60	5.30	0.35	0.78	0.25	0.19	4.95
TENSION: 99999 lbs			19.30	5.24	0.25	0.87	0.18	0.15	4.99
,			20.00	5.12	0.15	0.81	0.11	0.09	4.97
SLOPE: 0.021634615 ft / ft			20.70	5.17	0.20	0.24	0.14	0.03	4.97
			21.40	5.42	0.45	0.18	0.32	0.06	4.97
			22.10	5.25	0.30	0.71	0.21	0.15	4.95
CHECKED BY:DATEDATE			22.80	5.16	0.20	0.00	0.14	0.00	4.96
			23.50	5.12	0.15	0.15	0.11	0.02	4.97
ASSIGNED TO:DATE		R	24.20	4.95	0.00	0.00	0.00	0.00	0.00
(1001011-101111111111111111111111111111		R	24.90	4.99	0.00	0.00	0.00	0.00	0.00
		5.8	25.60	5.07	0.10	0.00	0.07	0.00	4.97
			26.30	5.08	0.10	0.00	0.14	0.00	4.98
		WL	28.40	4.95	0.00	0.00	0.00	0.00	0.00
			32.60	4.73	0.00	5.55	0.00	0.00	0.00
			35.40	4.05			0.00	0.00	0.00
	1	GL	36.00	3.47			0.00	0.00	0.00
		OL	38.00	3.22			0.00	0.00	0.00
		BS	39.70	2.79			0.00	0.00	0.00
		ь.	33.70	2.15			0.00	0.00	0.00
					7	Totalal	2 42	4 741	

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER CONSERVATION BOARD				LOC	ATIC	INO	NFO	RMA	TIO	N								OF
STREAM NAME:	FK .	56	A	= C	(P.		O~	V	U P	Com	J (-,	(6	~~F	-1		CROSS	SECTION	ON NO.:
CROSS-SECTION LOCATION:	+ 106	YE		9	,	5	w	V. Comment	On									
40 49	38.R		7	17	_	18.9	L											
DATE 9/17/09 OBSER	0 - 1	_		He	- 3		-	er.	₽Q÷	<u></u> ○)							
LEGAL 1 % SECTION % SECTION		SECTIO	N:		I	rowns				/S	RANG	E:			E/W	PM:		
COUNTY: ROUTT	WATERSH 5\a		-	CI	e e	1	W	ATER D	NOISIVI	l:	6	2		DOW	WATER	CODE:		
USGS:																		
USFS:																		
				SU	PPL	EME	NTA	L D	ATA					· ā ·				
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YES NO M	ETER T	YPE:	Ma	rsh	, - V	Net	5,0	W.						7			
METER NUMBER:	DATE RA	TED:		1.13.		IB/SPIN			sec		WEIGHT			bs/foot	TAF	PE TENS	SION:	lbs
CHANNEL BED MATERIAL SIZE I	RANGE:							OGRAF	HS TAK	-	1			15 15		GRAPH		
				CH	ANINI	EI C	POI		DAT	^								
				CIII	HIVIN	ELF	- NOI	ILE	DAI	A —							-	
STATION	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(ft)		ROI	D READ	DING (f	1)					(000	00				LEGEND:
Tape @ Stake LB Tape @ Stake RB	0.0		4					s -	444								- s	take 🕱
1 WS @ Tape LB/RB	0.0						-	K E T				TAPE					Śt	ation (1)
2 WS Upstream	218		+	4	164	_		C H				Ţ					P	hoto 🕠
3 WS Downstream	اوا ا		+	-	09			1				-					Dire	ction of Flo
and the second s	0,0 = 8,0	22					- 1					(2)	397	ME	4	-		
				TAU	IC S	AMI	PLIN	GSI	IMN	IARY			3- (-	
STREAM ELECTROFISHED, VEG	INO DISTANC	E EL E0										-				G. Ash		10 AC 3
STREAM ELECTROFISHED: YES						_	_	_	UGHT:	-		_	_	H CHE	MISTRY	SAMPL	LED: YE	S/NO
SPECIES (FILL IN)	LENGTH	1 - FREC	2 2	3	4	5	6 ONE-IN	7	E GRO	UPS (1.	0-1.9, 2	11	12	13	14	15	>15	TOTAL
Figh Seen							1											1011112
											1 = 1							
																	-	
AQUATIC INSECTS IN STREAM SE	ECTION BY COMMON	OR SCI	ENTIFIC	ORDE	R NAM	IE:			L					-				
A.					CC	MMC	ENT	S										
																_		

