STATE OF COLORADO

Bill Ritter, Jr., Governor DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE

AN EQUAL OPPORTUNITY EMPLOYER

Thomas E. Remington, Director 6060 Broadway Denver, Colorado 80216 Telephone: (303) 297-1192 *wildlife.state.co.us*

January 14, 2010

Ms. Linda Bassi Colorado Water Conservation Board Stream and Lake Protection Section 1313 Sherman Street, Room 723 Denver, Colorado 80203

Re: Colorado Division of Wildlife Instream Flow Recommendations for South Fork of Slater Creek.

Dear Linda,

The purpose of this letter is to formally transmit the Colorado Division of Wildlife's (CDOW) support for Trout Unlimited's (TU) Instream Flow Recommendations for South Fork Slater Creek pursuant to Rule 5n of the Rules Concerning the Colorado Instream Flow and Natural Lake Levels. The CDOW believes that South Fork Slater Creek should be considered for inclusion into the Instream Flow Program (ISFP) because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right. As you know, the State of Colorado's Instream Flow Program (ISFP) was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (See §37-92-102 (3) C.R.S.). The statute vests the Colorado Water Conservation Board (Board) with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's ISFP, the statute directs the Board to request instream flow recommendations from other state and federal agencies.

Location and Land Status

The South Fork Slater Creek instream flow recommendations begin at the headwaters of South Fork Slater Creek and extend downstream to the United States Forest Service boundary. The South Fork Slater Creek instream flow recommendation was segmented at the confluence with the West Prong of South Fork Slater Creek. The proposed instream flow segments are located northeast of the Town of Craig. 100% of the proposed segments are located on public lands.

Biological Summary and R2CROSS Analysis

The CDOW and TU worked cooperatively on this recommendation and together have collected stream cross section information, natural environment data, and other data needed to quantify the instream flow needs for these reaches of the South Fork Slater Creek. South Fork Slater Creek is classified as a large stream (between 36 to 59 feet wide) and fishery surveys indicate the stream environment of South Fork Slater Creek supports Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus) and a naturally reproducing brook trout (*Salvelinus fontinalis*) population. The Board staff relies upon the biological expertise of the cooperating agencies to interpret output from the R2CROSS data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools DEPARTMENT OF NATURAL RESOURCES, James B. Martin, Executive Director

WILDLIFE COMMISSION, Brad Coors, Chair • Tim Glenn, Vice Chair • Dennis Buechler, Secretary Members, Jeffrey Crawford • Dorothea Farris • Roy McAnally • John Singletary • Mark Smith • Robert Streeter Ex Officio Members, James B. Martin and John Stulp

and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

The results of the R2CROSS data collection efforts for the upper segment indicate that an instream flow recommendation of 4.1 cfs, is required to maintain the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter, and 1.25 cfs, is required to maintain two of the three principal hydraulic criteria. The results of the R2CROSS data collection efforts for the lower segment indicate that an instream flow recommendation of between 14.2 and 38.8 cfs, is required to maintain the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter, and 5.25 cfs, is required to maintain two of the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter, and 5.25 cfs, is required to maintain two of the three principal hydraulic criteria. However, both summer flow recommendations from the R2CROSS analysis were greater than 2.5 times the field measured discharge and were outside the modeling accuracy of R2CROSS. Therefore, TU and CDOW used the sum of the summertime instream flow recommendation from West Prong Slater Creek above the Decker Ditch (4.9 cfs) together with the summertime instream flow recommendation from South Fork Slater Creek upstream of West Prong (4.1 cfs) to recommend a 9.0 cfs instream flow during the summer months for this stream reach. However, these results are only based on the physical and biological data collected to date and do not incorporate any water availability constraints.

Water Availability Analysis and Instream Flow Recommendation

The TU staff conducted a preliminary evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation based on an aerial apportionment of USGS gage 09245500 on the North Fork of Elkhead Creek, CO. Subsequent to this preliminary analysis, the CWCB completed their geometric mean analysis of daily flows for South Fork Slater Creek. CDOW and TU used the CWCB's water availability analysis to adjust the seasonality and quantities of the R2CROSS instream flow recommendations so that the estimated daily flow of South Fork Slater Creek reasonably exceeds the recommended instream flow amounts. These seasonal adjustments are reflected in the final instream flow recommendations shown below:

Headwaters to West Prong South Fork Slater Creek

- 4.10 cfs (April 1 through June 30)
- 1.25 cfs (July 1 through July 31)
- 0.65 cfs (August 1 through September 15)
- 1.25 cfs (September 16 through March 31)

West Prong South Fork Slater Creek to USFS Boundary

- 9.00 cfs (March 15 through July 15)
- 2.00 cfs (July 16 through August 15)
- 0.80 cfs (August 16 through October 15)
- 5.75 cfs (October 16 through March 14)

Relationship to State Policy

The CDOW supports the Instream Flow Program because the appropriation of instream flow water rights helps the CDOW meet our statutory mission as described in Title 33 of the Colorado Revised Statutes (CRS):

§33-1-101 – "It is the policy of the state of Colorado that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... that there shall be provided a comprehensive program designed to offer the greatest possible variety of wildlife-related recreational opportunity to the people of this state and its visitors and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife related opportunities."

\$33-2-106 – "(1) The division [of Wildlife] shall establish such programs including acquisition of land or aquatic habitat as are deemed necessary for management of nongame, endangered, or threatened wildlife. (2) ... the division may enter into agreements with federal agencies or political subdivisions of this state or with private persons for administration and management of any area established under this section or utilized for management of nongame, endangered, or threatened wildlife."

\$33-5-101 – "It is declared to be the policy of the state that its fish and wildlife resources, and particularly the fishing waters within the state, are to be protected and preserved from the actions of any state agency to the end that they be available for all time and without change in their natural existing state, except as may be necessary and appropriate after due consideration of all factors involved."

In addition to meeting the state policy discussed above South Fork Slater Creek satisfies criteria identified by the CWCB for ISF appropriations, including:

- a) The recommendations have broad public support;
- b) The proposed appropriations will have a positive impact on state or local economies;
- c) The recommendations are part of a water acquisition strategy;
- d) The recommendations are part of a collaborative solution to a unique natural resource issue with federal, state or local partners; and
- e) The instream flow amount and timing recommended by TU, CDOW and CWCB staff:
 - Is based upon standard scientific methodology and an accurate R2CROSS analysis;
 - Reflects the amount of water available for appropriation as an instream flow water right; and
 - Is required to preserve the natural environment to a reasonable degree.

TU has provided copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. If you have any questions regarding the provided information or the instream flow recommendations please contact me at (303)-291-7267.

Sincerely,

Mark Uppendahl

Mark Uppendahl Colorado Division of Wildlife Instream Flow Program Coordinator

 Cc: Grady McNeill, CDOW Resource Support Section Manager – w/o attachments Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Dave Graf, CDOW Water Resource Specialist – w/o attachments Sherman Hebein, CDOW NW Senior Aquatic Biologist – w/o attachments Ron Velardi, CDOW Northwest Regional Manager - w/o attachments Boyd Wright, CDOW Aquatic Biologist – w/o attachments Bill de Vergie, CDOW AWM Area 6 – w/o attachments Greg Espegren, Trout Unlimited

Greg Espegren Aquatics Specialist Colorado Water Project 1320 Pearl Street, Suite 320 Boulder, CO 80302 303.440.2937

January 4, 2010

Ms. Linda Bassi Mr. Jeff Baessler Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi and Mr. Baessler,

Trout Unlimited in conjunction with the Colorado Division of Wildlife (CDOW) is formally submitting this instream flow recommendation for the South Fork of Slater Creek, located in Routt County, District 6.

Location and Land Status. The South Fork of Slater Creek (South Fork) originates on the northern flank of the Elkhead Mountains just west of Bears Ears Peaks at an elevation of 9,560 feet. It flows generally northward for 5.7 miles to the Routt National Forest boundary at an elevation of 7,700 feet. The proposed ISF reach covers the 4.6 mile reach from the headwaters to the confluence with West Prong South Fork Slater Creek. This segment is located entirely on Forest Service Land (Fig. 1).

Biological Summary and R2CROSS Analysis. In July and September of 2007, October 2008. and July 2009 TU and CDOW collected stream cross sectional data, natural environment data, and other data needed to quantify instream flow needs (Table 1). Previous survey data collected by CDOW indicated the stream supports healthy populations of Colorado River cutthroat trout, brook trout and mottled sculpin.

DATE	MEASURED FLOW (cfs)	MODELING RANGE (cfs)	FLOW MEETING 3 CRITERIA	FLOW MEETING 2 CRITERIA
07/10/07	1.1	2.7 - 0.4	Not met in table	1.2
09/05/07	1.0	2.5 - 0.4	8.1	1.3
10/02/08	1.2	2.9 - 0.5	7.7	1.1
07/07/09	2.6	6.4 – 1.0	4.1	1.5
Average of flows within modeling range			4.1	1.25

Table 1. Summary of R2CROSS datasets

Trout Unlimited: America's Leading Coldwater Fisheries Conservation Organization 1320 Pearl Street, Suite 320, Boulder, CO 80302 (303) 440-29370 • Fax: (303) 440-7933 • www.tu.org Note: Table entries appearing in italicized font indicated flows that were either not met in R2CROSS staging table or outside of 0.4 to 2.5 times measured flow R2CROSS modeling window.

Stream cross sectional data were analyzed using the R2CROSS program, and the output was evaluated using the methods described in Nehring (1979) and Espegren (1996). The R2CROSS models how average depth, percent wetted perimeter and average velocity vary with discharge. According to the criteria established by Nehring (1979), the relevant minimum requirements are an average depth of 0.2 feet, a wetted perimeter of 50%, and an average velocity of 1.0 ft/sec. Protecting salmonids during the summer season is accomplished by insuring all three criteria are met while during the winter protection can be accomplished by protecting 2 of three criteria. Thus, the fishery of South Fork Slater Creek can be protected with minimum summer flows of 4.1 cfs and minimum winter flows of 1.25 cfs. TU and CDOW recommend that the CWCB appropriate the following flow amounts to preserve the natural environment of South Fork Slater Creek to a reasonable degree:

- From **April 1 through June 30** a flow appropriation of **4.1 cfs** is recommended to maintain the three principal criteria of average depth, average velocity, and percent wetted perimeter;
- From July 1 through July 31 a flow appropriation of 1.25 cfs is recommended to maintain the average depth and wetter perimeter criteria;
- From August 1 through September 15 a flow appropriation of 0.65 cfs is recommended based on water availability limitations; and
- From **September 16 through March 31** a flow appropriation of **1.25 cfs** is recommended to maintain the average depth and wetter perimeter criteria.

Water Availability. The preliminary instream flow recommendation we submitted in February 2008 was based on an aerial apportionment of USGS gage 09245500 on the North Fork of Elkhead Creek, CO. Subsequent to that preliminary analysis, the CWCB provided us with a geometric mean analysis of daily flows on South Fork Slater Creek. We used the CWCB's water availability analysis to adjust the seasonality and quantities of the instream flow recommendation so that the estimated daily flow through South Fork Slater Creek typically exceeds the recommended instream flow. These seasonal adjustments are reflected in the final instream flow recommendation above.

Relationship to Existing State Policy. TU and the CDOW are forwarding this stream flow recommendation to the CWCB to meet the State of Colorado's policy "that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities." C.R.S. 33-1-101(1). Further, the CDOW Strategic Plan states "Healthy aquatic environments are essential to maintain healthy and viable fisheries, and critical for self-sustaining populations. The Division desires to protect and enhance the quality and quantity of aquatic habitats." TU and CDOW recommend that South Fork Slater Creek be considered for inclusion in the Instream Flow Program because doing so would help meet these stated policies. Specifically, establishing minimum flows through this reach would preserve the natural environment of the stream to a reasonable degree.

Attached, please find copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. If you have any questions regarding the attached information or the instream flow recommendations, please feel free to contact me at (303) 440-2937.

Trout Unlimited thanks the Colorado Division of Wildlife and the Colorado Water Conservation Board Staff for their support in preparing this recommendation.