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	FKS		8000			on Fill	SS-SECTION		P/ ID/O	SHEE	T OF
EGINNING OF M	IEASUREMEN	EDGE OF V (0.0 AT STA	VATER LOOKING (IKE)	OOWNSTREAM:	LEFT (RIC	Gage R	eading:	n	TIME: \2.15	5	
Stake (S)	Distance	Width	Total Vertical	Water	Depth	Revolutions		Velocit	y (ft/sec)		200
Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	(ft)	Depth From Tape/Inst (ft)	Depth (ft)	Obser- vation (ft)		Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
TOPIN	03		091								
	000		121								
	050		211								
	19		2 39								
	35		277								
鱼	67		334								
	72		432			Lagrand					
W	102		497	00				Ø			
	109		509	010				020			
	116		520	050				0 0 0 7 0			
	122		515	030				026			
-	125		53	025				074			
	137		51	015			-	a 39			-
	144	-	27	015			+	<u> </u>			
	151	-	534	035				039		-	
	158		515	075				097			
	153		521	035				067			
	172		-30	030				097			
	179		539	030				068			
	186		530	035				058			
	192		524	025				-C1 -44			
-			012	012				Ogl Ogl			
	707		317	020	*			029			
-	214		540	045				018			
			542 516 516 429 499	030				071			
	الما الما الما		54	020				200			-
0	725		77	015				015			-
Rock	242		195	00	-			013			
" "	7:19		199	0=							
	756		-07	000 000 000 000 000 000				000			
	21.1 22.5 23.5 24.5 24.5 24.5 25.5 26.3 28.3		15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	010				⊘ ®			
W	789		492	Ø				Ø			
450	376		4173					- X)	-		-
	325		4173								
4	260		3047								
	382		322								
PIN	397		279							P	
							= 3				
TOTALS:											
nd of Measure	ment Tim	ne: 1:45	Gage Reading	:11	CALCULAT	IONS PERFORME	D BY:	C.	ALCULATIONS C	HECKED BY	

Q = 9.7 $3|_3 = 38.8$ $2|_3 = 6.5$

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM	NAME:
--------	-------

S. FK. SLATER CREEK (Lower Site)

XS LOCATION:

~ 600' U/S OF USFS BOUNDARY

XS NUMBER:

DATE:

8-Jul-09

OBSERVERS:

UPPENDAHL & ESPEGREN

1/4 SEC:

SE

SECTION: TWP:

7

RANGE:

10 N

PM:

88 W

6

COUNTY:

ROUTT

WATERSHED:

SLATER CREEK

DIVISION:

6

DOW CODE:

0

USGS MAP:

0

USFS MAP:

0

SUPPLEMENTAL DATA

*** NOTE ***

Leave TAPE WT and TENSION

at defaults for data collected

TAPE WT:

0.0106

TENSION:

99999

with a survey level and rod

CHANNEL PROFILE DATA

SLOPE:

0.01243243

NPUT DATA	CHECKED BY:	hammen opineni	D/	ATE

ASSIGNED TO:DATE......DATE.....

STREAM NAME: XS LOCATION: S. FK. SLATER CREEK (Lower Site) ~ 600' U/S OF USFS BOUNDARY

XS NUMBER:

1

DATA POINTS=

39

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
TS	0.00	4.35			0.00		0.00	0.00	0.0%
BS	0.01	4.95			0.00		0.00	0.00	0.0%
GL	0.50	5.05			0.00		0.00	0.00	0.0%
	1.00	5.32			0.00		0.00	0.00	0.0%
	1.60	6.21			0.00		0.00	0.00	0.0%
SWL	8.50	6.78	0.00	0.00	0.00		0.00	0.00	0.0%
	10.00	7.00	0.20	0.53	1.52	0.20	0.25	0.13	1.4%
	11.00	7.00	0.20	0.37	1.00	0.20	0.20	0.07	0.8%
BR	12.00	7.20	0.40	0.00	1.02	0.40	0.40	0.00	0.0%
DIX	13.00	7.40	0.60	0.71	1.02	0.60	0.60	0.43	4.4%
	14.00	7.40	0.60	0.34	1.02	0.60	0.60	0.40	2.1%
	15.00	7.40	0.60	0.42	1.00	0.60	0.45	0.19	2.0%
	15.50	7.40	0.60	0.60	0.50	0.60	0.43	0.19	1.9%
	16.00	7.35	0.55	1.48	0.50	0.55	0.28	0.10	4.2%
	16.50		0.45	2.69	0.50	0.33	0.23	0.41	
	17.00	7.25 7.25	0.45	3.23	0.50	0.45	0.23		6.3% 7.6%
	17.50	7.25	0.45	2.70			0.25	0.73	
					0.50	0.50		0.68	7.0%
	18.00	7.80	1.00	1.59	0.71	1.00	0.50	0.80	8.3%
	18.50	7.85	1.05	1.18	0.50	1.05	0.53	0.62	6.5%
	19.00	7.80	1.00	0.81	0.50	1.00	0.50	0.41	4.2%
	19.50	7.80	1.00	0.71	0.50	1.00	0.50	0.36	3.7%
	20.00	7.90	1.10	1.41	0.51	1.10	0.55	0.78	8.1%
	20.50	8.00	1.20	1.87	0.51	1.20	0.60	1.12	11.7%
	21.00	7.90	1.10	1.65	0.51	1.10	0.55	0.91	9.5%
	21.50	7.95	1.15	0.90	0.50	1.15	0.58	0.52	5.4%
	22.00	8.00	1.20	0.21	0.50	1.20	0.60	0.13	1.3%
	22.50	7.95	1.15	0.19	0.50	1.15	0.58	0.11	1.1%
BR	23.00	8.00	1.20	0.00	0.50	1.20	0.90	0.00	0.0%
BR	24.00	7.80	1.00	0.00	1.02	1.00	1.00	0.00	0.0%
BR	25.00	7.65	0.85	0.06	1.01	0.85	0.85	0.05	0.5%
BR	26.00	6.90	0.08	0.19	1.25	0.08	0.08	0.02	0.2%
BR	27.00	7.85	1.05	0.00	1.38	1.05	1.05	0.00	0.0%
BR	28.00	7.80	1.00	0.06	1.00	1.00	1.00	0.06	0.6%
BR	29.00	6.90	0.10	0.00	1.35	0.10	0.10	0.00	0.0%
	30.00	7.00	0.20	0.54	1.00	0.20	0.20	0.11	1.1%
	31.00	6.73	0.00	0.00	1.04		0.00	0.00	0.0%
	33.00	6.32			0.00		0.00	0.00	0.0%
	35.00	5.80			0.00		0.00*	0.00	0.0%
BS,GL	37.60	5.05			0.00		0.00	0.00	0.0%
T0	TALS				22.07	1.0	14.42	0.50	100.00/
10	1 ALS				23.87	1.2 (Max.)	14.43	9.59	100.0%