Sincerely,

Sincerely,

Greg Espegren

Trout Unlimited Aquatic Specialist

Cc: Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Mark Uppendahl, CDOW Instream Flow Program Coordinator

Figure 1. Map of South Fork Slater Creek watershed. Positions of upper and lower termini of the proposed instream flow reach are noted as is the location of the R2CROSS cross section. Additionally, locations known diversion structures are plotted. The watershed's location within Division 6 is indicated by the red box on the inset map of Colorado

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	S. FK. SLATE ~ 50' D/S OF 4	ER CREEK (Upper Site) ROAD XING
DATE: OBSERVERS:	7-Jul-09 UPPENDAHL	& ESPEGREN
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 20 10 N 88 W 6	
COUNTY: WATERSHED: DIVISION: DOW CODE:	ROUTT SLATER CRE 6 0	EEK
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA	-	*** NOTE ***
	0.0106	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod
TENSION.	99999	
CHANNEL PROFILE DATA	=	
SLOPE:	0.01691176	
INPUT DATA CHECKED BY	ť:	DATE
ASSIGNED TO:		DATE

4

S. FK. SLATER CREEK (Upper Site) ~ 50' D/S OF ROAD XING 4

	#1	DATA POINTS	5=	34
FEATURE		VERT	WATER	
<u></u>	DIST	DEPTH	DEPTH	VEL
TS	0.00	7 32		
BS	0.00	7.32		
80	1 00	8 12		
1 GI	2.00	8.45		
. 95	3.00	8.91		
SWL	4.00	9.16	0.00	0.00
	4.50	9.35	0.20	0.01
	5.00	9.35	0.20	0.12
	5.50	9,35	0.20	0.70
	6.00	9.30	0,15	0.33
	6.50	9.35	0.20	0.51
	7.00	9.35	0.20	0.34
	7.50	9.45	0.30	0.80
	8.00	9.50	0.35	0.90
	8.50	9.50	0.35	0.72
BR	9.00	9.45	0.30	0.00
BR	9.50	9.45	0.30	0.00
	10.00	9.55	0.40	0.48
	10.50	9.50	0.35	1.18
	11.00	9.35	0.20	1.63
	11.50	9.55	0.40	1.19
	12.00	9.40	0.25	1.46
	12.50	9.50	0.35	0.93
	13.00	9.65	0.50	2.00
	13.50	9.60	0.45	1.52
	14.00	9.35	0.20	0.67
	14.40	9.25	0.10	0.23
	15.00	9.20	0.05	0.00
SWL	16.30	9.16	0.00	0.00
	17.00	8.95		
1 GL	17.50	8.72		
	18.00	8.65		
BS	19.30	8.53		
TS	19.31	7.30		

TOTALS -----

_

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qлл)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.53	0.20	0.10	0.00	0.0%
0.50	0.20	0.10	0.01	0.5%
0,50	0.20	0.10	0.07	2.7%
0.50	0.15	0.08	0,02	1.0%
0.50	0.20	0.10	0.05	2.0%
0.50	0.20	0.10	0.03	1.3%
0.51	0.30	0.15	0.12	4.7%
0.50	0.35	0.18	0.16	6.2%
0.50	0.35	0.18	0.13	4.9%
0.50	0.30	0.15	0.00	0.0%
0.50	0.30	0.15	0.00	0.0%
0.51	0.40	0.20	0.10	3.8%
0.50	0.35	0.18	0.21	8.1%
0.52	0.20	0,10	0.16	6.4%
0.54	0.40	0.20	0.24	9.3%
0.52	0.25	0,13	.0.18	7.1%
0.51	0.35	0.18	0.16	6.4%
0.52	0.50	0.25	0.50	19.5%
0.50	0.45	0,23	0.34	13.4%
0.56	0.20	0.09	0.06	2.4%
0.41	0.10	0.05	0.01	0.4%
0.60	0.05	0.05	0.00	0.0%
1.30		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
12.56	0.5	3.01	2.56	100.0%
	(Max.)	,		

VALUES COMPUTED FROM RAW FIELD DATA

.

Manning's n = Hydraulic Radius≕

0.0878 0.23988431

S. FK. SLATER CREEK (Upper Site) ~ 50' D/S OF ROAD XING 4

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	3.01	2.90	-3.8%
8.91	3.01	6.20	105.9%
8.93	3.01	5.92	96.6%
8.95	3.01	5.64	87.3%
8.97	3.01	5.37	78.2%
8.99	3.01	5.10	69.1%
9.01	3.01	4.83	60.2%
9.03	3.01	4.56	51.4%
9.05	3.01	4.30	42.6%
9.07	3.01	4.04	33.9%
9.09	3.01	3.78	25.4%
9.11	3.01	3.52	16.9%
9.12	3.01	3.40	12.7%
9.13	3.01	3.27	8.6%
9.14	3.01	3.15	4.4%
9.15	3.01	3.02	0.3%
9.16	3.01	2.90	-3.8%
9.17	3.01	2.78	-7.8%
9.18	3.01	2.66	-11.7%
9.19	3.01	2.55	-15.5%
9.20	3.01	2.43	-19.2%
9.21	3.01	2.33	-22.8%
9.23	3.01	2.11	-29.8%
9.25	3.01	1.91	-36.7%
9.27	3.01	1.71	-43.4%
9.29	3.01	1.51	-50.0%
9.31	3.01	1.31	-56.5%
9.33	3.01	1.13	-62.6%
9.35	3.01	0.95	-68.5%
9.37	3.01	0.81	-73.0%
9,39	3.01	0.68	-77.4%
9,41	3.01	0.55	-81.6%

WATERLINE AT ZERO AREA ERROR =

9.151

S. FK. SLATER CREEK (Upper Site) ~ 50' D/S OF ROAD XING 4

Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag

WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG,
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	<u>(FT)</u>	(%)	(FT)	(CFS)	(FT/SEC)
GL	B.72	14.91	0.60	0.93	B.96	15.32	100.0%	0.58	13.78	1.54
	8.75	14.7B	0.58	0.90	B.50	15,18	99.0%	0.56	12.71	1.49
	8.80	14.56	0.53	0.85	7.77	14.94	97,5%	0.52	11.05	1.42
	6.65	14.34	0.49	0.80	7.04	14.70	95.9%	0.48	9.49	1.35
	8.90	14.13	0.45	0.75	6.33	14.46	94.4%	0.44	8,03	1.27
	8.95	13.B3	0.41	0,70	5.63	14.15	92.3%	0.40	6.71	1.19
	9.00	13.47	0.37	0.65	4.95	13.77	89,8%	0,36	5.51	1.11
	9.05	13.10	0.33	0.60	4.29	13.39	87.4%	0.32	4.41	1.03
	9.10	12.73	0.29	0.55	3.64	13.01	84.9%	0.28	3.43	0.94
WL	9.15	12.37	0.24	0.50	3.01	12.63	82,4%	0.24	2.55	0.85
	9.20	10.88	0.22	0.45	2.43	11.13	72.7%	0.22	1.93	0.80
	9,25	10.16	0.19	0.40	1.90 z	05 10.40	67.8%	0.18	9 1.35	0.71
	9,30	9.61	0.14	0.35	1.40	10.03	55.5%	0.14	0.83	0.59
	9.35	6,99	0.14	0.30	0,94 0	2 7.19	46,9%	0.13	0.54	0.57
	9,40	6,34	0.10	0.25	0.61	6.51	42.5%	0.09	0.28	0.45
	9,45	4.77	0.07	0.20	0.32	4.89	31.9%	0.07	0.11	0.36
	9.50	2.22	0.06	0.15	0.13	2.29	15.0%	0.06	0.04	0.33
	9.55	0,93	0.06	0.10	0.06	0.96	6,3%	0.06	0.02	0.33
	9,60	0.66	0.02	0.05	0.02	0.67	4.3%	0.02	0.00	0.18

186 51

3/3 = 4,1 2/3 = 1,5

STREAM NAME:	S. FK. SLATER CREEK (Upper Site)
XS LOCATION:	~ 50' D/S OF ROAD XING
XS NUMBER:	4

SUMMARY SHEET

2.56	cfs
2.55	cfs
0.4	%
9.16	ft
9.15	ft
0.1	%
0,50	ft
0.50	ft
0,2	%
0,85	fl/sec
0.086	
0.01691176	ft/ft
1:0	cfs
6.4	cfs
	2.56 2.55 0.4 9.16 9.15 0.1 0.50 0.50 0.50 0.2 0.85 0.088 0.01691176 1.0 6.4

RECOMMENDED INSTRE	EAM FLOW:
FLOW (CFS)	PERIOD
· · · · ·	<u>.</u>

RATIONALE FOR RECOMMENDATION:

 RECOMMENDATION BY:
 DATE:

				VERT	WATER				Tape to
Data Input & Proofing	GL≕1 F	EATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
				Total Da	ta Points = 34				
STREAM NAME: S. FK. SLATER CREEK (Upper Site)		TS	0.00	7.32			0.00	0.00	0.00
XS LOCATION: ~ 50' D/S OF ROAD XING		BS	0.01	7.74			0.00	0.00	0.00
XS NUMBER: 4			1.00	8.12			0.00	0.00	0.00
DATE: 7/7/2009	1	GL	2.00	8.45			0.00	0,00	0.00
OBSERVERS: UPPENDAHL & ESPEGREN			3.00	8.91			0.00	0.00	0.00
		SWL	4.00	9.16	0.00	0.00	0.00	0.00	0.00
1/4 SEC: NW			4.50	9.35	0.20	0.01	0.10	0.00	9.15
SECTION: 20			5.00	9.35	0.20	0.12	0.10	0.01	9.15
TWP: 10 N			5.50	9.35	0.20	0.70	0.10	0.07	9.15
RANGE: 88 W			6.00	9.30	0.15	0.33	0.08	0.02	9.15
PM: 6			6.50	9.35	0.20	0.51	0.10	0.05	9.15
			7.00	9.35	0.20	0.34	0.10	0.03	9.15
COUNTY: ROUTT			7.50	9.45	0,30	0.80	0.15	0.12	9.15
WATERSHED: SLATER CREEK			8.00	9.50	0.35	0.90	0.18	0,16	9.15
DIVISION: 6			8.50	9.50	0.35	0.72	0.18	0.13	9.15
DOW CODE:		BR	9.00	9,45	0.30	0.00	0.15	0.00	9.15
USGS MAP:		BR	9.50	9.45	0.30	0.00	0.15	0.00	9.15
USFS MAP:			10.00	9,55	0.40	0.48	0.20	0.10	9.15
Level and Rod Survey			10.50	9,50	0.35	1.18	0.18	0.21	9.15
TAPE WI: 0.0106 Ibs / ft			11.00	9.35	0.20	1.63	0.10	0.16	9.15
			11.50	9.55	0.40	1.19	0.20	0.24	9.15
			12.00	9.40	0.25	1.40	0.13	0.18	9.15
SLOPE: 0.016911765]n7n			12.50	9,50	0.35	0.93	0.18	0,10	9.15
			10.00	9.00	0.50	1 57	0.25	0.00	9.10
			14.00	9.00	0.40	0.67	0.23	0.34	9.10
UNEUNED BT			14.00	9.33	0.20	0.07	0.09	0.00	9,10
			14.40	9.20	0.10	0.23	0.05	0.01	9,10
A33IGNED TO		CIVIL	16.20	9.20	0.05	0.00	0.03	0.00	9.10
		3001	17.00	9,10	0.00	0.00	0.00	0,00	0.00
	1	GI	17.00	8.72			0.00	0.00	0.00
	1	GL	18.00	8.65			0.00	0.00	0.00
		BS	19.30	8.53			0.00	0.00	0.00
		20	19.30	7 30			0.00	0.00	0.00
		.0	10.01	1.00			0.00	0.00	0.00

Totals 3.01 2.56

COLORADO WATER CONSERVATION BOARD

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

STREAM NAME:	South	n From	Slate	er Cr	Si cuire			CROSS-	SECTION NO .:.
CROSS-SECTION	LOCATION: $50'$	1/5 of	road X	ling					<i>t</i>
40° 48	48,2"	107	° 17′	18.9	4				
	OBSERVERS:	Jppendol	nl x	Espea	ren				
LEGAL DESCRIPTION	% SECTION:	NW SECTION:	20	TOWNSHIP	10 (NS	RANGE:	88	E/Ŵ ^{₽м:}	6
COUNTY: RC	44	WATERSHED:	- Cre	ek	WATER DIVISION:	6	1	DOW WATER CODE:	
USG MAP(S);	S:								
USF	5:								