Manning's n = Hydraulic Radius= 0.1783 0.60452372

STREAM NAME: S. FK. SLATER CREEK (Lower Site)
XS LOCATION: ~ 600' U/S OF USFS BOUNDARY
XS NUMBER: 1

WATER LINE COMPARISON TABLE

MEAS	COMP	AREA		
AREA	AREA	ERROR		
14.43	15.42	6.8%		
14.43	21.62	49.8%		
14.43	21.08	46.1%		
14.43	20.56	42.4%		
14.43	20.03	38.8%		
14.43	19.52	35.3%		
14.43	19.01	31.7%		
14.43	18.51	28.3%		
14.43	18.02	24.8%		
14.43	17.53	21.5%		
14.43	17.05	18.1%		
14.43	16.57	14.9%		
14.43	16.34	13.2%		
14.43	16.11	11.6%		
14.43	15.87	10.0%		
14.43	15.65	8.4%		
14.43	15.42	6.8%		
14.43	15.19	5.3%		
14.43	14.97	3.7%		
14.43	14.74	2.2%		
14.43	14.52	0.6%		
14.43	14.30	-0.9%		
14.43	13.86	-3.9%		
14.43	13.43	-7.09		
14.43	13.00	-9.9%		
14.43	12.57	-12.9%		
14.43	12.15	-15.8%		
14.43	11.73	-18.7%		
14.43	11.33	-21.59		
14.43	10.94	-24.29		
14.43	10.55	-26.9%		
14.43	10.18	-29.5%		

WATERLINE AT ZERO AREA ERROR =

6.799

STREAM NAME: XS LOCATION: S. FK. SLATER CREEK (Lower Site)

~ 600' U/S OF USFS BOUNDARY

XS NUMBER:

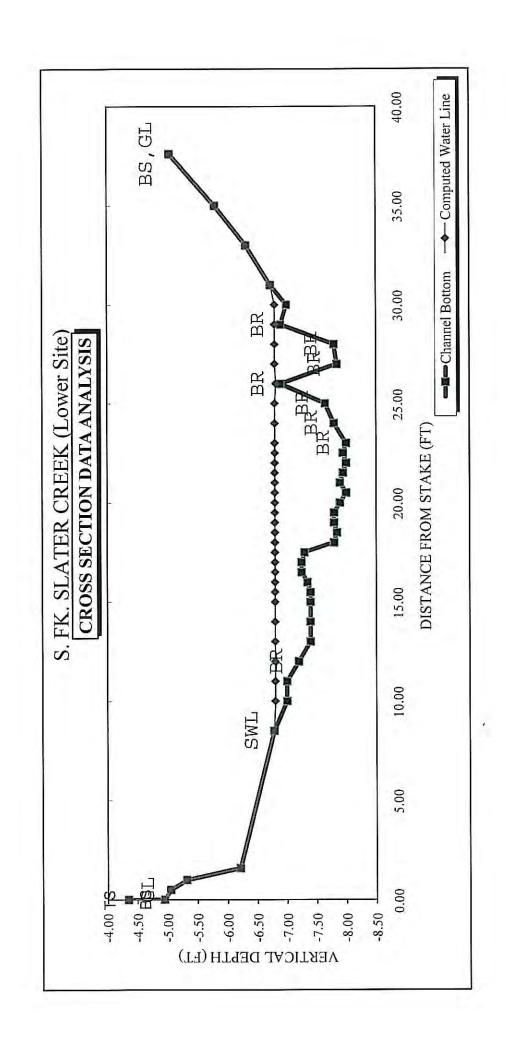
1

Constant Manning's n

GL = lowest Grassline elevation corrected for sag

STAGING TABLE *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	.2020000									
35	DIST TO	TOP	AVG.	MAX.	2:33	WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
	W EVEN	22170	1 00				455 507	4.70	55.55	4 27
GL	5.05	37.10	1.89	2.95	70.19	39.25	100.0%	1.79	96.08	1.37
	5.80	33.68	1.30	2.20	43.75	35.40	90.2%	1.24	46.82	1.07
	5.85	33.45	1.26	2.15	42.07	35.14	89.5%	1.20	44.08	1.05
	5.90	33.23	1.22	2.10	40.41	34.88	88.9%	1.16	41.41	1.02
	5.95	33.00	1.17	2.05	38.75	34.62	88.2%	1.12	38.81 €	1.00
	6.00	32.78	1.13	2.00	37.11	34.36	87.6%	1.08	36.29	0.98
	6.05	32.55	1.09	1.95	35.47	34,11	86.9%	1.04	33.84	0.95
	6.10	32.32	1.05	1.90	33.85	33.85	86.2%	1.00	31.46	0.93
	6.15	32.10	1.00	1.85	32.24	33.59	85.6%	0.96	29.15	0.90
	6.20	31.87	0.96	1.80	30.64	33.33	84.9%	0.92	26.92	0.88
	6.25	31.20	0.93	1.75	29.06	32.64	83.2%	0.89	24.99	0.86
	6.30	30.40	0,91	1.70	27.52	31.84	81.1%	0.86	23.21	0.84
	6.35	29.57	0.88	1.65	26.02	31.00	79.0%	0.84	21.52	0.83
	6.40	28.72	0.86	1.60	24.56	30,14	76.8%	0.81	19.91	0.81
	6.45	27.88	0.83	1.55	23.15	29.29	74.6%	0.79	18.39	0.79
	6.50	27.03	0.81	1.50	21.78	28.43	72.4%	0.77	16.94	0.78
	6.55	26.18	0.78	1.45	20.45	27.57	70.3%	0.74	15.56	0.76
	6.60	25.33	0.76	1.40	19.16	26.72	68.1%	0.72	14.26	0.74
	6.65	24.48	0.73	1.35	17.91	25.86	65,9%	0.69	13.03	0.73
	6.70	23.63	0.71	1.30	16.71	25.01	63.7%	0.67	11.87	0.71
	6.75	22.80	0.68	1.25	15.55	24.17	61.6%	0.64	10.77	0.69
WL	6.80	22.11	0.65	1.20	14.43	23.47	59.8%	0.61	9.69	0.67
	6.85	21.59	0.62	1.15	13.34	22.94	58.4%	0.58	8.63	0.65
	6.90	21.07	0.58	1.10	12.27	22.41	57.1%	0.55	7.63	0.62
	6.95	19.87	0.57	1.05	11.25	14 21.14	(53.9%)	0.53	6.86	0.61
	7.00	17.66	0.58	1.00	10.28	18.86	48.1%	0.55	6.38	0.62
	7.05	17.23	0.55	0,95	9.41	18.37	46.8%	0.51	5.60	0.59
	7.10	16.81	0.51	0.90	8,56	17.89	45.6%	0.48	4.87	0.57
	7.15	16.38	0.47	0.85	7.73	17.40	44.3%	0.44	4.18	0.54
	7.20	15.96	0.43	0.80	6.92	16.92	43.1%	0.41	3.54	0.51
	7.25	15.05	0.41	0.75	6.13	15,95	40.6%	0.38	3.01	0.49
	7.30	13.86	0.39	0.70	5.41	14,69	37.4%	0.37	2.58	0.48
	7.35	13.14	0.36	0.65	4.74	13.89	35.4%	0.34	2.15	0.45
	7.40	9.66	0.42	0.60	4.10	10.32	26.3%	0.40	2,06	0.50
	7.45	9.43	0.38	0.55	3.62 5		25.5%	0.36	1.71	0.47
	7.50	9.21	0.34	0.50	3.16	9.71	24.7%	0.33	1.39	0.44
	7.55	8.98	0.30	0.45	2.70	9.41	24.0%	0.29	1.09	0.40
	7.60	8.76	0.26	0.40	2.26	9.11	23.2%	0.25	0.83	0.37
	7.65	8.54	0.21	0.35	1.83	8.81	22.5%	0.21	0.59 ,	0.33
	7.70	8.04	0.18	0.30	1.41	8.26	21.0%	0.17	0.40	0.29
	7.75	7.55	0.14	0.25	1.02	7.70	19.6%	0.13	0.25	0.24
	7.80	6.60	0.10	0.20	0.66	6.68	17.0%	0.10	0.13	0.20
	7.85	4.01	0.10	0.15	0.39	4.06	10.3%	0.10	0.08	0.20
	7.90	3.52	0.06	0.10	0.20	3.56	9.1%	0.06	0.03	0.14
	7.95	2.29	0.03	0.05	0.06	2.31	5.9%	0.03	0.00	0.08
	8.00	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!
							- 0			


5B

STREAM NAME: XS LOCATION: XS NUMBER:

S. FK. SLATER CREEK (Lower Site) ~ 600' U/S OF USFS BOUNDARY 1

SUMMARY SHEET

MEASURED FLOW (Qm)≔	9,59	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	9.69	cfs		
(Qm-Qc)/Qm * 100 =	-1.1	-0/0		
			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	6.76			
CALCULATED WATERLINE (WLc)=	6.80			
(WLm-WLc)/WLm * 100 =	-0.7	%	44.5	_
MAX MEASURED DEPTH (Dm)=	1.20	ft		
MAX CALCULATED DEPTH (Dc)=	1.20	ft		
(Dm-Dc)/Dm * 100	-0.1	%	(Para)	_
MEAN VELOCITY≃	0.67	ft/sec		
MANNING'S N=	0,178		-	
SLOPE=	0.01243243	ft/ft		
.4 * Qm =	3.8	cfs		
2.5 * Qm=	24.0			
			(44) (44)	
RECOMMENDATION BY:		AGENCY		
ALLIAN DELWELLEN				0.00

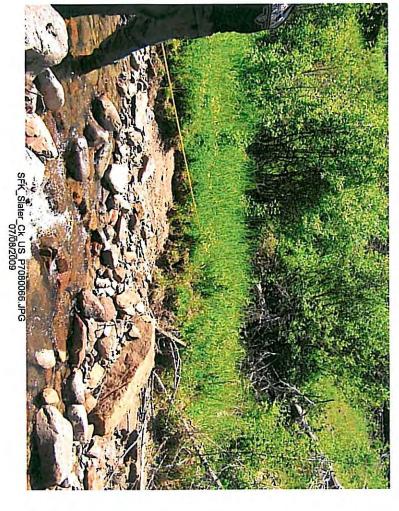
				VERT	WATER				Tape to
Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	A	Q	Water
				Total Da	ata Points = 39				
STREAM NAME: S. FK. SLATER CREEK (Lower Site)		TS	0.00	4.35			0.00	0.00	0.00
XS LOCATION: ~ 600' U/S OF USFS BOUNDARY		BS	0.01	4.95			0.00	0.00	0.00
XS NUMBER: 1	1	GL	0.50	5.05			0.00	0.00	0.00
DATE: 7/8/2009			1.00	5.32			0.00	0.00	0.00
OBSERVERS: UPPENDAHL & ESPEGREN			1.60	6.21			0.00	0.00	0.00
OBOETTACHO. OF FEITDAINE & EUF CONTENT		SWL	8.50	6.78	0.00	0.00	0.00	0.00	0.00
1/4 SEC: SE		0,,,,	10.00	7.00	0.20	0.53	0.25	0.13	6.80
SECTION: 17			11.00	7.00	0.20	0.37	0.20	0.07	6.80
TWP: 10 N		BR	12.00	7.20	0.40	0.00	0.40	0.00	6.80
		DIV	13.00	7.40	0.60	0.71	0.60	0.43	6.80
RANGE: 88 W			14.00	7.40	0.60	0.34	0.60	0.20	6.80
PM: 6				7.40	0.60	0.42	0.45	0.19	6.80
20/A120 22/A120			15.00			0.60	0.30	0.18	
COUNTY: ROUTT			15.50	7.40	0.60				6.80
WATERSHED: SLATER CREEK			16.00	7.35	0.55	1.48	0.28	0.41	6.80
DIVISION: 6			16.50	7.25	0.45	2.69	0.23	0.61	6.80
DOW CODE:			17.00	7.25	0.45	3.23	0.23	0.73	6.80
USGS MAP:			17.50	7.30	0.50	2.70	0.25	0.68	6.80
USFS MAP:			18.00	7.80	1.00	1.59	0.50	0.80	6.80
Level and Rod Survey			18.50	7.85	1.05	1.18	0.53	0.62	6.80
TAPE WT: 0.0106 lbs / f	it		19.00	7.80	1.00	0.81	0.50	0.41	6.80
TENSION: 99999 lbs			19.50	7.80	1.00	0.71	0.50	0.36	6.80
40.0			20.00	7.90	1.10	1.41	0.55	0.78	6.80
SLOPE: 0.012432432 ft / ft			20.50	8.00	1.20	1.87	0.60	1.12	6.80
			21.00	7.90	1.10	1.65	0.55	0.91	6.80
			21.50	7.95	1.15	0.90	0.58	0.52	6.80
CHECKED BY:DATE			22.00	8.00	1.20	0.21	0.60	0.13	6.80
			22.50	7.95	1.15	0.19	0.58	0.11	6.80
ASSIGNED TO:DATEDATE		BR	23.00	8.00	1.20	0.00	0.90	0.00	6.80
//OO/ONED TO:		BR	24.00	7.80	1.00	0.00	1.00	0.00	6.80
		BR	25.00	7.65	0.85	0.06	0.85	0.05	6.80
		BR	26.00	6.90	0.08	0.19	0.08	0.02	6.82
		BR	27.00	7.85	1.05	0.00	1.05	0.00	6.80
		BR	28.00	7.80	1.00	0.06	1.00	0.06	6.80
		BR	29.00	6.90	0.10	0.00	0.10	0.00	6.80
		DI	30.00	7.00	0.10	0.54	0.10	0.00	6.80
			31.00	6.73	0.20	0.00	0.00	0.00	0.00
					0.00	0.00			
			33.00	6.32			0.00	0.00	0.00
		50.0	35.00	5.80			0.00	0.00	0.00
	1	BS,GL	37.60	5.05			0.00	0.00	0.00
					4	Totals	14.431	9.59	
						Tutais	14.43	5.05	

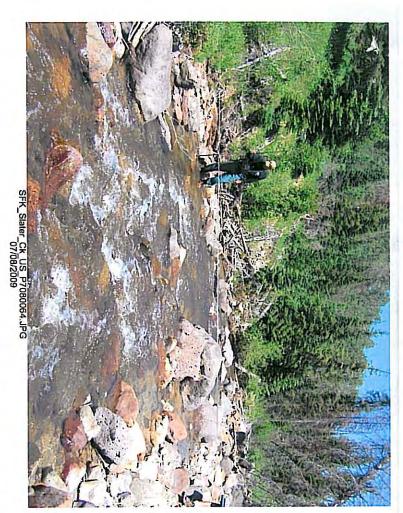
STREAM NAME: XS LOCATION:

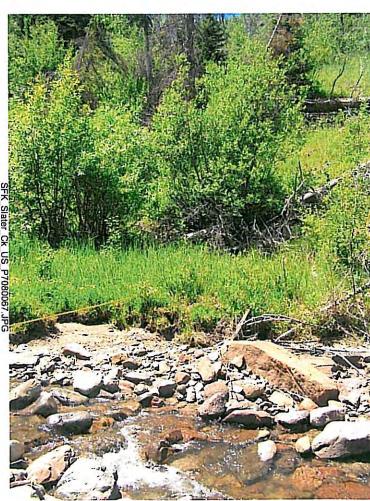
S. FK. SLATER CREEK (Lower Site) ~ 600' U/S OF USFS BOUNDARY

XS NUMBER:

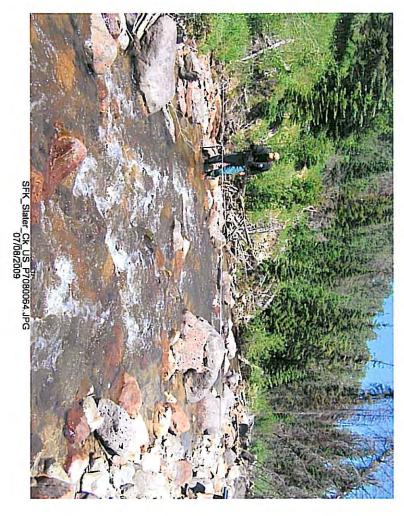
Thorne-Zevenbergen D84 Correction Applied

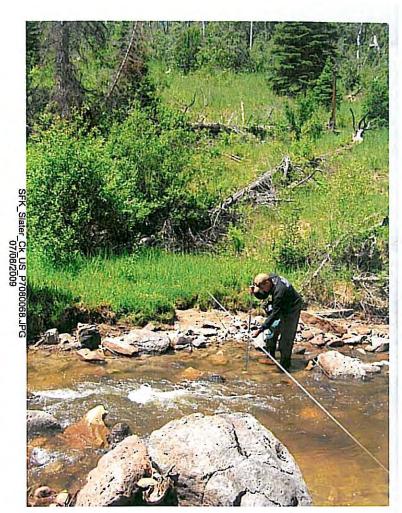

Estimated D84 =

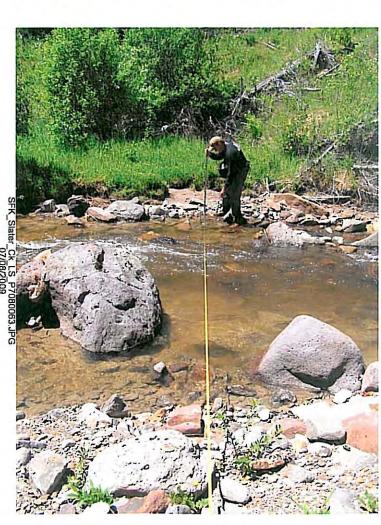

2.11

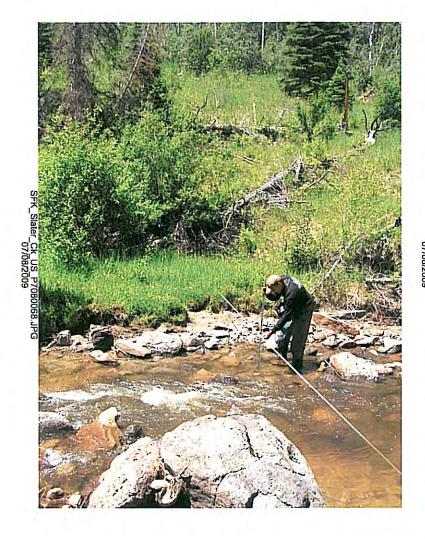

GL = lowest Grassline elevation corrected for sag

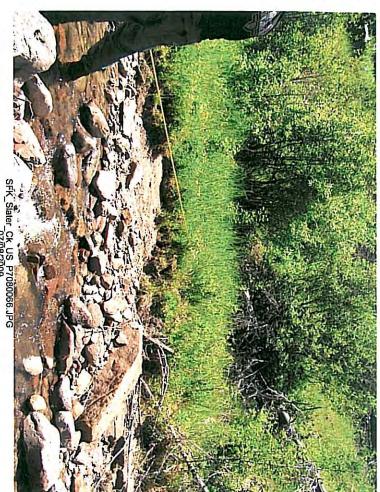
WL = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