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS DISCHARGE SECTION:	METER TYPE: Mars L	~ - Mc	Birney				
METER NUMBER:	DATE RATED:	CALIB/SPIN:		TAPE WEIGHT:	lbs/fool	TAPE TENSION:	lbs
CHANNEL BED MATERIAL SIZE RANGE:			PHOTOGRAPHS TAKEN		NUMBER OF PHOTOGRAPHS:		

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (fl)	ROD READING (tt)	Π	æ	LEGEND:
🛞 Tape @ Stake LB	0.0		 _	¥	
🛞 Tape @ Stake RB	0.0		s ĸ		
1 WS @ Tape LB/RB	0.0		E T C		
2 WS Upstream	33,0	8,57	н		
3 WS Downstream	. 35.0	9.72] -		Direction of Flow
SLOPE 1.15	68,				

AQUATIC SAMPLING SUMMARY

STREAM ELECTROFISHED: YES/NO	DISTANCE	DISTANCE ELECTROFISHED:It			F	FISH CAUGHT: YES/NO				WATER CHEMISTRY SAMPLED: YES/NO								
LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.)																		
SPECIES (FILL IN)		1	2	Э	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
				L														
					ļ													
AQUATIC INSECTS IN STREAM SECTION B	Y COMMON	OR SCI	ENTIFIC	ORDE	RNAM	E:												

COMMENTS

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	5. F	iorte S	slater Cr	reek			CROSS	SECTION	NO.:	DATE	O SHEET	
BEGINNING OF M	EASUREMENT	EDGE OF W	ATER LOOKING D E)	OWNSTREAM:	LEFT RIG	HT Gag	ge Rea	iding:	ft	тіме: : 4-{) prvv.	
Stake (S) Grassline (G) Waterline (W) Hock (R)	Distance From Initial Point (ft)	Width (ft)	Totai Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolutio	ons	Time (sec)	Velocit At Poïnt	y (fl/sec) Mean in Vertical	Area (f1 ²)	Discharge (Cfs)
TS	0		7.32									
BS	0		7.74									
			8.45		·-							
	3.0		8.91									
WL	4.0		9.16	0					0			
	4.5			0.2					0.01			
	5.0			0.2					0.12			
	5.5			0.2					$\frac{0.70}{0.22}$			
	6.0			0.15					0.33			·
				0.2		<u></u>			0.34			
	7.5			0.3					0.80)	· · · · · ·	
	8.0			0.35					0.90)		
	8.5			0.35					0.72			
BR/	9.0			$\frac{0.3}{0.7}$								
	<u>4.5</u>			0.0					0.48 0.48	;		
	10.5			0.35					1.18	<u> </u>		
	11,0			0,2					1.63			
	11.5			0.4					1,19			
	12.0			0.25					1.46			
	12.5			0.35					0.93			
	13.0			0.5					2.00			
	13.5			0.45					067			
	14,4			0.1					0,23	_		
	15.0			0.05					0	,		
SWL	16.3		9.16	0					0			
<u></u>	17.0		8.15									
	180		<u> </u>									
BS	19.3		8.53					·····				
TS	19:3		7.30					·.				
			 								-	
					· · · · · · · · · · · · · · · · · · ·							
												····
TOTALS:												756
End of Measu	ement Tir	ne:213	Gage Reading	1 : fi	CALCULAT	IONS PERF	ORMEI	D BY:		CALCULATION	CHECKED BY:	

SFK_Slater_Ck_US_P7070060.JPG 07/07/2009

SFK_Slater_Ck_US_P7070062.JPG 07/07/2009

P1010003.JPG

P1010004.JPG

P1010005.JP

P1010006.JPG

P1010007.JPG

P1010008.JPG

1010009.JPG

P1010010.JPG

P1010013.JPG

P1010015.JPG

1010016.JPG

P1010018.JPG

P1010019.JPG

P1010020.JPG

,

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

ı.

STREAM NAME: XS LOCATION: XS NUMBER:	S Fk Slater Ci 50 ft d/s of roa 81002	reek - Top Stake = 5.30 ad xing. 40 48 48.2; 107 17 18.9
DATE: OBSERVERS:	2-Oct-08 UPPENDAHL	& ESPEGREN (TU)
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 20 10 N 88 W 6	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Routt Slater Creek 6th 23286	
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA	=	*** NOTE *** Leave TAPE WT and TENSION
TAPE WT: TENSION:	0.0106 99999	with a survey level and rod
CHANNEL PROFILE DATA	-	
SLOPE:	0.01395881	
INPUT DATA CHECKED BY	/:	DATE
ASSIGNED TO:		DATE

S Fk Slater Creek - Top Stake = 5.30 50 ft d/s of road xing. 40 48 48.2; 107 17 18.9 81002

	#[35		
FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL
				<u> </u>
BS	0.00	7.36		
1 GL	0.70	7.32		
	1.80	7.60		
	2.30	7.75		
	3.20	8.00		
WL	4.20	8.03	0.00	0.00
	5.30	8.13	0.15	0.00
	5.60	8.15	0.20	0.80
	5.90	8.34	0.35	0.69
	6.20	8.37	0.35	0.60
	6.50	8.40	0.35	0.74
	6.80	8.40	0.40	0.67
BR	7.10	8.30	0.30	1.09
	7.40	8.42	0.40	1.05
	7.70	8.23	0.30	0.75
	8.00	8.38	0.40	0.70
	8.30	8.40	0.40	0.68
	8.80	8.28	0.30	0.71
	9.30	8.30	0.20	0.87
	9.80	8.25	0.25	0.67
	10.30	8.25	0.25	0.34
	10.80	8.14	0.15	0.18
	11.30	8.19	0.15	0.05
	11.80	8.19	0.20	0.00
	12.30	8.10	0.10	0.08
	12.80	8.09	0.10	0.00
	13.30	8.07	0.05	0.00
	13.80	8.15	0.15	0.00
WL	14.30	8.00	0.00	0.00
	15.80	7.82		
	16.80	7.48		
1 GL	17.80	7.00		
	18.30	6.87		
BS	19.30	6.60		
TS	19.31	6.16		

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
1.10	0.15	0.11	0.00	0.0%
0.30	0.20	0.06	0.05	4.1%
0.36	0.35	0.11	0.07	6.2%
0.30	0.35	0.11	0.06	5.4%
0.30	0.35	0.11	80.0	6.7%
0.30	0.40	0.12	80.0	6.9%
0.32	0.30	0.09	0.10	8.4%
0.32	0.40	0.12	0.13	10.8%
0.36	0.30	0.09	0.07	5.8%
0.34	0.40	0.12	80.0	7.2%
0.30	0.40	0.16	0.11	9.3%
0.51	0.30	0.15	0.11	9.1%
0.50	0.20	0.10	0.09	7.5%
0.50	0.25	0.13	80.0	7.2%
0.50	0.25	0.13	0.04	3.6%
0.51	0.15	0.08	0.01	1.2%
0.50	0,15	0.0B	0.00	0.3%
0.50	0.20	0.10	0.00	0.0%
0.51	0.10	0.05	0.00	0.3%
0.50	0.10	0.05	0.00	0.0%
0.50	0.05	0.03	0.00	0.0%
0.51	0,15	0.08	0.00	0.0%
0.52		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%

TOTALS	10.36	0.4	2.13 '	1.17	100.0%
	{M				
	Manni	ing's n =		0.1116	
	Hydra	ulic Radius≃	0	20555337	

VALUES COMPUTED FROM RAW FIELD DATA

STREAM NAME:S Fk Slate:XS LOCATION:50 ft d/s ofXS NUMBER:81002

S Fk Slater Creek - Top Stake = 5.30 50 ft d/s of road xing. 40 48 48.2; 107 17 18.9

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	2,13	2.02	-5.1%
7,77	2.13	5.11	140.1%
7.79	2.13	4.84	127.4%
7.81	2.13	4.58	114.8%
7.83	2.13	4.31	102.3%
7.85	2.13	4.05	90.1%
7.87	2.13	3.79	78.0%
7.89	2.13	3.54	66.2%
7.91	2.13	3.29	54.6%
7.93	2.13	3.05	43.2%
7.95	2.13	2.81	32.1%
7.97	2.13	2.58	21.1%
7.98	2.13	2.47	15.8%
7.99	2.13	2.35	10.4%
8.00	2.13	2.24	5.2%
8.01	2.13	2.13	0.0%
8.02	2.13	2.02	-5.1%
8.03	2.13	1.92	-9.9%
8.04	2.13	1.82	-14.6%
8.05	2.13	1.72	-19.3%
8.06	2,13	1.62	-23.8%
8.07	2.13	1.53	-28.3%
8.09	2.13	1.34	-36.9%
8.11	2,13	1.18	-44.6%
8.13	2.13	1.03	-51.6%
8.15	2,13	0.89	-58.0%
8.17	2.13	0.77	-63,8%
8.19	2.13	0.66	-69.2%
8.21	2.13	0.56	-73.9%
8.23	2.13	0.46	-78.4%
8.25	2.13	0.37	-82,7%
8.27	2.13	0.29	-86.5%

WATERLINE AT ZERO AREA ERROR =

8.005

 STREAM NAME:
 S Fk Slater Creek - Top Stake = 5,30

 XS LOCATION:
 50 ft d/s of road xing. 40 48 48.2; 107 17 18.9

 XS NUMBER:
 81002

Constant Magning's n

STAGING TABLE

i

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

-		TOP	AVG	ΜΔΥ		WETTED	PERCENT	HYDR		AVG
	MATER					PERIM		RADIUS	FLOW	VELOCITY
	(ET)	(ET)	(FT)	(FT)	(SO.FT)	(FT)	(%)	(FT)	(CES)	(ET/SEC)
-	<u>V. 17</u>	<u> </u>			(001)		<u></u>		<u> </u>	
GL	7.32	16,43	0.72	1.10	11.82	16.89	100.0%	0.70	14.65	1.24
	7.35	16.22	0,69	1.07	11.23	16.67	96.7%	0.67	13.59	1.21
	7.40	15.92	0.66	1.02	10.43	16,35	96.8%	0,64	12.16	1,17
	7.45	15.62	0.62	0.97	9,64	16,03	94.9%	0.60	10,81	1.12
	7,50	15.30	0.58	0.92	8.87	15.69	92.9%	0.57	9.54	1,08
	7.55	14.96	0.54	0.87	8.11	15.34	90,8%	0.53	B.35 🗩	1.03
	7.60	14,62	0.50	0.82	7.37	14.98	86.7%	0.49	7,23	0.98
	7.65	14.30	0.46	0.77	6.65	14.65	86.7%	0.45	5.18	0,93
	7,70	13.99	0.42	0.72	5.94	14.32	84.8%	0.41	5.20	0.88
	7.75	13.67	0,38	0.67	5.25	13.99	82.8%	0.38	4.30	0.82
	7.80	13.35	0.34	0.62	4.58	13.65	80.8%	0.34	3.47	0.76
	7,85	12.83	0.31	0.57	3.92	13.12	77.7%	0.30	2,76	0.70
	7,90	12.23	0.27	0.52	3.29	12.52	74.1%	0.26	2.13	0.65
	7.95	11.64	0.23	0.47	2.70	11.91	70.5%	0.23	1,58	0.58
WL	8,00	10,92	0.20	0.42	2.13	11.18	66.2%	0.19	1.11	0,52
•	8,05	9.64	0.17	0.37	1.62	9.90	58.6%	0.16	0.76	0.47
	8.10	7.68	0,15	0.32	1.18 \	1)0 7.92	46.9%	0.15 خان	0.52	0.44
	8.15	6.17	0.13	0.27	0.83	6.39	37.8%	0.13	0.34	0.40
	8.20	4.62	0.12	0.22	0.56	5.01	29,7%	0.11	0.20	0.36
	8.25	3.90	0.08	0.17	. 0.33	4.06	24.0%	0.0B	0.10	0.29
	8,30	2,56	0.06	0.12	0.16	2.67	15.8%	0.06	0.04	0.24
	8.35	1.69	0,03	0.07	0.05	1.74	10.3%	0.03	0.01	0.15
	8,40	0.06	0.01	0.02	0.00	0.07	0.4%	0.01	0.00	0,06
							_			

 \mathbb{N}^{γ} 31

 $3/3 = 7.7^{\odot}$ 2/3 = 1.1

STREAM NAME:	S Fk Slater Creek - Top Stake = 5.30
XS LOCATION:	50 ft d/s of road xing. 40 48 48.2; 107 17 18.9
XS NUMBER:	81002

SUMMARY SHEET

MEASURED FLOW (Om)=	1.17	cfs
CALCULATED FLOW (Oc)=	1.11	cfs
(Qm-Qc)/Qm * 100 ≈	4.9	%
MEASURED WATERLINE (WLm)=	8.02	ft
CALCULATED WATERLINE (WLc)=	B.00	ft
(WLm-WLc)/WLm * 100 =	0.1	%
MAX MEASURED DEPTH (Dm)=	0,40	ft
MAX CALCULATED DEPTH (Dc)=	0.42	ft
(Dm-Dc)/Dm * 100	-3.8	%
MEAN VELOCITY≍	0.52	ft/sec
MANNING'S N=	0.112	
SLOPE=	0.01395881	ft/ft
.4 * Qm =	0.5	cfs
2.5 * Qm=	2.9	cfs

RECOMMENDED INSTREAM FLOW:						
FLOW (CFS)	PERIOD					
=======================================						
	<u></u>					
						

RATIONALE FOR RECOMMENDATION:

.