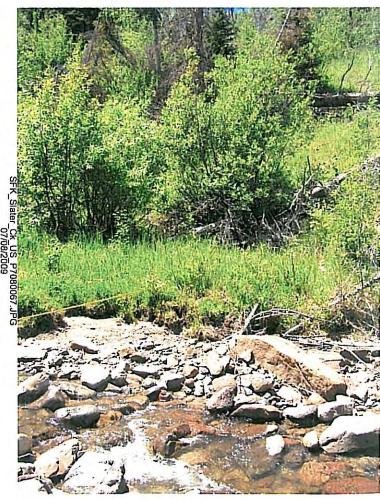

			1172						city based on	test of R/D84>1
	DIST TO WATER	TOP WIDTH	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG. VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL*	5.05	37,10	1.89	2.95	70.19	39.25	100.0%	1.79	224.66	3.20
	5.80	33.68	1.30	2.20	43.75	35.40	90.2%	1.24	76.75	1.75
	5.85	33.45	1.26	2.15	42.07	35.14	89.5%	1.20	70.37	1.67
	5.90	33.23	1.22	2.10	40.41	34.88	88.9%	1.16	64.36	1.59
	5.95	33.00	1.17	2.05	38.75	34.62	88.2%	1.12	58.70	1.51
	6.00	32.78	1.13	2.00	37.11	34.36	87.6%	1.08	53.40	1.44
	6.05	32.55	1.09	1.95	35.47	34.11	86.9%	1.04	48.43	1.37
	6.10	32.32	1.05	1.90	33.85	33.85	86.2%	1.00	43.78	1.29
	6.15	32.10	1.00	1.85	32.24	33.59	85.6%	0.96	39.45	1.22
	6.20	31.87	0.96	1.80	30.64	33.33	84.9%	0.92	35.41	1.16
	6.25	31.20	0.93	1.75	29.06	32.64	83.2%	0.89	32.18	1.11
	6.30	30.40	0.91	1.70	27.52	31.84	81.1%	0.86	29.29	1.06
	6.35	29.57	0.88	1.65	26.02	31.00	79.0%	0.84	26.61	1.02
	6.40	28.72	0.86	1.60	24.56	30.14	76.8%	0.81	24.13	0.98
	6.45	27.88	0.83	1.55	23.15	29.29	74.6%	0.79	21.82	0.94
	6.50	27.03	0.81	1.50	21.78	28.43	72.4%	0.77	19.67	0.90
	6.55	26.18	0.78	1.45	20.45	27.57	70.3%	0.74	17.67	0.86
	6.60	25.33	0.76	1.40	19.16	26.72	68.1%	0.72	15.82	0.83
	6.65	24.48	0.73	1.35	17.91	25.86	65.9%	0.69	14.11	0.79
	6.70	23.63	0.71	1.30	16.71	25.01	63.7%	0.67	12.53	0.75
	6.75	22.80	0.68	1.25	15.55	24.17	61.6%	0.64	11.08	0.71
WL*	6.80	22.11	0.65	1.20	14.43	23.47	59.8%	0.61	9.69	0.67
. 5-	6.85	21.59	0.62	1.15	13.34	22.94	58.4%	0.58	8.38	0.63
	6.90	21.07	0.58	1.10	12.27	22.41	57.1%	0.55	7.18	0.59
	6.95	19.87	0.57	1.05	11.25	21.14	53.9%	0.53	6.28	0.56
	7.00	17.66	0.58	1.00	10.28	18.86	48.1%	0.55	5.69	0.55
	7.05	17.23	0.55	0.95	9.41	18.37	46.8%	0.51	4.83	0.51
	7.10	16.81	0.51	0.90	8.56	17.89	45.6%	0.48	4.06	0.47
	7.15	16.38	0.47	0.85	7.73	17.40	44.3%	0.44	3.38	0.44
	7.20	15.96	0.43	0.80	6.92	16.92	43.1%	0.41	2.77	0.40
	7.25	15.05	0.41	0.75	6.13	15.95	40.6%	0.38	2.27	0.37
	7.30	13.86	0.39	0.70	5.41	14.69	37.4%	0.37	1.86	0.34
	7.35	13.14	0.36	0.65	4.74	13.89	35.4%	0.34	1.49	0.31
	7.40	9.66	0.42	0.60	4.10	10.32	26.3%	0.40	1.29	0.32
	7.45	9.43	0.38	0.55	3.62	10.01	25.5%	0.36	1.03	0.28
	7.50	9.21	0.34	0.50	3.16	9.71	24.7%	0.33	0.80	0.25
	7.55	8.98	0.30	0.45	2.70	9.41	24.0%	0.29	0.60	0.22
	7.60	8.76	0.26	0.40	2.26	9.11	23.2%	0.25	0.45	0.20
	7.65	8.54	0.21	0.35	1.83	8.81	22.5%	0.21	0.32	0.17
	7.70	8.04	0.18	0.30	1.41	8.26	21.0%	0.17	0.21	0.15
	7.75	7.55	0.14	0.25	1.02	7.70	19.6%	0.13	0.13	0.13
	7.80	6.60	0.10	0.20	0.66	6.68	17.0%	0.10	0.07	0.11
	7.85	4.01	0.10	0.15	0.39	4.06	10.3%	0.10	0.03	0.07
	7.90	3.52	0.06	0.10	0.20	3.56	9.1%	0.06	0.01	0.06
	7.95	2.29	0.03	0.05	0.06	2.31	5.9%	0.03	0.00	0.04
	8.00	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!