	······		
·	· · · · · · · · · · · · · · · · · · ·		<u> </u>
		······································	
· · · · · · · · · · · · · · · · · · ·			
••••••	· · · · · · · · · · · · · · · · · · ·		
<u> </u>			
·····		(1997)	
<u></u>			
	······································		<u> </u>
		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·	·····	
		· · · · · · · · · · · · · · · · · · ·	
RECOMMENDATION BY:	AGENCY	DATE:	
		,	
CWCB REVIEW BY:		DATE:	

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER CONSERVATION BOARD

LOCATION INFORMATION

STREAM NA	ME: 5.F.	SLATER	(LEEK	·		CROSS-SECTION NO.:
CROSS-SEC		Als of rog	ad xing			
40°	48 48.2	107° 17' R	:9"	·····		
DATE: \O	2/0B OBSERVERS:	JPPENDAN	HL/ESP	EGREN		
LEGAL DESCRIPTIO	N V4 SECTION:	NW SECTION:	ZO TOWNSHIP:	10 D/s	RANGE: 88	EW PM: 6
	0-	WATERSHED:	<u> </u>		D	ow water code: 2328 6
MARISI	USGS:					
wixt (0).	USFS:					

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS US T	O METER TYPE	Marsh-	Mc Birney	F10-	Mate	
METER NUMBER:	DATE RATED:	CALIB/SP	IN: sec	I TAPE WEIGHT:	ibs/foot	TAPE TENSION: lbs
CHANNEL BED MATERIAL SIZE RANGE:			PHOTOGRAPHS TA	KEN: (ES)NO	NUMBER OF P	HOTOGRAPHS:

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (ft)	ROD READING (ft)	Γ		0+00	0	LEGEND:
🛞 Tape @ Stake LB	0.0				Ĭ		States (9)
🛞 Tape @ Stake RB	0.0		s ĸ	$\langle x \rangle \rightarrow$			Station (1)
1 WS @ Tape LB/RB	0.0		E T C		TAPE		Photo (1)->
2 WS Upstream	22-	<u> <u> </u></u>	Н		4		· ·
3 WS Downstream	2101	10 10 10					Direction of Flow
SLOPE	.61 43.7 =	.01395		2	> ® <	7	

AQUATIC SAMPLING SUMMARY

STREAM ELECTROFISHED: YES/NO	DISTANCE ELECTROFISHED:It				FISH CAUGHT: YES/NO					WATER CHEMISTRY SAMPLED: YES/NO								
LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.)																		
SPECIES (FILL IN)		1	2	3	4	5	6	7	а	9	10	11	12	13	14	15	>15	TOTAL
												:						
													ļ					
AQUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME:																		

COMMENTS

1 FISH OBSERVED (SPEZIES?)		COMMENTS		
	1 FISH OBSERVI	SO (SPELIES?)	<u></u>	
			<u></u>	
Note= Only IBM state on right side of streem looking US	Note = Only 1BM Sta	ate on right side	of streem	looking WS

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	う。モ	SUAME	<u> </u>	120 XX			CROS	S-SECTION	NO.:	DATE:		
BEGINNING OF M	EASUREMEN	T EDGE OF W	ATER LOOKING D KE)	OWNSTREAM	LEFT/ RIC	ынт с	lage Re	ading:	ft		55 D M	~
ຜູ້ Stake (S)	Distance	Width	Total Vertical	Water Depth	Depth	Revolu	itions		Veloci	ly (ft/sec)		Disalasi
Waterline (W)	Initial Point (ft)	Rounde State Distance	Depth From Tape/Inst (ft)	(ft)	Obser- vation (ft)			Time (sec)	At Point	Mean in Vertical	Area (ft ²)	(cfs)
I		to match										
TUPSTAL	. 6°-	19,3	616					:				
GUBINO	0 2.	19.3	60									
A		18.3	<u> 687</u>			-			· · · · · · · · · · · · · · · · · · ·			
<u>(</u> }	75	14.8	-140									
	<u> </u>		782									
	22	15.8	100		1				<u> </u>			
\sim	7	14.5	015	<u>0-</u>					5			
<u> </u>	20	123	0	0-5					\sim		:	
	5	12-2	007	010								
	50		010	010		<u> </u>			02			
	-75	12.2	219	020	<u>(</u> ;				02			
	0	113	819	015					005	-		
	প্রহ	10.2	छाम	015					012			
	99	IC 3	872	025					034			
	95	7.7	82	025					047		:	
	<u>_0</u>	93	830	020					087			
	102	8.7	840	030					$\overline{0}$	•		
	11-	2.5	240	O^{-10}			«		003			
	112	7.0	820	070		<u> </u>			0	_		
·····	112	7.7	04	030						<u>}</u>		
	112	7.4	844	070					100			
	125	7.1	830	030								
	123	6.8	0 40	01								
	123	6,5	237		New York							·
	101	6.2	01	035		· · · ·			<u> </u>			
	127	5.4	815	020					$\overline{)}$	5 ,		
	1410	5,3	813	015		1		1	OÈ			
\sim	151	4.2	803	0°-					0°-			•
	16-	3. Z	800	a ha parti gan								
	17-	z.3	75	1. 								
	175	1.2	760			ļ						
<u> </u>	184	07	752									
STAKE	172	Ø										
) [[+							
			· .		-							
						-		1				
-						:						
											~	
TOTALS:				1	L	<u> </u>		<u> </u>	L			
End of Measu	ement T	ime: 3-2	Gage Readin	g: f	CALCULA	TIONS PE	RFORME	D BY:	ſ	CALCULATIONS	CHECKED BY:	_

South Fork Slater Creek 50' d/s of Road Xing

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS *V

,

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	S Fk Slater C 50 ft d/s of ro 70905	reek - 2007 #2 ad xing. 40 48 48.2; 107 17 18.9
DATE: OBSERVERS:	5-Sep-07 UPPENDAHL	& ROACH (TU)
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 20 10 N 88 W 6	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Routt Slater Creek 6th 0	
USGS MAP:	0	
USFS MAP:	0	
SUPPLEMENTAL DATA	a	*** NOTE *** Leave TAPE WT and TENSION
TAPE WT:	0.0106	with a survey level and rod
TENSION:	99999	·
CHANNEL PROFILE DATA	-	
SLOPE:	0.01880734	
INPUT DATA CHECKED B	ť:	DATE

ASSIGNED TO:DATE.....

STREAM NAME:	S Fk Slater Creek - 2007 #2
XS LOCATION:	50 ft d/s of road xing. 40 48 48.2; 107 17 18:9
XS NUMBER:	70905

	#1	35		
FEATURE	·····	VERT	WATER	
TERRORE	DIST	DEPTH	DEPTH	VEL
·····	·····			
TS	0.00	4.80		
1 BS/GL	0.01	5.55		
	1.00	5.90		
	1.90	6.09		
WL	2.00	6.25	0.00	0.00
	2.50	6.30	0.10	0,00
	3.00	6.35	0.15	0.07
	3.50	6.40	0.20	0.10
	4.00	6.35	0.15	0.17
	4.50	6.35	0.15	0.24
	5.00	6.45	0.25	0.32
	5.50	6.40	0.20	0.32
BR	6.00	6.45	0.25	0.00
	6.50	6.40	0.20	0.71
	7.00	6.50	0.30	0.59
	7.50	6.40	0.20	0.31
	8.00	6.30	0.10	0.40
	8.50	6.45	0.25	1.24
	9.00	6.35	0.20	1.32
	9.50	6.40	0.20	1.56
	10.00	6.40	0.20	0.90
	10.50	6.40	0.20	0.72
	11.00	6.45	0.25	0.40
	11.50	6.30	0.10	0.14
	12.00	6.35	0.15	0.07
	12.50	6.35	0.15	0.04
	13.00	6.30	0.05	0.00
WL	13.50	6.25	0.00	0.00
	13.80	6.15		
	15.00	6.00		
1 GL	17.00	5.76		
	17.50	5.46		
	18.00	5.16		
BS	19.30	4.86		
TS	19.31	4.42		

TOTALS -----

VALUES COMPUTED FROM RAW FIELD DATA	

.

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Ат)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0,00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.50	0.10	0.05	0.00	0.0%
0.50	0.15	0.08	0,01	0.5%
0.50	0.20	0.10	0.01	1.0%
0.50	0.15	0.08	0.01	1.3%
0,50	0.15	0.08	0.02	1.8%
0.51	0.25	0.13	0.04	4.0%
0.50	0.20	0.10	0.03	3.2%
0.50	0.25	0.13	0.00	0.0%
0.50	0.20	0.10	0.07	7.1%
0.51	0.30	0.15	0.09	8.9%
0.51	0.20	0.10	0.03	3.1%
0.51	0.10	0.05	0.02	2.0%
0.52	0.25	0.13	0.16	15.5%
0.51	0.20	0.10	0.13	13.2%
0.50	0.20	0.10	0.16	15.6%
0.50	0.20	0.10	0.09	9.0%
0.50	0.20	0.10	0.07	7.2%
0.50	0.25	0.13	0.05	5.0%
0.52	0.10	0.05	0.01	0.7%
0.50	0.15	0.08	0.01	0.5%
0.50	0.15	0.08	0.00	0.3%
0.50	0.05	0.03	0.00	0.0%
0.50		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
11.62	03	2 00 /	1 00	100.0%

(Max.)

Manning's n = Hydraulic Radius=

0.1262 0.172065719
 STREAM NAME:
 S Fk Slater Creek - 2007 #2

 XS LOCATION:
 50 ft d/s of road xing. 40 48 48.2; 107 17 18.9

 XS NUMBER:
 70905

WATER LINE COMPARISON TABLE

		and the second se	
WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	2.00	1.45	-27.5%
6.00	2.00	4.51	125.6%
6.02	2.00	4.24	112.2%
6.04	2.00	3.98	99.0%
6.06	2.00	3.72	86.1%
6.08	2.00	3.47	73.5%
6.10	2.00	3.22	61.1%
6.12	2.00	2.98	48.9%
6.14	2.00	2.74	36.9%
6.16	2.00	2.50	25.0%
6.18	2.00	2.26	13.2%
6.20	2.00	2.03	1.5%
6.21	2.00	1.91	-4.4%
6.22	2.00	1.80	-10.2%
6.23	2.00	1.68	-16.0%
6.24	2.00	1.57	-21.7%
6.25	2.00	1.45	-27.5%
6.26	2.00	1.34	-33.2%
6.27	2.00	1.22	-38.8%
6.28	2.00	1.11	-44.3%
6.29	2.00	1.01	-49.7%
6.30	2.00	0.90	-55.0%
6.32	2.00	0.70	-65.1%
6.34	2.00	0.51	-74.3%
6.36	2.00	0.36	-82.2%
6.38	2.00	0.23	-88.6%
6.40	2.00	0.12	-94.0%
6.42	2.00	0.06	-97.1%
6.44	2.00	0.02	-99.0%
6.46	2.00	0.01	-99.6%
6.48	2.00	0.00	-99.9%
6.50	2.00	0.00	-100.0%

WATERLINE AT ZERO AREA ERROR =

6.203

S Fk Slater Creek - 2007 #2 50 ft d/s of road xing, 40 48 48.2; 107 17 18.9

Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag

WL = Waterline corrected for variations in field measured water surface elevations and sag

-		TOD	AVC	MAY		METTED	DEBCENT			AVC
	0131 10	TOP	AVG.			WEITED	PERCEIVI	FI DR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	<u>(FT)</u>	<u>(FT)</u>	<u>(FT)</u>	(FT)	(SQ FT)	<u>(FT)</u>	(%)	(FT)	(CFS)	(FT/SEC)
										1
'GL"	5,76	16.40	0.49	0.74	B,12	16.69	100.0%	0.49	8.10 🧲	
	5.80	15.92	0.47	0.70	7,43	16.21	97.1%	0.46	7.13	0.96
	5.85	15,36	0.43	0.65	6.65	15.64	93.7%	0.42	6.06	0.91
	5.90	14,80	0.40	0.60	5,89	15.06	90.2%	0.39	5.09	0.86
	5,95	14.15	0.37	0,55	5.17	14.40	86,3%	0.36	4,21	0.82
	6.00	13.49	0.33	0.50	4.48	13,74	82.3%	0,33	3,42	0.76
	6.05	12.86	0.30	0.45	3,82	13.10	78.5%	0.29	2.71	0.71
	6.10	12.27	0.26	0.40	3,19	12.50	74,9%	0.26	2,07	0.65
	6,15	11.85	0.22	0.35	2.59	12.05	72.2%	0.21	1.50	0.58
WL*	6.20	11.67	0.17	0.30	2.00) 3	5 11.83	70.9%	0.17	0,99	0.49
	6.25	11.45	0.12	0.25	1.42	11.57	69.3%	0.12	0.57	0.40
	6.30	10.39	0.08	0.20	0.87 .54	< 10.51	63.0%	107 O.0B	0.27	0.31
	6,35	7.29	0.06	0.15	0.41	7,38	44.2%	0.06	0,10	0.23
	6.40	3.66	0.03	0.10	Q.11	3.72	22.3%	0.03	0.02	0.16
	6.45	0.47	0.02	0.05	0.01	0,48	2.9%	0.02	0.00	0.13

STREAM NAME:	S Fk Slater Creek - 2007 #2
XS LOCATION:	50 ft d/s of road xing. 40 48 48.2; 107 17 18,9
XS NUMBER:	70905

SUMMARY SHEET

MEASURED FLOW (Qm)=	1.00	cfs
CALCULATED FLQW (Qc)≈	0.99	cfs
(Qm-Qc)/Qm * 100 =	1.2	%
MEASURED WATERLINE (WLm)=	6.25	ft
CALCULATED WATERLINE (WLc)=	6,20	ft
(WLm-WLc)/WLm * 100 =	0,B	%
MAX MEASURED DEPTH (Dm)=	0.30	ft
MAX CALCULATED DEPTH (Dc)≍	0.30	ft
(Dm-Dc)/Dm * 100	0.8	%
MEAN VELOCITY=	0.49	fl/sec
MANNING'S N=	0.126	
SLQPE=	0,01860734	ft/ft
.4 * Qm =	0.4	cís
2.5 * Qm=	2.5	cfs

FLOW (CFS)	PERIOD								
========	========								
· · · · · · · · · · · · · · · · · · ·	<u> </u>								

_

.

RATIONALE FOR RECOMMENDATION:

and the second		
· · · · · · · · · · · · · · · · · · ·		
	······································	
	100 C 20 C	
and the second se		
· · · · · · · · · · · · · · · · · · ·		
SEGOLULEUS STOLLOV	10511014	D & TE:
RECOMMENDATION BY:	AGENCY	
		DATE:

				VERT	WATER				Tape to
Data Input & Proofing	GL≂1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
, -				Total Da	ta Polπts ≖ 35				
STREAM NAME: S Fk Slater Creek - 2007 #2		TS	0.00	4,80			0.00	0.00	0.00
XS LOCATION: 50 ft d/s of road xing, 40 48 48.2; 107 17 18.9	1	BS/GL	0.01	5.55			0.00	0.00	0.00
XS NUMBER: 70905			1.00	5,90			0.00	0.00	0.00
DATE: 19/5/2007			1.90	6,09			0,00	0.00	0.00
OBSERVERS: UPPENDAHL & ROACH (TU)		WL	2.00	6,25	0.00	0.00	0,00	0.00	0.00
			2.50	6.30	0.10	0.00	0.05	0.00	6.20
1/4 SEC: NW			3.00	6.35	0.15	0.07	0.08	0.01	6.20
SECTION: 20			3.50	6.40	0.20	0.10	0.10	0.01	6.20
TWP: 10 N			4.00	6.35	0.15	0.17	0.08	0.01	6.20
RANGE: 88 W			4.50	6.35	0.15	0.24	0.08	0.02	6.20
PM: 6			5.00	6.45	0.25	0.32	0.13	0.04	6.20
			5,50	6.40	0.20	0.32	0.10	0.03	6.20
COUNTY: Routt		BR	6.00	6.45	0.25	0.00	0.13	0.00	6.20
WATERSHED: Slater Creek			6.50	6,40	0.20	0.71	0.10	0.07	6.20
DIVISION: 16th			7.00	6.50	0.30	0.59	0.15	0.09	6.20
DOW CODE:			7.50	6.40	0.20	0.31	0.10	0.03	6.20
USGS MAP:			8.00	6.30	0.10	0.40	0.05	0.02	6.20
USFS MAP:			8.50	6.45	0.25	1.24	0.13	0.16	6.20
Level and Rod Survey			9.00	6.35	0.20	1.32	0.10	0.13	6.15
TAPE WT: 0.0106 [lbs / ft			9.50	6.40	0.20	1.56	0.10	0,16	6.20
TENSION: 999999 Ibs			10.00	6.40	0.20	0.90	0.10	0.09	6.20
			10.50	6,40	0.20	0.72	0.10	0.07	6.20
SLOPE: 0.018807339 ft / ft			11.00	6.45	0.25	0.40	0.13	0.05	6.20
			11.50	6.30	0.10	0.14	0.05	0.01	6.20
			12.00	6.35	0.15	0.07	0.08	0.01	6.20
CHECKED BY:DATEDATE			12.50	6.35	0.15	0.04	0.08	0.00	6.20
			13.00	6.30	0.05	0.00	0.03	0.00	6.25
ASSIGNED TO:DATEDATE		WL	13.50	6.25	0.00	0.00	0.00	0.00	0.00
			13.80	6.15			0.00	0.00	0,00
			15.00	6,00			0.00	0.00	0.00
	1	GL	17.00	5.76			0.00	0.00	0,00
			17.50	5.46			0.00	0.00	0.00
			18.00	5.16			0.00	0.00	0.00
		BS	19.30	4.86			0.00	0.00	0.00
		TS	19.31	4.42			0.00	0,00	0.00

.

 $T_{51} = \frac{4.30}{152}$ $\Delta + \frac{9.8}{9.8}$

Totals 2.00

,

Г

1.00

FIELD DATA FOR **INSTREAM FLOW DETERMINATIONS**

LOCATION INFORMATION

STREAM NA	ME:	S, FK	skter	Creek		24	07-01			CROSS-SECTION NO .: 2007 - 02
CROSS-SECT	TION LOCA	ation: 50	o' d/s	of rd	×145			40	48	48.5
<u> </u>			1	}				107	17	18.9
	5/07	OBSERVERS:	Uppend	the / Ko.	ne L					
LEGAL A DESCRIPTION	N	% SECTION:	NW SECTION	ZO TOW	NSHIP:	10 N)s	RANGE:	88	E/W	PM: 6
COUNTY:	how	44	watershed: Slate	- Creek	WATE	R DIVISION:		C	OW WATE	R CODE:
MAP(S)	USGS:									······································
	USFS:									

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YES / NO	METER TYPE:	Marsh - W	IcBirnee	Flo.	- mete	> .	
METER NUMBER:	DA	TE RATED:	CALIB/SPIN:	SBC) TAPE WEIGHT:	ibs/foot	TAPE TENSION:	lbs
CHANNEL BED MATERIAL SIZÉ F	PHOTOGRAPHS TAK	KEN YES/NO	NUMBER OF PHOTOGRAPHS:					

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (It)	ROD READING (ft)		A B LB	LEGEND:
🛞 Tape @ Stake LB	0.0				
😧 Tape @ Stake RB	0.0		s ĸ		Stake (A)
1 WS @ Tape LB/AB	0.0	6.20 16.20	E T C	<u>لا م</u>	Photo
2 WS Upstream	11.2	6,14	н		
3 WS Downstream	32.4	6.96			Direction of Flow
SLOPE	, 43.6			æ _{kb}	

AQUATIC SAMPLING SUMMARY

		AC	PUAT	IC S	AMF	PLIN	G SI	JMM	ARY	,	۲ ۲ ۱۴ ۱	2					
STREAM ELECTROFISHED: YES NO DISTANC	REAM ELECTROFISHED: YES NO DISTANCE ELECTROFISHED.						FISH CAUGHT: YES/NO				WATER CHEMISTRY SAMPLED: YES/NO						
LENGT	H FRE	DUENC	Y DISTI	RIBUTIC	DN BY (DNE-IN	CHSIZ	E GRO	UPS (1	.0-1.9, :	2.0-2.9	, ETC.)			1007 4 JANON DA A DA WARD		
SPECIES (FILL IN)	1	2	Э	4	5	6	7	8	9	. 10	11	12	13	14	15	>15	TOTAL
Fish Seen CRT			1							1	1	1	1		1		
near Confl W/													1				
West prong CK.										1		1					
ġ l									ſ					-	1		
AOUATIC INSECTS IN STREAM SECTION BY COMMON	ORSC	IENTIFI	C ORD	ER NAM	E:				ânsenere e	÷				<u>.</u>	<u> </u>	¢	
								•. •.									•••
										naimininininininini							ana

	1		COMMENTS				
ROAN Night	bette /	(05) -	Ten D	e prostate policidades data está ana esta constante a dependencia de			
·	/		F				
Note: only	-1 be	inch mark	c stele	Oh	Right	Side	(4/3)
FORM #ISF FD 1-85	>			anta ang ang ang ang ang ang ang ang ang an			

DISCHARGE/CROSS SECTION NOTES

ST	REAM NAME:	ΓK S	SILte	\sim	IK.		CROS	s-section 1 .067-6	10.:	9507	SHEET	ſOF
BE(GINNING OF M	IEASUREMEN	EDGE OF V (0.0 AT STA	VATER LOOKING D KE)	OWNSTREAM:	LEFT	HT Gage Re	ading:	ft [1	тіме: <u>09/3</u>	\mathcal{O}	
atures	Stake (S) Grassline (G) Waterline (W)	Distance From Initial	Width (ft)	Total Vertical Dapth From	Water Depth (ft)	Depih of Obser-	Revolutions	Time	Velocity	y (fl/sec) Mean in	Area (tt ²)	Discharg (cfs)
ĕ	Rock (R)	Point (ft)		Tape/Inst (ft)		vation (ft)		(sec)	Point	Vertical		(010)
	TS	\mathcal{O}		4,80								
4	BŚ	001		555								
		1.0		5.90								
	<u>5 (</u>	1,5	····· ·	6.09	- 77				X			····
		25		6129.	a							1
		30		625	15	· · · · · · · · · · · · · · · · · · ·			67		<u> </u>	+
		25		640	20				10		••••	
		$\frac{2}{d}$		635	15				17			1
		4.5		$\begin{pmatrix} 0, \\ 2 \\ 3 \\ 5 \end{pmatrix}$.15				.24			
		50		6.45	.75				.32	-		1
		5.5		6.40	,20		u		.32			-
	BR	60		6.45	.25				D			
	<i></i>	th.5		6.110	,20				.71			
		Ž.V		6.50	.30				, 59			
		75		6.40	,20				.31			
		8,0		6.50	.10				40			
		92		$\left(\begin{array}{c} 0, 0 \\ 1, 2 \end{array} \right)$	70				127			
		95	· .	6:25 11/5	-70	<u></u>	····-		1.56			
		$D \cap$		6.40	.70				91			
		IN Z		1 40	20				72			1
		$\frac{10}{11}$		1.45	76	:		 	.40			+
		11.5		631	.10			1	- 14			
		12.D		6.35	. 15				,07			
		1z 5		6.35	.15		······································		,04			
		13.0		6.30	,05				,ð			
	NL	13.5		6.25	Q -				\mathcal{A}			
		13.8	·····	6.15					•••••.			
	11	15.0 12 p	<u></u>	$\begin{bmatrix} 1.00\\ 7.06 \end{bmatrix}$							<u> </u>	
	1-1-	17.U. 17.U	~	516	\sim							· · · · · ·
		17.5-		5.110	/	-			÷			
	BS	19.3		4 76								1
	TS,	19.3		(4,42)	······							
		_										
	······											
	 D _								· .			+
	-50											+
7	1,0					<u> </u>						
<u> </u>							1			1		1