7/108/20

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

5.03

(Sto)			1160			, ,,					014	J					3		
COLORADO WATER				LOC	ATIC	וו אכ	NFO	RMA	TIOIT	V							YO,	OF WIL	
STREAM NAME: SOUTH	Fork SI	ater C	ree	4/	upe	strea	ains	For	est	Ser	VIC	e. b	our	daw	cg C	CROSS-	SECTIO	N NO.:	
CROSS-SECTION LOCATION:	40° 50						70												
DATE: 7/8/09 OBSER	RVERS: Uppe	ndah	1 ;	× E	E Spi	egre	247												
LEGAL % SECT DESCRIPTION	ION: SE	SECTIO	N:	7	Z T	OWNS	HIP:	10	(N)	/S	RANGI	E:	8	78 E	(W)	PM:	6	,	
COUNTY: ROUTT		RSHED:	V2	C	سا		W.	ATER D	VISION	-	1			DOW \	WATER	CODE:			
usgs:	ا ا	CHICA	E	-	-						(0								
MAP(S): USFS:				-								-						-	
			-	SU	PPLI	EME	NTA	L DA	TA										
SAG TAPE SECTION SAME AS	(YES)NO	METER T	YPE:	Μ	a k	V	Uc B									_			
DISCHARGE SECTION: METER NUMBER:		RATED:	-	mar	63.46.4				-	Tale.	1.00.00			W 45/5	Take		55.34	- 1	
CHANNEL BED MATERIAL SIZE	RANGE:				CALI	8/SPIN				TAPE V	1			ER OF		E TENS GRAPH		lbs	
- Hollotte - Alexandra				Te di			PHOT	OGRAP	HS TAK	EQ: YE	SINO								
				CH	NNA	EL F	ROF	ILE	DAT	A									
STATION	DISTANCE FROM TAR	E (ft)		RO	D READ	ING (f	t)	T				87 6	9 1	4				LEGEND:	
Tape @ Stake LB	0.0							11_				\$ 6	4						
Tape @ Stake RB	0.0							S K									Stake Stake		
1) WS @ Tape LB/RB	0.0		1					E T C				TAPE			7		Station (1)		
2 WS Upstream	5.5			6	, 7	2		й				1					12	noto 🗘	
3 WS Downstream	13. C)			, 9			-						-			Dire	ction of FI	
SLOPE 23/1	8,5=											(7 2						
			۸۵	MAT		A 8.5	DLIA	CC	10404	ADV									
	a 1		AC	AOM	10 3	MIVI	PLIN	G 31	ואו ואו כ	Anı									
STREAM ELECTROFISHED: YE	S(NO) DIST	ANCE ELEC	TROFIS	HED:_		t		FISH CA	UGHT:	YES/NO			WATE	RCHE	MISTRY	SAMPL	.ED: YE	S/NO	
	LEN	GTH - FREC	DUENC	Y DIST	RIBUTI	ON BY	ONE-IN	ICH SIZ	E GRO	UPS (1.	0-1.9,	2.0-2.9	ETC.)						
SPECIES (FILL IN)	SPECIES (FILL IN)					5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL	
														_		-			
				-															
				1			1	1	1				1		1	1		1	

COMMENTS

Ceddiz	Flies			
. ***				

AQUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME:

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	South	For	K 5/2	le C	Creek		CAOSS-	SECTION	NO.:	DATE 8/0	9 sh	IEET LOF L
BEGINNING OF M	IEASUREMENT	EDGE OF W	ATER LOOKING D	OWNSTREAM:	LEFT RIGI	HT Gag	ge Reac	ding:		IME: 12:3		
Stake (S)	Distance	Width	Total	Waler	Depth	Revolutio	ons		Velocity	(ft/sec)		
Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	(ft)	Vertical Depth From Tape/Inst (ft)	Depth (ft)	of Obser- vation (ft)			Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
TS	0		4.35									
BS	0		4.95									
GL	0.5		5.05		3							
	1.0		5, 32									
	1.6		6.21								<u> </u>	
SWL	8,5		6.78									
	10.0			0,2					0.53	-		
	110			0,2					0.37			
	12.0			0.4					0 (Behind	rock	.)
	13.0			0.6					0.71			
<u>.</u>	件.()			0.6					0.34			
	15.0			0.6					0.42			
	15,5			0.6			Ţ		0.60			
	16.0			0,55					1.48			
	16.5			0.45					2.69			
	n.0			0.45					3, 23		ļ	
	17.5			0.5					2.70			
	18.0			1.0					1.59	ļ		
	18.5			1.05					1,18	_		
	19.0			1.0					0.81		ļ	
	19.5			1.0					0.71		ļ	
	20.0			1,1					1,4			
	20.5			1.2					1.87			
	21.0								1.65			
	21.5			1.15					0.90		<u> </u>	
	22.0			1,2					0.21			
	- Jan			1,15					0.19			
	23.0			1,2					0	,		
	24.0			1.0					O,			
ļ	25.0			0.85					0,06			
	23.0 24.0 25.0 26.0			0.08	3				0.19		1	
<u> </u>	27 0			1.05					0		-	
.	28.0			1.0					0.06		 	
ļ	124.Q			0.1					0		 	
5WL	29.0 30.0 31.0 33.0		L 72	0.2					0.54			
T-JVVL	33 0		6.32									
	35.0	······································	6.73 6.32 5.80							1	1	
GL	37.6		5.05							1	†	
(TR)	J.,U		<u> </u>	<u> </u>		 				1	 	
NO stak	e									1		
TOTALS:		1.00			CALCULAT	IONS PERF	OBMED	BY:	<u> </u>	ALCULATIONS	CHECKED	9,59
End of Measu	rement Tir	пе: 1102	Gage Readin	g; r	1	-ONG FERR	~M.EΩ			,,,LOGEATIONS	J. LUNCKEL	