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:	S. Fk Slater C	Creek
AS LOCATION.	50 IL 0/5 01 10	au xing. 40 46 46.2, 107 17 16.9
XS NUMBER:	0/1007-002	
DATE:	10-Jul-07	
OBSERVERS:	Uppendahl, H	I. Skinner
1/4 SEC:	NW	
SECTION:	20	
TWP:	10 N	
RANGE:	88 W	
PM:	6	
COUNTY:	Routt	
WATERSHED:	Slater Creek	
DIVISION	6	
DOW CODE:	ō	
LICOR MAD	0	
USGS MAP:	0	
USFS MAP:	0	
SUPPLEMENTAL DATA		*** NOTE ***
	-	Leave TAPE WT and TENSION
		at defaults for data collected
TAPE WT:	0.0106	with a survey level and rod
TENSION:	99999	
CHANNEL PROFILE DATA	<u>\</u>	
SLOPE:	0.01513043	
	v.	DATE
IN OT DATA CHECKED B	44 million (1997)	
ASSIGNED TO:		DATE

a. .

K

S. Fk Slater Creek
50 ft d/s of road xing. 40 48 48.2; 107 17 18.9
071007-002

DATA POINTS= 32 FEATURE WATER VERT DIST DEPTH DEPTH VEL TS 0.00 5,59 1 BS/GL 0.01 6.73 0.50 6.80 1.00 6.85 6.90 1.50 2.00 7.00 0.00 0.00 WL 2.90 7.15 3.50 7.25 0.10 0.00 4.00 7.15 0.00 0.01 4.50 7.35 0.20 0.00 5.00 7.30 0.20 0.07 0.59 7.35 0.25 5.50 6.00 7.45 0.30 0.30 6.50 7.35 0.25 0.72 7.00 7.35 0.25 0.62 7.50 7.25 0.20 0.34 8.00 7.40 0.30 0.19 0.30 8.50 7.40 1.13 9.00 7.50 0.40 0.81 9.50 0.30 1.24 7.40 10.00 7.45 0.30 1.15 10.50 7.40 0.15 0.13 7.40 0.20 0.00 11.00 11.50 7.15 0.05 0.24 12.00 7.30 0.15 0.00 0.10 0.00 12.50 7.25 0.00 13.00 7.30 0.15 WL 13.50 7.15 0.00 0.00 15.00 6.90 1 GL 16.90 6.70 BS 5.71 19.30 TS 19.31 5.30

TOTALS ----

VALUES COMP	UTED FROM	RAW FIELD DATA

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.61	0.10	0.06	0.00	0.0%
0.51	0.10	0.00	0.00	0.0%
0.54	0.20	0.10	0.00	0.0%
0.54	0.20	0.10	0.00	0.070
0.50	0.20	0.13	0.07	6 0%
0.50	0.25	0.15	0.07	1 204
0.51	0.35	0.13	0.00	9.5%
0.51	0.25	0.13	0.05	7 20/
0.50	0.25	0.13	0.08	2 20/
0.51	0.20	0.10	0.03	3.270
0.52	0.30	0.15	0.03	16 0%
0.50	0.30	0.15	0.17	15.0%
0.51	0.40	0.20	0.10	13.37
0.51	0.30	0.15	0.19	17.0%
0.50	0.30	0.15	0.17	10.3%
0.50	0.15	0.08	0.01	0.9%
0.50	0.20	0.10	0.00	0.0%
0.55	0.05	0.03	0.01	0.6%
0.52	0.15	0.08	0.00	0.0%
0.50	0.10	0.05	0.00	0.0%
0.50	0.15	0.08	0.00	0.0%
0.52		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
10.85	0.4	2.08	1.06	100.0%
	(Max.)			
N	lanning's n =		0.1191	
H	lydraulic Radius=	0.1	91771701	

STREAM NAME:	S. Fk Slater Creek
XS LOCATION:	50 ft d/s of road xing. 40 48 48.2; 107 17 18.9
XS NUMBER:	071007-002

WATER LINE COMPARISON TABLE

	the second s		
WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	2.08	1.88	-9.6%
6.90	2.08	4.90	135.6%
6.92	2.08	4.63	122.7%
6.94	2.08	4.37	110.0%
6.96	2.08	4.11	97.6%
6.98	2.08	3.86	85.3%
7.00	2.08	3.61	73.3%
7.02	2.08	3.36	61.5%
7.04	2.08	3.12	49.9%
7.06	2.08	2.88	38.6%
7.08	2.08	2.65	27.5%
7.10	2.08	2.43	16.6%
7.11	2.08	2.31	11.2%
7.12	2.08	2.20	5.9%
7.13	2.08	2.09	0.7%
7.14	2.08	1.99	-4.5%
7.15	2.08	1.88	-9.6%
7.16	2.08	1.78	-14.7%
7.17	2.08	1.67	-19.6%
7.18	2.08	1.57	-24.4%
7.19	2.08	1.47	-29.1%
7.20	2.08	1.38	-33.8%
7.22	2.08	1.19	-42.7%
7.24	2.08	1.02	-51.2%
7.26	2.08	0.85	-59.2%
7.28	2.08	0.70	-66.5%
7.30	2.08	0.56	-73.0%
7.32	2.08	0.44	-78.9%
7.34	2.08	0.33	-84.1%
7.36	2.08	0.24	-88.5%
7.38	2.08	0.16	-92.3%
7.40	2.08	0.09	-95.8%

WATERLINE AT ZERO AREA ERROR =

7.131

 STREAM NAME:
 S. Fk Slater Creek

 XS LOCATION:
 50 ft d/s of road xing. 40 48 48.2; 107 17 18.9

 XS NUMBER:
 071007-002

Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
'GL'	6.73	16.61	0.45	0.77	7.47	16,91	100.0%	0.44	6.65	0.89
	6.73	16.58	0.45	0.77	7.45	16.89	99.9%	0.44	6.62	0.89
	6.78	15.76	0.42	0.72	6.64	16.06	95.0%	0.41	5.65	0.85
	6.83	14.84	0.40	0.67	5.87	15.14	89.5%	0.39	4.79	0.82
	6.88	13.86	0.37	0.62	5.16	14.16	83.7%	0,36	4.03	0.78
	6.93	13.16	0.34	0.57	4.48	13.44	79.5%	0.33	3.31	0.74
	6.98	12.61	0.30	0.52	3.84	12.88	76.2%	0.30	2.63	0.68
	7.03	12.02	0.27	0.47	3.22	12.29	72.7%	0.26	2.03	0.63
	7.08	11.42	0.23	0.42	2.64	11.68	69.1%	0.23	1.50	0.57
WL	7.13	10.82	0.19	0.37	2.08	2.12 11.07	65.5%	0.19 12	1.05	0.50
	7.18	9.91	0.16	0.32	1.56	10.12	59.9%	0,15	0.69	0.44
	7.23	8.80	0.12	0.27	1.09	8.97	53.0%	0.12	_0.41	0.38
	7.28	7.15	0,10	0.22	0.69	.97 7.27	43.0%	0.09 ,11	0.22	0.32
	7.33	5.38	0.07	0.17	0.38	5.46	32.3%	0.07	0.10	0.26
	7.38	3.79	0.04	0.12	0.16	3.83	22.7%	0.04	0.03	0.18
	7.43	1.25	0.02	0.07	0.03	1.27	7.5%	0.02	0.00	0.12
	7.48	0,19	0.01	0.02	0.00	0.19	1.1%	0.01	0.00	0.07

3/3 = ? 2/3 = 1. Z

a.

STREAM NAME:	S. Fk Slater Creek
XS LOCATION:	50 ft d/s of road xing. 40 48 48.2; 107 17 18.9
XS NUMBER:	071007-002

SUMMARY SHEET

MEASURED FLOW (Qm)=	1.06	cfs
CALCULATED FLOW (Qc)=	1.05	cfs
(Qm-Qc)/Qm * 100 =	1.4	%
MEASURED WATERLINE (WLm)=	7.15	ft
CALCULATED WATERLINE (WLc)=	7.13	ft
(WLm-WLc)/WLm * 100 =	0.3	%
MAX MEASURED DEPTH (Dm)=	0.40	ft
MAX CALCULATED DEPTH (Dc)=	0.37	ft
(Dm-Dc)/Dm * 100	7.8	%
MEAN VELOCITY= MANNING'S N= SLOPE=	0.50 0.119 0.01513043	ft/sec ft/ft
.4 * Qm =	0.4	cfs
2.5 * Qm=	2.7	cfs

RECOMMENDED INST	IREAM FLOW:
FLOW (CFS)	PERIOD
	20000000
0	
	R

.

RATIONALE FOR RECOMMENDATION:

RECOMMENDATION BY:	AGENCY	DATE:
CWCB REVIEW BY:		DATE:

Data Input & Proofing GL=1 FEATURE DIST DEPTH DEPTH VEL A Q Water STREAM NAME: S Fk Slater Creek - 2007 #1 TS 0.00 5.59 0.00					VERT	WATER				Tape to
Total Data Points = 32 Total Data Points = 32 STREAM NAME: STREAM NAME: STREAM Points = 32 STREAM NAME: STREAM Points = 32 STREAM NAME: STREAM Points = 32 STREAM Points = 30 STREAM Points = 32 STREAM Points = 32 STREAM Points = 30 STREAM Points = 30 STREAM Points = 30 STREAM Points = 32 STREAM Points = 32 STREAM Points = 30 STREAM Points = 30	Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
STREAM NAME: STK Slater Creek - 2007 #1 XS LOCATION: TS 0.00 5.59 0.00 0.00 0.00 XS LOCATION: 60 ft dis of road xing. 40 48 48,2; 107 17 18,9 1 BS/GL 0.01 6.73 0.00 0.00 0.00 XS NUMBER: 071007-002 1.00 6.85 0.00 0.00 0.00 0.00 OBSERVERS: Uppendahl, H. Skinner 1.50 6.90 0.00					Total Da	ta Points = 32				
XS LOCATION: 50 ft d/s of road xing. 40 48 48.2; 107 17 18.9 1 BS/GL 0.01 6.73 0.00 0.00 0.00 XS NUMBER: 071007-002 0.60 6.80 0.00 0.00 0.00 0.00 OBSERVERS: Uppendahi, H. Skinner 1.00 6.85 0.00 0.00 0.00 0.00 1/4 SEC: NW 200 7.00 0.00 0.00 0.00 0.00 0.00 SECTION: 20 20 7.15 0.00 0.00 0.00 0.00 0.00 0.00 RANGE: 88 W 0.01 0.02 0.07 0.00 0.00 0.00 0.00 0.00 COUNTY: Routt 6.00 7.35 0.25 0.59 0.13 0.07 7.10 COUNTY: Routt Stater Creek 5.60 7.35 0.25 0.62 0.10 0.03 7.00 DUVISION: 66th 6.80 7.40 0.30 0.13 0.17 7.10 COUNTY: Routt Stater Creek 0.01 0.03 1.13 0.15 0.03 7.10 DUVISION: 66th 6.80 7.40	STREAM NAME: S Fk Slater Creek - 2007 #1		TS	0.00	5.59			0.00	0.00	0.00
XS NUMBER: D71007-002 0.60 6.60 0.00 0.00 0.00 DATE: 7/10/2007 1.00 6.85 0.00 0.00 0.00 OBSERVERS: Uppendahi, H. Skinner 2.00 7.00 0.00 0.00 0.00 1/4 SEC: NW 2.00 7.00 0.00 0.00 0.00 0.00 SECTION: 20 7.15 0.00 0.00 0.00 0.00 0.00 SECTION: 20 7.35 0.20 0.00 0.00 0.00 0.00 RANGE: 88 W 9 5.50 7.35 0.20 0.00 0.00 0.00 7.15 WATERSHED: Slater Creek 6.50 7.45 0.30 0.15 0.57 7.15 WATERSHED: Slater Creek 7.50 0.25 0.72 0.13 0.08 7.10 DOW CODE: 99999 1bs / ft 9.50 4.40 0.30 1.13 0.15 0.17 7.10 TENSION: 99999 1bs / ft 9.50 1.30 0.08	XS LOCATION: 50 ft d/s of road xing. 40 48 48.2; 107 17 18.	9 1	BS/GL	0.01	6.73			0.00	0.00	0.00
DATE: 7/10/2007 1.00 6.85 0.00 0.00 0.00 0.00 OBSERVERS: Uppendahi, H. Skinner 1.50 6.90 0.00 0.00 0.00 0.00 1/4 SEC: NW 2.00 7.15 0.00 0.00 0.00 0.00 0.00 SECTION: 20 7.15 0.00 0.00 0.00 0.00 0.00 0.00 RANGE: 88 W 4.50 7.35 0.20 0.0	XS NUMBER: 071007-002			0.50	6.80			0.00	0.00	0.00
OBSERVERS: Uppendahl, H. Skinner 1.50 6.90 0.00 <	DATE: 7/10/2007			1.00	6.85			0.00	0.00	0.00
1/4 SEC: NW 2,00 7,00 0,00 0,00 0,00 0,00 SECTION: 20 3,50 7,25 0,10 0,00	OBSERVERS: Uppendahl, H. Skinner			1.50	6.90			0.00	0.00	0.00
1/4 SEC: NW 2.90 7.15 0.00 0.00 0.00 0.00 SECTION: 20 .010 0.00 0.00 0.00 0.00 0.00 RANGE: B8 W .000 7.15 0.00 0.00 0.00 0.00 0.00 RANGE: B8 W .000 7.15 0.00 0.00 0.00 7.15 PM: 6 .500 7.35 0.20 0.00 0.01 0.00 7.16 COUNTY: Routt .500 7.35 0.25 0.59 0.13 0.05 7.15 WATERSHED: Stater Creek .000 7.00 7.35 0.25 0.62 0.13 0.08 7.10 DIVISION: Bth .000 7.00 7.35 0.25 0.62 0.13 0.08 7.10 USGS MAP: .000 .010 0.03 7.10 0.30 1.13 0.15 0.17 7.10 USFS MAP: .000 .000 7.40 0.30 1.13 0.15 0.17 7.15 <tr< td=""><td></td><td></td><td></td><td>2.00</td><td>7.00</td><td></td><td></td><td>0.00</td><td>0.00</td><td>0.00</td></tr<>				2.00	7.00			0.00	0.00	0.00
SECTION: 20 3.50 7.25 0.10 0.00 0.06 0.00 7.15 TWP 10 N 4.00 7.15 0.00 0.01 0.00	1/4 SEC: NW		WL	2.90	7.15	0.00	0.00	0.00	0.00	0.00
TWP: 10 N 4.00 7.15 0.00 0.01 0.00 0.00 RANGE: 88 W 4.50 7.35 0.20 0.00 0.10 0.00 7.15 PM: 6 5.00 7.30 0.20 0.07 0.10 0.01 7.10 COUNTY: Routt 5.50 7.35 0.25 0.59 0.13 0.07 7.10 WATERSHED: Slater Creek 6.60 7.45 0.30 0.30 0.15 0.05 7.15 DVISION: 6th 7.00 7.35 0.25 0.62 0.13 0.08 7.10 DOW CODE: USGS MAP: 7.00 7.35 0.25 0.62 0.13 0.08 7.10 USFS MAP: 8.60 7.40 0.30 1.13 0.15 0.17 7.10 TAPE WT: 0.0106 Level and Rod Survey 9.50 4.40 0.30 1.24 0.15 0.17 7.16 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.30 1.15 0.16 <t< td=""><td>SECTION: 20</td><td></td><td></td><td>3.50</td><td>7.25</td><td>0.10</td><td>0.00</td><td>0.06</td><td>0.00</td><td>7.15</td></t<>	SECTION: 20			3.50	7.25	0.10	0.00	0.06	0.00	7.15
RANGE: 88 W 4.50 7.35 0.20 0.00 0.10 0.00 7.16 PM: 6 5.00 7.30 0.20 0.07 0.10 0.01 7.10 COUNTY: Routt 5.50 7.35 0.25 0.59 0.13 0.07 7.10 COUNTY: Routt 6.00 7.45 0.30 0.30 0.15 0.05 7.15 WATERSHED: Slater Creek 6.50 7.35 0.25 0.72 0.13 0.09 7.10 DOW CODE:	TWP: 10 N			4.00	7.15	0.00	0.01	0.00	0.00	0.00
PM: 6 5.00 7.30 0.20 0.07 0.10 0.01 7.10 COUNTY: Routt 5.50 7.35 0.25 0.59 0.13 0.07 7.10 WATERSHED: Slater Creek 6.60 7.45 0.30 0.03 0.09 7.10 DIVISION: 6th 7.00 7.35 0.25 0.72 0.13 0.09 7.10 DOW CODE: 7.50 7.25 0.20 0.34 0.10 0.03 7.00 USGS MAP: 8.00 7.40 0.30 0.19 0.15 0.03 7.10 USFS MAP: 9.00 7.50 0.40 0.30 0.13 0.06 7.10 TAPE WT: 0.01066 5.07 9.00 7.50 0.40 0.31 0.03 7.10 SLOPE: 0.015130435 ft 9.50 7.40 0.15 0.17 7.16 SLOPE: 0.015130435 ft / ft 11.50 7.15 0.05 0.24 0.03 0.01 7.20 SLOPE: 0.015130435	RANGE: 88 W			4.50	7.35	0.20	0.00	0.10	0.00	7.15
COUNTY: Roult 5.50 7.35 0.25 0.59 0.13 0.07 7.10 WATERSHED: Slater Creek 6.00 7.45 0.30 0.30 0.15 0.05 7.10 DIVISION: 6th 7.35 0.25 0.72 0.13 0.09 7.10 DOW CODE: 7.00 7.35 0.25 0.62 0.13 0.08 7.10 DUSS MAP: 7.50 7.26 0.20 0.34 0.10 0.03 7.10 USGS MAP: 8.00 7.40 0.30 0.19 0.15 0.03 7.10 USGS MAP: 0.0106 11.50 7.50 0.26 0.20 0.34 0.10 0.03 7.10 USGS MAP: 0.0106 11.50 7.17 0.00 0.00 0.11 7.10 TAPE WT: 0.0106 10.0106 9.50 4.40 0.30 1.12 0.15 0.17 7.10 SLOPE: 0.015130435 ft / ft 11.50 7.15 0.00 0.00 0.00 7.16 ASSIGNED	PM: 6			5.00	7.30	0.20	0.07	0.10	0.01	7.10
COUNTY: Routt 6.00 7.45 0.30 0.30 0.15 0.05 7.15 WATERSHED: Slater Creek 6.50 7.35 0.25 0.72 0.13 0.09 7.10 DIVISION: 6th 7.60 7.35 0.25 0.62 0.13 0.08 7.10 DOW CODE: 7.50 7.25 0.20 0.34 0.10 0.03 7.05 USGS MAP: 7.50 7.50 7.50 0.30 0.15 0.03 7.10 USFS MAP: 9.00 7.50 0.40 0.30 1.13 0.15 0.17 7.10 USFS MAP: 9.00 7.50 0.40 0.30 1.13 0.15 0.17 7.10 TAPE WT: 0.0106 Level and Rod Survey V 9.50 4.40 0.30 1.24 0.15 0.17 7.15 SLOPE: 0.015130435 ft / ft 11.50 7.15 0.00 0.00 0.00 7.16 ASSIGNED TO: DATE DATE 12.00 7.30 0.15 0.00 0				5.50	7.35	0.25	0.59	0.13	0.07	7.10
WATERSHED: Slater Creek 6.60 7.35 0.25 0.72 0.13 0.09 7.10 DIVISION: 6th 7.00 7.35 0.25 0.62 0.13 0.08 7.10 DOW CODE: 7.50 7.25 0.20 0.34 0.10 0.03 7.00 USGS MAP: 8.60 7.40 0.30 0.19 0.03 7.10 USFS MAP: 9.00 7.50 0.40 0.81 0.20 0.16 7.10 TAPE WT: 0.0106 1bs / ft 9.50 4.40 0.30 1.12 0.15 0.17 7.10 TENSION: 99999 1bs 10.50 7.40 0.30 1.24 0.15 0.19 4.10 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.20 0.00 0.10 7.25 SLOPE: 0.015130435 ft / ft 11.50 7.15 0.00 0.00 7.10 ASSIGNED TO: DATE. DATE. 12.50 7.25 0.10 0.00 0.00 7.15	COUNTY: Routt			6.00	7.45	0.30	0.30	0.15	0.05	7.15
DIVISION: 6th 7.00 7.35 0.25 0.62 0.13 0.08 7.10 DOW CODE: 7.50 7.25 0.20 0.34 0.10 0.03 7.03 USGS MAP: 8.00 7.40 0.30 1.13 0.15 0.17 7.10 USFS MAP: 9.00 7.50 7.40 0.30 1.13 0.15 0.17 7.10 TAPE WT: 0.0106 Level and Rod Survey Ibs / ft 9.50 4.40 0.30 1.24 0.15 0.19 4.10 TENSION: 99999 1bs 11 9.50 4.40 0.30 1.24 0.15 0.17 7.15 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.15 0.13 0.00 7.25 SLOPE: 0.015130435 ft / ft 11.50 7.15 0.05 0.24 0.00 7.10 CHECKED BY: DATE 12.50 7.15 0.00 0.00 7.15 ASSIGNED TO: DATE 12.50	WATERSHED: Slater Creek			6.50	7.35	0.25	0.72	0.13	0.09	7.10
DOW CODE: 7.50 7.25 0.20 0.34 0.10 0.03 7.05 USGS MAP: 8.00 7.40 0.30 0.19 0.15 0.03 7.10 USFS MAP: 8.50 7.40 0.30 1.13 0.15 0.17 7.10 TAPE WT: 0.0106 9.00 7.50 0.40 0.81 0.20 0.16 7.10 TAPE WT: 0.0106 9.999 9.50 4.40 0.30 1.24 0.15 0.19 4.10 TENSION: 99999 1bs 1bs 10.50 7.40 0.15 0.13 0.08 0.01 7.25 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.20 0.00 0.10 0.00 7.10 Level and Rod Survey DATE 12.00 7.30 0.15 0.00 0.00 0.00 7.10 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.20 0.00 0.10 0.00 7.10 ASSIGNED TO: DATE DATE 12.50 7.25 <td< td=""><td>DIVISION: 6th</td><td></td><td></td><td>7.00</td><td>7.35</td><td>0.25</td><td>0.62</td><td>0.13</td><td>0.08</td><td>7.10</td></td<>	DIVISION: 6th			7.00	7.35	0.25	0.62	0.13	0.08	7.10
USGS MAP: 8.00 7.40 0.30 0.19 0.15 0.03 7.10 USFS MAP: 8.50 7.40 0.30 1.13 0.15 0.17 7.10 TAPE WT: 0.0106 9.00 7.50 0.40 0.81 0.20 0.16 7.10 TAPE WT: 0.0106 99999 9.00 7.40 0.30 1.13 0.15 0.17 7.10 SLOPE: 0.015130435 ft / ft 10.50 7.40 0.15 0.13 0.08 0.01 7.25 SLOPE: 0.015130435 ft / ft 11.50 7.15 0.05 0.24 0.03 0.11 0.00 7.10 CHECKED BY:	DOW CODE:			7.50	7.25	0.20	0.34	0.10	0.03	7.05
USFS MAP: 8.50 7.40 0.30 1.13 0.15 0.17 7.10 TAPE WT: 0.0106 9.00 7.50 0.40 0.81 0.20 0.16 7.10 TENSION: 99999 1bs / ft 9.50 4.40 0.30 1.24 0.15 0.17 7.10 SLOPE: 0.015130435 ft / ft 9.50 7.40 0.30 1.24 0.15 0.17 7.10 SLOPE: 0.015130435 ft / ft 10.50 7.40 0.15 0.13 0.08 0.01 7.25 SLOPE: 0.015130435 ft / ft 11.50 7.15 0.05 0.24 0.03 0.01 0.00 7.40 CHECKED BY: DATE DATE 12.50 7.25 0.10 0.00 0.08 0.00 7.15 ASSIGNED TO: DATE DATE 13.00 7.30 0.15 0.00 0.00 0.00 0.00 0.00 1 GL 16.90 6.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td>USGS MAP:</td> <td></td> <td></td> <td>8.00</td> <td>7.40</td> <td>0.30</td> <td>0.19</td> <td>0.15</td> <td>0.03</td> <td>7.10</td>	USGS MAP:			8.00	7.40	0.30	0.19	0.15	0.03	7.10
Level and Rod Survey ▼ 9.00 7.50 0.40 0.81 0.20 0.16 7.10 TAPE WT: 0.0106 99999 lbs / ft 9.50 4.40 0.30 1.24 0.15 0.19 4.10 TENSION: 99999 lbs 10.00 7.45 0.30 1.15 0.17 7.15 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.20 0.00 0.00 7.20 SLOPE: 0.015130435 ft / ft 11.50 7.15 0.05 0.24 0.03 0.01 7.20 CHECKED BY:	USFS MAP:			8.50	7.40	0.30	1.13	0.15	0.17	7.10
TAPE WT: 0.0106 0.106 0.15 0.19 4.10 TENSION: 99999 0.015 0.00 7.45 0.30 1.15 0.15 0.17 7.15 SLOPE: 0.015130435 ft / ft 10.00 7.40 0.15 0.10 0.00 7.20 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.20 0.00 0.10 0.00 7.20 CHECKED BY: DATE 12.00 7.30 0.15 0.00 0.08 0.00 7.15 ASSIGNED TO: DATE 13.00 7.30 0.15 0.00	Level and Rod Survey			9.00	7.50	0.40	0.81	0.20	0.16	7.10
TENSION: 99999 lbs 10.00 7.45 0.30 1.15 0.15 0.17 7.15 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.12 0.00 0.00 0.00 7.20 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.20 0.00 0.00 0.00 7.20 CHECKED BY: DATE. 12.00 7.30 0.15 0.00 0.08 0.00 7.15 ASSIGNED TO: DATE. DATE. 13.00 7.30 0.15 0.00 0.00 0.00 0.00 0.00 7.15 ASSIGNED TO: DATE. DATE. 13.00 7.30 0.15 0.00 <t< td=""><td>TAPE WT: 0.0106 bs /</td><td>ft</td><td></td><td>9.50</td><td>4.40</td><td>0.30</td><td>1.24</td><td>0.15</td><td>0.19</td><td>4.10</td></t<>	TAPE WT: 0.0106 bs /	ft		9.50	4.40	0.30	1.24	0.15	0.19	4.10
SLOPE: 0.015130435 ft / ft 10.50 7.40 0.15 0.13 0.08 0.01 7.25 SLOPE: 0.015130435 ft / ft 11.00 7.40 0.20 0.00 0.10 0.00 7.20 CHECKED BY: DATE 11.50 7.15 0.05 0.24 0.03 0.01 7.10 ASSIGNED TO: DATE 12.50 7.25 0.10 0.00 0.08 0.00 7.15 ASSIGNED TO: DATE 13.00 7.30 0.15 0.00 <td>TENSION: 99999 Ibs</td> <td></td> <td></td> <td>10.00</td> <td>7.45</td> <td>0.30</td> <td>1.15</td> <td>0.15</td> <td>0.17</td> <td>7.15</td>	TENSION: 99999 Ibs			10.00	7.45	0.30	1.15	0.15	0.17	7.15
SLOPE: 0.015130435 ft / ft 11.00 7.40 0.20 0.00 0.10 0.00 7.20 11.50 7.15 0.05 0.24 0.03 0.01 7.10 12.00 7.30 0.15 0.00 0.00 7.15 CHECKED BY: DATE. 12.50 7.25 0.10 0.00 0.05 0.00 7.15 ASSIGNED TO: DATE. DATE. WL 13.50 7.15 0.00 </td <td></td> <td></td> <td></td> <td>10.50</td> <td>7.40</td> <td>0.15</td> <td>0.13</td> <td>0.08</td> <td>0.01</td> <td>7.25</td>				10.50	7.40	0.15	0.13	0.08	0.01	7.25
11.50 7.15 0.05 0.24 0.03 0.01 7.10 12.00 7.30 0.15 0.00 0.08 0.00 7.15 CHECKED BY: 12.50 7.25 0.10 0.00 0.08 0.00 7.15 ASSIGNED TO: DATE. 13.00 7.30 0.15 0.00 0.08 0.00 7.15 ASSIGNED TO: DATE. WL 13.50 7.15 0.00	SLOPE: 0.015130435 ft / ft			11.00	7.40	0.20	0.00	0.10	0.00	7.20
CHECKED BY: DATE. 12.00 7.30 0.15 0.00 0.08 0.00 7.15 ASSIGNED TO: DATE. 12.50 7.25 0.10 0.00 0.05 0.00 7.15 ASSIGNED TO: DATE. WL 13.50 7.15 0.00				11.50	7.15	0.05	0.24	0.03	0.01	7.10
CHECKED BY:DATE				12.00	7.30	0.15	0.00	0.08	0.00	7.15
ASSIGNED TO: 13.00 7.30 0.15 0.00 0.08 0.00 7.15 ASSIGNED TO: DATE	CHECKED BY:DATEDATE.			12.50	7.25	0.10	0.00	0.05	0.00	7.15
ASSIGNED TO:DATE				13.00	7.30	0.15	0.00	0.08	0.00	7.15
15.00 6.90 0.00 0.00 0.00 1 GL 16.90 6.70 0.00 0.00 0.00 8S 19.30 5.71 0.00 0.00 0.00 TS 19.31 5.30 0.00 0.00 0.00	ASSIGNED TO:DATEDATE		WL	13.50	7.15	0.00	0.00	0.00	0.00	0.00
1 GL 16.90 6.70 0.00 0.00 0.00 BS 19.30 5.71 0.00 0.00 0.00 · TS 19.31 5.30 0.00 0.00 0.00				15.00	6.90			0.00	0.00	0.00
S BS 19.30 5.71 0.00 0.00 0.00 TS 19.31 5.30 0.00 0.00 0.00		1	GL	16.90	6.70			0.00	0.00	0.00
TS 19.31 5.30 0.00 0.00 0.00			N BS	19.30	5.71			0.00	0.00	0.00
			TS	19.31	5.30			0.00	0.00	0,00

Totals 2.08

a.

1.06

41

50' d/s of Road Xing

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER CONSERVATION BOARD LOCATION INFORMATION

STREAM N	AME: S.F.K. Slater CK	CROSS-SECTION NO .: 071007-052
CROSS-SE	STION LOCATION: 50 Pt 215 OF Road Fing	
1	140 48 48.2. 107 17 18.9 8400	- Elevation.
DATE: 7	10/07 OBSERVERS: Uppendent + H. Stinnel	
LEGAL I DESCRIPTI	ON A SECTION: NW SECTION: ZO TOWNSHIP: 10 (N)S RANGE: YO EW	DPM: (O
COUNTY:	Routt WATERSHED: Slader CK WATER DIVISION: 6 DOW WATE	R CODE:
MADICH	USGS:	
MAP(0):	USFS:	

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS (YES) NO	METER TYPE: MG 15	し一個	Birney			r I	
METER NUMBER:	DATE RATED:	CALIB/SPIN	:	TAPE WEIGHT:	Ibs/loot	TAPE TENSION: Ibs	
CHANNEL BED MATERIAL SIZE RANGE:			PHOTOGRAPHS TAKEN YES NO		NUMBER OF PHOTOGRAPHS: 7		

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (11)	ROD READING (II)		a d	LEGEND:
🛞 Tape @ Stake LB	0.0			\$ P	
Tape @ Stake RB	0.0		S K		
(1) WS @ Tape LB/RB	0.0	7,15/7,15	E T C	E E E E E E E E E E E E E E E E E E E	Photo (1)
2 WS Upstream	21.0	7,50	Ĥ		~
3 WS Downstream	36,5	7,87	1 -		Direction of Flow
SLOPE	37/57.5 = 0.0	151304		& RB	

AQUATIC SAMPLING SUMMARY

STREAM ELECTROFISHED: YES NO	ELECTROFISHED: YES NO DISTANCE ELECTROFISHED:IT FISH CAUGHT: YES/NO									WATER CHEMISTRY SAMPLED: YES NO								
	LENGTH	- FREC	JUENC	Y DISTI	RIBUTI	ON BY	DNE-IN	CH SIZ	E GROI	UPS (1.	0-1.9,2	2.0-2.9,	ETC.)					
SPECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
			-											2.2				
AQUATIC INSECTS IN STREAM SECTION E	3Y COMMON (OR SCI	ENTIFIC	C ORDE	ER NAM	IE:	_				-				_			
					cr	DMM	ENT	s la	10.	CAN		5	-11-		75	E	< L	ζ.
1 6				_				0 1.	SG .	2174	all C	5	41	-	-	21 -	51	5
420 JO Several	CRI		Seer	N	Q	Up;	er	~	and		1.21	14						
TOM LIC			,			11						1						
Total hardness :	= 90 ^	n9/1	1 (Ca	CO	3	PI	PNO	oht	Lata	ein	Alt	-	.1.	1 =	25	20	Mg/
PH = 8.5		1				-1			r-				- in it i	<u> </u>	2	<u> </u>	2.0	/

DISCHARGE/CROSS SECTION NOTES

	<u>FK</u> <	slafe-	Ck			CROSS	SECTION	NO.:	Still 0	> sheet	(
BEGINNING OF MEASU	REMENT (0.0 AT	OF WATER LOOKING D STAKE)	OWNSTREAM:	CEFT/RIGI	HT Ga	ge Rea	ding:	fi 1	аме: /3	5:15	
Stake (S) Dist	lance Width	Total Vertical	Water Depth	Depth	Revoluti	ons		Velocity	/ (fl/sec)		Discharge
Grassline (G) Fr Waterline (W) In Rock (R) Po (itial pint (ft)	Depth Error Tapé/Inst (ft)	(ft)	Obser- vation (f1)			Time (sec)	At Point	Mean in Vertical	Area (f1 ²)	(cfs)
TS 6	8	5,59									
BSULE	2.M	6.73								· · · · · ·	·····
	5	6.80									
//		6.85						······································			
2	<u> </u>	7.00									
1.1 7	9	7.15	R					Q-			
The C	15	775	10		,			T			
	10	7.15	Th I					.01			
	.5	7.25	7.0					Ø			
5	0	7,30	.20					.07			
1.	5	7.35	.25					.59			
6	, Ú	7.45	,30					.30			
6	,5	7,35	.25					.72	-		
7	<u>.0</u>	7.35	.75					62			
· · · · · · · · · · · · · · · · · · ·	β	7.25	$\frac{20}{20}$		· · ·			- 54			
X	,0 Г	7,40	- 30					113			
9	\overline{O}	7.50	<u> </u>					.81			<u>,</u>
9,	5	7.40	30					1,24			
10	0,0	7,45	.30		1 A A			1,15			
10	15	7,412	.15					13	, :		
	1,0	7.40	.20					ð			
	1,5	7.15	<i>_0</i> 05		-			124	· - ·		
12	2.0	7,30	-15				~ 	-2-	· · · · · · ·		
	.5	7.25					<u>_</u>	مستعرضت			
	26	<u>7,50</u>	,15		<u> </u>			0	· ·		
),) S ()	+, 0					<u> </u>				
61 10	a 9	6.70									
B5 14	7,3	5,71									
175 19	(,3)	5.20									
							· .				
			<u> </u>			,					
			ļ	ļ							
				<u></u>						<u>. </u>	
ļ		· · · · · · · · · · · · · · · · · · ·		· · · · · ·	ļ						
TOTALS:				 				1			
End of Measureme		Case Readin	E		1 TIONS PER	FORME	<u>1</u> D BY:	<u> </u>	L. CALCULATIONS	1 CHECKED BY	: