STATE OF COLORADO

Bill Ritter, Jr., Governor DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE

AN EQUAL OPPORTUNITY EMPLOYER

Thomas E. Remington, Director 6060 Broadway Denver, Colorado 80216 Telephone: (303) 297-1192 *wildlife.state.co.us*

January 14, 2010

Ms. Linda Bassi Colorado Water Conservation Board Stream and Lake Protection Section 1313 Sherman Street, Room 723 Denver, Colorado 80203

Re: Colorado Division of Wildlife Instream Flow Recommendations for Grizzly Creek.

Dear Linda,

The purpose of this letter is to formally transmit the Colorado Division of Wildlife's (CDOW) support for Trout Unlimited's (TU) Instream Flow Recommendation for Grizzly Creek pursuant to Rule 5n of the Rules Concerning the Colorado Instream Flow and Natural Lake Levels. The CDOW believes that Grizzly Creek should be considered for inclusion into the Instream Flow Program (ISFP) because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right. As you know, the State of Colorado's Instream Flow Program (ISFP) was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (See §37-92-102 (3) C.R.S.). The statute vests the Colorado Water Conservation Board (Board) with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's ISFP, the statute directs the Board to request instream flow recommendations from other state and federal agencies.

Location and Land Status

The Grizzly Creek instream flow recommendation begins at the headwaters of Grizzly Creek and extends downstream to the United States Forest Service (USFS) Boundary. The proposed instream flow segment is located northeast of the Town of Craig. 100% of the proposed segment is located on public lands.

Biological Summary and R2CROSS Analysis

The CDOW and TU worked cooperatively on this recommendation and together have collected stream cross section information, natural environment data, and other data needed to quantify the instream flow needs for this reach of the Grizzly Creek. Grizzly Creek is classified as a medium stream (between 20 to 35 feet wide) and fishery surveys indicate the stream environment of the Grizzly Creek supports brook trout (Salvelinus fontinalis). The Board staff relies upon the biological expertise of the cooperating agencies to interpret output from the R2CROSS data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

The results of the R2CROSS data collection efforts for this segment indicate that an instream flow recommendation of 1.3 cfs, is required to maintain the three principal hydraulic criteria of average depth, average velocity and percent wetted perimeter, and 0.5 cfs, is required to maintain two of the three principal hydraulic criteria. However, these results are only based on the physical and biological data collected to date and do not incorporate any water availability constraints.

Water Availability Analysis and Instream Flow Recommendation

The TU staff conducted a preliminary evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation based on an aerial apportionment of USGS gage 09245500 on the North Fork of Elkhead Creek, CO. Subsequent to this preliminary analysis, the CWCB completed their geometric mean analysis of daily flows for Grizzly Creek. CDOW and TU used the CWCB's water availability analysis to adjust the seasonality and quantities of the R2CROSS instream flow recommendation so that the estimated daily flow of Grizzly Creek reasonably exceeds the recommended instream flow amounts. These seasonal adjustments are reflected in the final instream flow recommendation shown below:

- 1.3 cfs (March 15 through July 15)
- 0.5 cfs (July 16 through March 14)

Relationship to State Policy

The CDOW supports the Instream Flow Program because the appropriation of instream flow water rights helps the CDOW meet our statutory mission as described in Title 33 of the Colorado Revised Statutes (CRS):

§33-1-101 – "It is the policy of the state of Colorado that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... that there shall be provided a comprehensive program designed to offer the greatest possible variety of wildlife-related recreational opportunity to the people of this state and its visitors and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife related opportunities."

33-2-106 - (1) The division [of Wildlife] shall establish such programs including acquisition of land or aquatic habitat as are deemed necessary for management of nongame, endangered, or threatened wildlife. (2) ... the division may enter into agreements with federal agencies or political subdivisions of this state or with private persons for administration and management of any area established under this section or utilized for management of nongame, endangered, or threatened wildlife."

\$33-5-101 – "It is declared to be the policy of the state that its fish and wildlife resources, and particularly the fishing waters within the state, are to be protected and preserved from the actions of any state agency to the end that they be available for all time and without change in their natural existing state, except as may be necessary and appropriate after due consideration of all factors involved."

In addition to meeting the state policy discussed above Grizzly Creek satisfies criteria identified by the CWCB for ISF appropriations, including:

- a) The recommendations have broad public support;
- b) The proposed appropriations will have a positive impact on state or local economies;
- c) The recommendations are part of a water acquisition strategy;
- d) The recommendations are part of a collaborative solution to a unique natural resource issue with federal, state or local partners; and
- e) The instream flow amount and timing recommended by TU, CDOW and CWCB staff:
 - Is based upon standard scientific methodology and an accurate R2CROSS analysis;
 - Reflects the amount of water available for appropriation as an instream flow water right; and
 - Is required to preserve the natural environment to a reasonable degree.

TU has provided copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. If you have any questions regarding the provided information or the instream flow recommendation please contact me at (303)-291-7267.

Sincerely,

Mark Uppendahl

Mark Uppendahl Colorado Division of Wildlife Instream Flow Program Coordinator

 Cc: Grady McNeill, CDOW Resource Support Section Manager – w/o attachments Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Dave Graf, CDOW Water Resource Specialist – w/o attachments Sherman Hebein, CDOW NW Senior Aquatic Biologist – w/o attachments Ron Velardi, CDOW Northwest Regional Manager - w/o attachments Boyd Wright, CDOW Aquatic Biologist – w/o attachments Bill de Vergie, CDOW AWM Area 6 – w/o attachments Greg Espegren, Trout Unlimited

Greg Espegren Aquatics Specialist Colorado Water Project 1320 Pearl Street, Suite 320 Boulder, CO 80302 303.440.2937

January 4, 2010

Ms. Linda Bassi Mr. Jeff Baessler Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi and Mr. Baessler,

Trout Unlimited (TU) in conjunction with the Colorado Division of Wildlife (CDOW) is submitting this instream flow recommendation for Grizzly Creek, located in Routt County, Water Division 6.

Location and Land Status. Grizzly Creek originates on the northern flank of Bears Ears Peaks at the confluence of two unnamed tributaries at an elevation of 8810 feet. Over the next 2.9 miles it flows generally northward through the Routt National Forest as it drops to the forest boundary an elevation of 8125 feet. The proposed ISF reach covers this entire 2.9 mile segment and is located entirely on Forest Service Land (Fig. 1).

Biological Summary and R2CROSS Analysis. In July and September of 2007, October 2008, and July 2009, TU and CDOW collected stream cross sectional data, natural environment data, and other data needed to quantify instream flow needs (see Table 1). Previous survey data collected by CDOW indicated the stream supports healthy populations of Colorado River cutthroat trout however more recent information indicates that brook trout are the predominant fish species in Grizzly Creek.

DATE	MEASURED FLOW (cfs)	MODELING RANGE (cfs)	FLOW MEETING 3 CRITERIA	FLOW MEETING 2 CRITERIA
07/10/07	0.20	0.5 - 0.1	Not met in table	0.25
09/05/07	0.15	0.4 - 0.1	Not met in table	0.45
10/02/08	0.47	1.2 - 0.2	2.10	0.70
07/08/09	2.42	6.0 - 1.0	1.30	0.85
Average	of flows within modelir	ng range	1.30	0.50

Table 1. Summary of R2CROSS datasets

Trout Unlimited: America's Leading Coldwater Fisheries Conservation Organization 1320 Pearl Street, Suite 320, Boulder, CO 80302 (303) 440-29370 • Fax: (303) 440-7933 • www.tu.org Note: Table entries appearing in italicized font indicated flows that were either not met in R2CROSS staging table or outside of 0.4 to 2.5 times measured flow R2CROSS modeling window.

Stream cross sectional data were analyzed using the R2CROSS program, and the output was evaluated using the methods described in Nehring (1979) and Espegren (1996). The R2CROSS models how average depth, percent wetted perimeter and average velocity vary with discharge. According to the criteria established by Nehring (1979), the relevant minimum requirements are an average depth of 0.2 feet, a wetted perimeter of 50%, and an average velocity of 1.0 ft/sec. Protecting salmonids during the summer season is accomplished by insuring all three criteria are met while during the winter protection can be accomplished by protecting 2 of three criteria. Thus, the fishery of Grizzly Creek can be protected with minimum summer flows of 1.3 cfs and minimum winter flows of 0.50 cfs. TU and CDOW recommend that the CWCB appropriate the following flow amounts to preserve the natural environment of Grizzly Creek to a reasonable degree:

- From March 15 through July 15 a flow appropriation of 1.30 cfs is recommended to maintain the three principal criteria of average depth, average velocity, and percent wetted perimeter;
- From July 16 through March 14 a flow appropriation of 0.50 cfs is recommended to maintain the average depth and wetter perimeter criteria.

Water Availability. The preliminary instream flow recommendation we submitted in February 2008 was based on an aerial apportionment of USGS gage 09245500 on the North Fork of Elkhead Creek, CO. Subsequent to that preliminary analysis, the CWCB provided us with a geometric mean analysis of daily flows on Grizzly Creek. We used the CWCB's water availability analysis to adjust the seasonality and quantities of the instream flow recommendation so that the estimated daily flow through Grizzly Creek typically exceeds the recommended instream flow. These seasonal adjustments are reflected in the final instream flow recommendation above.

Relationship to Existing State Policy. TU and the CDOW are forwarding this stream flow recommendation to the CWCB to meet the State of Colorado's policy "that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities." C.R.S. 33-1-101(1). Further, the CDOW Strategic Plan states "Healthy aquatic environments are essential to maintain healthy and viable fisheries, and critical for self-sustaining populations. The Division desires to protect and enhance the quality and quantity of aquatic habitats." TU and CDOW recommend that Grizzly Creek be considered for inclusion in the Instream Flow Program because doing so would help meet these stated policies. Specifically, establishing minimum flows through this reach would preserve the natural environment of the stream to a reasonable degree.

Attached, please find copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. If you have any questions regarding the attached information or the instream flow recommendations, please feel free to contact me at (303) 440-2937.

Trout Unlimited thanks the Colorado Division of Wildlife and the Colorado Water Conservation Board Staff for their support in preparing this recommendation.

Sincerely,

Trout Unlimited Aquatic Specialist

Cc: Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Mark Uppendahl, CDOW Instream Flow Program Coordinator

Figure 1. Map of Grizzly Creek watershed. Positions of upper and lower termini of the proposed instream flow reach are noted as is the location of the R2CROSS cross section. Additionally, locations known diversion structures are plotted. The watershed's location within Division 6 is indicated by the red box on the inset map of Colorado.

Greg Espegren Aquatics Specialist Colorado Water Project 1320 Pearl Street, Suite 320 Boulder, CO 80302 303.440.2937

January 5, 2009

Ms. Linda Bassi Mr. Jeff Baessler Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi and Mr. Baessler,

Trout Unlimited (TU) in conjunction with the Colorado Division of Wildlife (CDOW) is submitting this instream flow recommendation for Grizzly Creek, located in Routt County, Water Division 6.

Location and Land Status. Grizzly Creek originates on the northern flank of Bears Ears Peaks at the confluence of two unnamed tributaries at an elevation of 8810 feet. Over the next 2.9 miles it flows generally northward through the Routt National Forest as it drops to the forest boundary an elevation of 8125 feet. The proposed ISF reach covers this entire 2.9 mile segment and is located entirely on Forest Service Land (Fig. 1).

Biological Summary and R2CROSS Analysis. In July and September of 2007 and October of 2008, TU and CDOW collected stream cross sectional data, natural environment data, and other data needed to quantify instream flow needs. Previous survey data collected by CDOW indicated the stream supports healthy populations of Colorado River cutthroat trout however more recent information indicates that brook trout are the predominant fish species in Grizzly Creek.

Stream cross sectional data were analyzed using the R2CROSS program, and the output was evaluated using the methods described in Nehring (1979) and Espegren (1996). The R2CROSS models how average depth, percent wetted perimeter and average velocity vary with discharge. According to the criteria established by Nehring (1979), the relevant minimum requirements are an average depth of 0.2 feet, a wetted perimeter of 50%, and an average velocity of 1.0 ft/sec. Our initial surveys indicate that, on average, 2 of 3 criteria can be protected with an ISF right of 0.35 cfs. Streamflows during the summer of 2007 and fall of 2008 were extremely low and consequently our estimates of the discharge necessary to protect 3 of 3 criteria were out of range.

Therefore, based on the best available scientific data, TU and CDOW recommend that the CWCB appropriate the following flow amount to preserve the natural environment of Buzzard Creek to a reasonable degree:

• From Jan 1 through Dec 31 a flow appropriation of 0.35 cfs is recommended to maintain an average depth of 0.2 ft and 50% percent wetted perimeter;

Attached in Appendix A, please find copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. The modeling results for the 2 of 3 criteria from this survey effort are within the confidence interval produced by the R2CROSS model. Since the 3 of 3 criteria modeling result from this survey effort was not within the confidence interval produced by the R2CROSS model, TU and CDOW may collect additional field data in the future in support of a summertime flow enlargement. If you have any questions regarding the attached information or the instream flow recommendations, please feel free to contact me at (303) 440-2937.

Relationship to Existing State Policy. TU and the CDOW are forwarding this stream flow recommendation to the CWCB to meet the State of Colorado's policy "that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities." C.R.S. 33-1-101(1). Further, the CDOW Strategic Plan states "Healthy aquatic environments are essential to maintain healthy and viable fisheries, and critical for self-sustaining populations. The Division desires to protect and enhance the quality and quantity of aquatic habitats." TU and CDOW recommend that Grizzly Creek be considered for inclusion in the Instream Flow Program because doing so would help meet these stated policies. Specifically, establishing minimum flows through this reach would preserve the natural environment of the stream to a reasonable degree.

TU believes that the information provided to the Board is the best scientific data available and that it forms the basis for the Board to make its statutory findings pursuant to C.R.S. 37-92-102(3)(c). Therefore, we recommend that the CWCB make the required findings and appropriate the above-referenced instream flow amount on Grizzly Creek. TU thanks the CDOW and CWCB staffs for their support in preparing this recommendation.

Sincerely,

Greg Espegren Trout Unlimited Aquatic Specialist

Cc: Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Mark Uppendahl, CDOW Instream Flow Program Coordinator

Figure 1. Map of Grizzly Creek watershed. Positions of upper and lower termini of the proposed instream flow reach are noted as is the location of the R2CROSS cross section. Additionally, locations known diversion structures are plotted. The watershed's location within Division 6 is indicated by the red box on the inset map of Colorado.

John Roach, Ph.D. Aquatics Specialist Colorado Water Project 1320 Pearl Street, Suite 320 Boulder, CO 80302 303.440.2937

February 13, 2008

Ms. Linda Bassi Mr. Jeff Baessler Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi and Mr. Baessler,

Trout Unlimited in conjunction with the Colorado Division of Wildlife (CDOW) is submitting this instream flow recommendation for Grizzly Creek, located in Routt County, District 6.

Location and Land Status. Grizzly Creek originates on the northern flank of Bears Ears Peaks at the confluence of two unnamed tributaries at an elevation of 8810 feet. Over the next 2.9 miles it flows generally northward through the Routt National Forest as it drops to the forest boundary an elevation of 8125 feet. The proposed ISF reach covers this entire 2.9 mile segment and is located entirely on Forest Service Land (Fig. 1).

Biological Summary and R2CROSS Analysis. In July and September of 2007 TU and CDOW collected stream cross sectional data, natural environment data, and other data needed to quantify instream flow needs. Previous survey data collected by CDOW indicated the stream supports healthy populations of Colorado River cutthroat trout.

Stream cross sectional data were analyzed using the R2CROSS program, and the output was evaluated using the methods described in Nehring (1979) and Espegren (1996). The R2CROSS models how average depth, percent wetted perimeter and average velocity vary with discharge. According to the criteria established by Nehring (1979), the relevant minimum requirements are an average depth of 0.2 feet, a wetted perimeter of 50%, and an average velocity of 1.0 ft/sec. Our initial survey indicates that, on average, 2 of 3 criteria (i.e., average depth and wetted perimeter) can be protected with a ISF right of 0.25 cfs. The estimate of the flow required to protect 2 of 3 criteria by the second survey was out of range and was not used in developing our ISF request. Unfortunately, because flows were so low during the summer of 2007, we are unable to model the discharge necessary to ensure an average velocity of 1.0 ft/s with the existing data. Therefore, Trout Unlimited and CDOW are planning to return to Grizzly Creek during the summer of 2008 to collect additional data. Based on the results of that sampling effort, we will adjust our ISF recommendation.

Trout Unlimited: America's Leading Coldwater Fisheries Conservation Organization 1320 Pearl Street, Suite 320, Boulder, CO 80302 (303) 440-29370 • Fax: (303) 440-7933 • www.tu.org In the mean time, Trout Unlimited and CDOW recommend that the CWCB begin procedures to appropriate a year-round ISF right of 0.25 cfs, adjusted for water availability. Because current estimates of water availability suggest that 0.25 cfs may not be available during the winter months, we are recommending the following flow amounts be appropriated to preserve the natural environment of Grizzly Creek to a reasonable degree:

• From Jan 1 through Dec 31 a flow appropriation of 0.25 cfs is recommended to maintain an average depth of 0.2 ft and 50% percent wetted perimeter;

Summer flows should be adjusted upwards once sufficient data are available to estimate the discharge needed to ensure an average velocity of 1.0 ft/s during this period. Additionally, should we be able to establish cross-sections further downstream, it is likely that both the summer and winter flow recommendation will increase. The modeling results for the 2 of 3 criteria from this survey effort are within the confidence interval produced by the R2CROSS model (See Appendix A).

Water Availability. The USGS maintained a gage (USGS gage 09245500) on the North Fork of Elkhead Creek (North Fork Elkhead Creek near Elkhead, CO) between October, 1958 and October, 1973. This watershed is due south of Grizzly Creek and thus experiences similar climatic conditions. Although the gaged portion of Elkhead Creek's watershed (21.3 mi²) is over twice the size of the Grizzly Creek watershed (9.65 mi²), it is not nearly as large as the gaged portion of Slater Creek (91.6 mi²) and has considerably fewer diversions than Slater Creek (4 versus 36, respectively). As such, North Fork Elkhead Creek is a better reference watershed.

Although there are four diversion structures in North Fork Elkhead Creek's watershed (See Structure Summary Reports in Appendix B), there were only records of diversions through Ellis & Kitchen Ditch. Because the daily diversion records for this ditch spanned the period from April 1, 1933 through September 30, 2006 our preliminary water availability analysis adjusted flows through North Fork Elkhead Creek by adding the amount of water diverted through this ditch to the daily records at the USGS gage. Because some of this water may return to the creek above the gage, this estimate may be somewhat high. However, because the diversion structure is relatively low in the watershed, we believe these return flows are relatively small compared to the withdrawals.

We used an aerial apportionment approach to estimate the discharge passing through the proposed ISF reach on Grizzly Creek. In short, we assumed that the average water contributed to daily stream flows per square mile of Grizzly Creek's watershed was the same as that contributed per square of North Fork Elkhead Creek's watershed. This allowed us to estimate how much water would have flowed through Grizzly Creek in the absence of any diversions. There are no known diversion structures within the Grizzly Creek watershed and thus no adjustments to the modeled flows through Grizzly Creek were needed.

This analysis was used to adjust the recommended ISF so that our estimate of average daily flows through Grizzly Creek during the period of record (10/1/58 to 10/2/73) typically exceeded the recommended flows (Fig. 3) and that 50% of monthly flows were approximately equal to or greater than the recommended flows throughout the year (Table 1).

This water availability analysis is somewhat coarse, it is likely that our flow estimates through the reach are lower than expected. Because the Elkhead Creek watershed is on a south-facing slope, it is likely to have a slightly different hydrograph than watersheds which are north-facing and, consequently, the amount and timing of flows measured on Elkhead Creek will be slightly different than those measured through Grizzly Creek. Furthermore, because the Elkhead Creek gage is low in the watershed, it is possible there are intervening stream segments that are either losing or not gaining as quickly as the upper reaches. This would also serve to lower the estimate of stream flow through the proposed instream reach. For these reasons, we expect a more robust instream flow analysis by the CWCB will show a greater amount of water is available for appropriation.

Relationship to Existing State Policy. Trout Unlimited and the CDOW are forwarding this stream flow recommendation to the CWCB to meet the State of Colorado's policy "that the wildlife and their environment are to be protected, preserved, enhanced, and managed for the use, benefit, and enjoyment of the people of this state and its visitors ... and that, to carry out such program and policy, there shall be a continuous operation of planning, acquisition, and development of wildlife habitats and facilities for wildlife-related opportunities." C.R.S. 33-1-101(1). Further, the CDOW Strategic Plan states "Healthy aquatic environments are essential to maintain healthy and viable fisheries, and critical for self-sustaining populations. The Division desires to protect and enhance the quality and quantity of aquatic habitats." TU and CDOW recommend that Grizzly Creek be considered for inclusion in the Instream Flow Program because doing so would help meet these stated policies. Specifically, establishing minimum flows through this reach would preserve the natural environment of the stream to a reasonable degree.

Attached in Appendix A, please find copies of the field data sheets, the R2CROSS modeling runs, and stream photographs. Attached in Appendix B, please find copies of the Structure Summary Reports for the structures in the watershed. If you have any questions regarding the attached information or the instream flow recommendations, please feel free to contact me at (303) 440-2937.

Trout Unlimited thanks the Colorado Division of Wildlife and the Colorado Water Conservation Board Staff for their support in preparing this recommendation.

Sincerely,

W. John Roach, Ph.D. Trout Unlimited Aquatic Specialist

Cc: Jay Skinner, CDOW Water Unit Program Manager – w/o attachments Mark Uppendahl, CDOW Instream Flow Program Coordinator

Figure 1. Map of Grizzly Creek watershed. Positions of upper and lower termini of the proposed instream flow reach are noted as is the location of the R2CROSS cross section. Additionally, locations known diversion structures are plotted. The watershed's location within Division 6 is indicated by the red box on the inset map of Colorado.

Figure 2. Map of Grizzly Creek and adjacent watersheds, including the North Fork Elkhead Creek. Because there is no gage on the West Prong, the North Fork of Elkhead Creek was used as a reference watershed for determining water availability.

Figure 3. Recommended instream flow appropriations (green line) as compared to estimated average daily discharge past LT of proposed ISF reach on Grizzly Creek. To ease comparisons, the inset plot shows flows under 10 cfs.

Table 1. Summary statistics of estimated mean daily discharge through Grizzly Creek. For each month, the
discharge that 50% of the flows were equal to or greater than is highlighted Yellow indicates summer months and
blue indicates winter months.
Monthly Statistics

j = 100 = 1													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
# days	465	424	465	450	465	450	430	367	396	467	450	465	5294
Avg Day	0.78	0.83	1.95	19.31	50.67	16.11	1.56	0.55	0.57	0.79	0.81	0.77	7.89
Max Day	2	2	21	177	196	88	8	3	5	5	3	2	196
Min Day	0.23	0.36	0.36	1.09	6.34	1.18	0.05	0.02	0.00	0.09	0.18	0.18	0.00
# months	15	14	15	15	15	15	14	12	13	15	15	15	12
Sdev Month	0.25	0.25	1.35	15.35	22.19	10.94	0.99	0.34	0.29	0.38	0.29	0.25	
Skew Month	-0.07	0.08	1.56	1.14	0.89	0.58	0.48	0.75	0.70	1.47	1.12	-0.23	
Min Month	0.36	0.45	0.52	4.43	24.74	4.16	0.22	0.05	0.13	0.37	0.39	0.37	
Max Month	1.16	1.21	5.59	53.96	100.56	33.89	3.51	1.18	1.16	1.80	1.55	1.12	
Percentiles*													
1%	1.36	1.36	13.29	112.26	173.66	77.00	6.34	1.95	2.53	2.32	1.90	1.36	104.14
5%	1.18	1.27	7.24	69.80	122.94	44.36	4.42	1.40	1.63	1.72	1.49	1.18	44.36
10%	1.11	1.13	3.85	42.10	102.75	38.48	3.44	1.09	1.04	1.36	1.18	1.09	27.16
20%	1.00	1.09	1.82	29.42	72.42	26.25	2.49	0.86	0.81	1.09	1.00	1.00	7.24
50%	0.81	0.91	1.18	9.96	38.93	11.32	1.13	0.44	0.42	0.68	0.72	0.81	1.00
80%	0.54	0.59	0.81	3.33	23.09	4.42	0.36	0.14	0.23	0.45	0.54	0.53	0.54
90%	0.45	0.50	0.77	2.08	18.56	2.53	0.18	0.09	0.09	0.36	0.45	0.45	0.36
95%	0.36	0.45	0.45	1.56	14.48	1.88	0.09	0.05	0.05	0.32	0.41	0.41	0.23
99%	0.36	0.45	0.36	1.13	9.96	1.27	0.05	0.05	0.05	0.18	0.27	0.27	0.06

* Percentiles estimate the value (discharge) in the record associated with a given percentile. They provide an estimate of the percentage of days on which a given flow is exceeded. Percentiles were calculated using the PERCENTILE function in MicroSoft Excel.

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:	Grizzly Cre	eek #2 (Lower Site)
XS LOCATION:	at End of F	Road (40 48 23.9 107 13 05.6)
XS NUMBER:	2	
DATE:	8-Jul-09	
OBSERVERS:	Uppendah	I & Espegren
1/4 SEC:	NW	
SECTION:	25	
TWP:	10 N	
RANGE:	88 W	
PM:	6	
COUNTY:	ROUTT	
WATERSHED:	SLATER O	CREEK
DIVISION:	6	
DOW CODE:	0	
USGS MAP:	0	
USFS MAP:	0	
SUPPLEMENTAL D	ATA	*** NOTE ***
		Leave TAPE WT and TENSION
		at defaults for data collected
TAPE W1:	0.0106	with a survey level and rod
TENSION:	99999	
CHANNEL PROFILE	DATA	
SLOPE:	0.025	
INPUT DATA CHECK	ED BY:	DATE
	2 2 ANG 09100108090	
ASSIGNED TO:	••••••	DATE

..

STREAM NAME: XS LOCATION: XS NUMBER: Grizzly Creek #2 (Lower Site) at End of Road (40 48 23.9 107 13 05.6) 2

34	=)					
10	WATER	VERT	D.J.	FEATURE		
VEI	DEPTH	DEPTH	DIST			
		5.32	0.00	TS		
		5.82	0.01	BS		
		6.32	1.00	TB. GL		
		7.67	1.20			
		7,91	1.60			
0.00	0.00	8.05	1.80	SW		
0.70	0.10	8.15	2.10			
0.61	0.15	8.20	2.40			
0.69	0.10	8.15	2.70			
0.35	0.10	8.15	3.00			
0.70	0.10	8.15	3.30			
1.53	0.20	8.25	3.60			
1.30	0.15	8.20	3.90			
1.31	0.20	8.25	4.20			
1.94	0.30	8.35	4.50			
1.91	0.30	8.35	4.80			
2.20	0.45	8.50	5.10			
1.06	0.50	8.55	5.40			
0.94	0.50	8,55	5.70			
1.64	0.50	8.55	6.00			
1.60	0.50	8.55	6.30			
1.74	0.45	8.50	6.60			
1.35	0.50	8.55	6.90			
1.83	0.25	8.30	7.20			
1.01	0.25	8.30	7.50			
0.05	0.40	8.45	7.80			
0.00	0.30	8.30	8.10			
0.00	0.00	8.05	8.30	SW		
5.00		7.52	8.70	GL		
		7.39	9.50			
		7.06	10.70			
		6.01	10.90			
		5.73	11.60	BS		
		FOR	11 61	TC		

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.10 0.03 0.02 0.30 0.15 0.05 0.03 0.02 0.10 0.03 0.30 0.30 0.10 0.03 0.01 0.30 0.10 0.03 0.02 0.32 0.20 0.06 0.09 0.30 0.15 0.05 0.06 0.30 0.20 0.06 0.08 0.32 0.30 0.09 0.17 0.30 0.09 0.30 0.17 0.34 0.45 0.14 0.30

0.50

0.50

0.50

0.50

0.45

0.50

0.25

0.25

0.40

0.30

VALUES COMPUTED FROM RAW FIELD DATA

WATER

DEPTH

AREA

(Am)

WETTED

0.30

0.30

0.30

0.30

0.30

0.30 0.39

0.30

0.34

0.34

0.32

0.00

0.00

0.00

0.00

PERIM.

0.00 0.00 0.00 0.0% 0.00 0.00 0.00 0.0% 6.89 0.5 1.88 2.42 100.0% ., (Max.) 0.0766

0.15

0.15

0.15

0.15

0.14

0.15

0.08

0.08

0.12

0.08

0.00

0.00

0.00

0.00

0.00

Manning's n = Hydraulic Radius=

0.27195396

%Q

CELL

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.9%

1.1%

0.9%

0.4%

0.9%

3.8%

2.4%

3.3%

7.2%

7.1%

12.3%

6.6%

5.8%

9.9%

9.7%

8.4%

5.7%

3.1%

0.2%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

10.2%

Q

(Qm)

0.16

0.14 0.25

0.24

0.23

0.20

0.14

0.08

0.01

0.00

0.00

0.00

0.00

0.00

0.00

STREAM NAME: XS LOCATION: XS NUMBER: Grizzly Creek #2 (Lower Site) at End of Road (40 48 23.9 107 13 05.6) 2

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	1.88	1.86	-0.7%
7.80	1.88	3.56	89.7%
7.82	1.88	3.42	82.2%
7.84	1.88	3.28	74.7%
7.86	1.88	3.14	67.3%
7.88	1.88	3.00	60.0%
7.90	1.88	2.86	52.6%
7.92	1.88	2.73	45.4%
7.94	1.88	2.59	38.2%
7.96	1.88	2.46	31.0%
7.98	1.88	2.32	23.9%
8.00	1.88	2.19	16.8%
8.01	1.88	2.12	13.3%
8.02	1.88	2.06	9.8%
8.03	1.88	1.99	6.3%
8.04	1.88	1.93	2.8%
8.05	1.88	1.86	-0.7%
8.06	1.88	1.80	-4.1%
8.07	1.88	1.73	-7.6%
8.08	1.88	1.67	-11.0%
8.09	1.88	1.61	-14.4%
8.10	1.88	1.54	-17.7%
8.12	1.88	1.42	-24.4%
8.14	1.88	1.29	-31.0%
8.16	1,88	1.18	-37.2%
8.18	1.88	1.07	-42.8%
8.20	1.88	0.98	-48.0%
8.22	1.88	0.88	-52.9%
8.24	1.88	0.80	-57.4%
8.26	1.88	0.72	-61.6%
8.28	1.88	0.64	-65.8%
8.30	1.88	0.57	-69.8%

WATERLINE AT ZERO AREA ERROR =

B.048

...

, 625

STREAM NAME: XS LOCATION: XS NUMBER: Grizzly Creek #2 (Lower Site) at End of Road (40 48 23,9 107 13 05.6) 2

Constant Manning's n

4	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC
'GL'	180 7.52	7.52	0.75	1.03	5.62	8.42	100.0%	0.67	13.15	2.34
	7.55	7.50	0.72	1.00	5,40	8.36	99.2%	0.65	12.40	2.30
	7.60	7.45	0.68	0.95	5.03	B.24	97.9%	0.61	11.11	2.21
	7.65	7.41	0.63	0.90	4.66	8.13	96.6%	0.57	9.86	2.12
	7.70	7.32	0.59	0.85	4.29	7.99	94.9%	0.54	8.70	2.03
	7.75	7.20	0.55	0.80	3,93	7.83	93.0%	0.50	7.61	1.94
	7.80	7.08	0.50	0.75	3.57	7.67	91.1%	0.47	6.58	1.84
	7.85	6.96	0,46	0.70	3.22	7.51	89.2%	0.43	5.62	1.74
	7.90	6.83	0,42	0.65	2.88	7.35	87.3%	0.39	4.72	1.64
	7.95	6.72	0.38	0.60	2.54	7.20	85.5%	0.35	3.88	1.53
	8.00	6.61	0.33	0.55	2.20	7.05	83.7%	0.31	3.11	1.41
WL	8.05	6.50	0.29	0.50	1.87	6.90	81.9%	0.27	2.41	1.29
10.0	8.10	6.32	0.25	0.45	1.55	6.68	79.3%	0.23	1.80	1.16
	8.15	6.13	0.20	0.40	1.24	6.46	76.7%	0.19	1.27	1.02
	8.20	4.76	0,21	0.35	0.98	5.05	60.0%	0.19	1.02	/ 1.03
	8.25	3.97	0.19	0.30	0.77	4.22	6 50.1%	0.18	0.75	0.98
	8.30	3.76	0.15	0.25	0.57	3.98	47.2%	0.14	0.48	0.84
	8.35	3.06	0.13	0.20	0.41	3.23	38.3%	0.13	0.32	0.78
	8.40	2.39	0.12	0.15	0,28	2.51	29,8%	0.11	0.20	0.71
	8.45	2.03	0.08	0.10	0.17	2.10	24.9%	0.08	0.10	0.57
	8.50	1.87	0.04	0.05	0.07	1.90	22.5%	0.04	0.03	0.35
1-	AF 8.55	0.94	. 0.00	0.00	0.00	0,94	11.1%	0.00	0.00	0.05

V = 0.9 D= 1.3 WP= 0.8

,

165-

RECOMMENDATION BY: DATE: CWCB REVIEW BY: DATE:

MEASURED FLOW (Qm)=	2.42	cfs
CALCULATED FLOW (Qc)=	2.41	cfs
(Qm-Qc)/Qm * 100 =	D,1	%
MEASURED WATERLINE (WLm)=	8.05	ft
CALCULATED WATERLINE (WLc)=	8.05	ft
(WLm-WLc)/WLm * 100 =	0.0	%
MAX MEASURED DEPTH (Dm)=	0.50	ft
MAX CALCULATED DEPTH (Dc)=	0.50	ft
(Dm-Dc)/Dm * 100	-0.4	%
MEAN VELOCITY=	1.29	ft/sec
MANNING'S N=	0.077	
SLOPE=	0.025	ft/ft
.4 * Qm =	1.0	cfs
2.5 * Qm=	6.0	cfs

RATIONALE FOR RECOMMENDATION:

SUMMARY SHEET

STREAM NAME:	Grizzly Creek #2 (Lower Site	e)
XS LOCATION:	at End of Road (40 48 23.9	107 13 05.6)
XS NUMBER:	2	

FLOW (CFS) PERIOD

4

RECOMMENDED INSTREAM FLOW:

					VERT	WATER				Tape to
	Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	А	Q	Water
					Total Da	ata Points = 34				
STREAM NAME:	Grizzly Creek #2 (Lower Site)		TS	0.00	5.32			0.00	0.00	0.00
XS LOCATION:	at End of Road (40 48 23.9 107 13 05.6)		BS	0.01	5.82			0.00	0.00	0.00
XS NUMBER:	2	1	TB, GL	1.00	6.32			0.00	0.00	0.00
DATE:	7/8/2009			1.20	7.67			0.00	0.00	0.00
OBSERVERS:	Uppendahl & Espegren			1.60	7.91			0.00	0.00	0.00
and a second second second			SW	1.80	8.05	0.00	0.00	0.00	0.00	0.00
1/4 SEC:	NW			2.10	8.15	0.10	0.70	0.03	0.02	8.05
SECTION:	25			2.40	8.20	0.15	0.61	0.05	0.03	8.05
TWP:	10 N			2.70	8.15	0.10	0.69	0.03	0.02	8.05
RANGE:	88 W			3.00	8.15	0.10	0.35	0.03	0.01	8.05
PM:	6			3.30	8.15	0.10	0.70	0.03	0.02	8.05
				3.60	8.25	0.20	1.53	0.06	0.09	8.05
COUNTY:	ROUTT			3.90	8.20	0.15	1.30	0.05	0.06	8.05
WATERSHED:	SLATER CREEK			4.20	8.25	0.20	1.31	0.06	0.08	8.05
DIVISION:	6			4.50	8.35	0.30	1.94	0.09	0.17	8.05
DOW CODE:				4.80	8.35	0.30	1.91	0.09	0.17	8.05
USGS MAP:				5.10	8.50	0.45	2.20	0.14	0.30	8.05
USFS MAP:	the second se			5.40	8.55	0.50	1.06	0.15	0.16	8.05
	Level and Rod Survey			5.70	8.55	0.50	0.94	0.15	0.14	8.05
TAPE WT:	0.0106 Ibs / ft			6.00	8.55	0.50	1.64	0.15	0.25	8.05
TENSION:	99999 lbs			6.30	8.55	0.50	1.60	0.15	0.24	8.05
10 CT () C (C (C () C				6.60	8.50	0.45	1.74	0.14	0.23	8.05
SLOPE:	0.025 ft / ft			6.90	8.55	0.50	1.35	0.15	0.20	8.05
	Concernant and the second seco			7.20	8.30	0.25	1.83	0.08	0.14	8.05
				7.50	8.30	0.25	1.01	0.08	0.08	8.05
CHECKED BY	DATE			7.80	8.45	0.40	0.05	0.12	0.01	8.05
				8.10	8.30	0.30	0.00	0.08	0.00	8.00
ASSIGNED TO	D:DATE		SW	8.30	8.05	0.00	0.00	0.00	0.00	0.00
		1	GL	8.70	7.52		1944-191	0.00	0.00	0.00
				9.50	7.39			0.00	0.00	0.00
				10.70	7.06			0.00	0.00	0.00
				10.90	6.01			0.00	0.00	0.00
			BS	11.60	5.73			0.00	0.00	0.00
			TS	11.61	5.06			0.00	0.00	0.00

Totals 1.88 2.42

•

COLORADO WATER CONSERVATION BOARD

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

STREAM N	NAME:	Grizzl	y Cri	eek, CEI	nd of	Road		CROSS-SECTION NO.:
CROSS-SE	CTION LO	CATION: 40	· 48'	23.9"	10	7° 13' 0	5.6 "	
DATE: 7	8/09	OBSERVERS:	Uppe	ndahl x	Espegr	en		
LEGAL DESCRIPTI	ON	V4 SECTION:	NW	SECTION: 25	TOWNSHIP	10 (N)s	RANGE: 80	E/W PM:
COUNTY:	Ron	\mathcal{F}_{+}	WATERS	slater	CK	WATER DIVISION:	6	DOW WATER CODE:
MADIEN	USGS:							
(IIA) (O).	USFS:							

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS USE NO)	METER TYPE:					
METER NUMBER:	DATE	RATED:	CALIB/SPIN	sec	TAPE WEIGHT:	lbs/foot	TAPE TENSION: Ibs
CHANNEL BED MATERIAL SIZE RANGE:				PHOTOGRAPHS TA	KEN: (FES)NO	NUMBER OF P	HOTOGRAPHS:

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (ft)	ROD READING (ft)		(3)	LEGEND:
Tape @ Stake LB	0.0		1 _	Ť	
Tape @ Stake RB	0.0		S K		Stake (A)
1 WS @ Tape LB/RB	0.0		ET		Photo
2 WS Upstream	18,0	7.34	H		
③ WS Downstream	,18,0	8,24			Direction of Flow
SLOPE 0.9	136=0,025	5			+

AQUATIC SAMPLING SUMMARY

20.00			_			1.1.1	100	10.2011-	_					WATER CHEMISTRY SAMPLED: YES/NO			
FREO	UENC	Y DISTR	RIBUTIC	N BY C	DNE-IN	CH SIZ	EGRO	JPS (1.	0-1.9, 2	.0-2.9,	ETC.)				-		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL	
	-								_					_			
		-		-								-					
OR SCI	ENTIFIC		R NAM	E:											L		
	1 DR SCI	1 2	1 2 3	1 2 3 4	1 2 3 4 5	1 2 3 4 5 6	1 2 3 4 5 6 7	1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8 9	1 2 3 4 5 6 7 8 9 10	1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td>1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 <td< td=""><td>1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 1 1 1 1 1 1 13 1</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 Image: Ima</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Image: Image:</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 </td></td<></td></td<>	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 <td< td=""><td>1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 1 1 1 1 1 1 13 1</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 Image: Ima</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Image: Image:</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 </td></td<>	1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 1 1 1 1 1 1 13 1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 Image: Ima	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Image:	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15	

COMMENTS

Fish	Sean
May	Hies

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Griz	zly Cre	.ek				CROSS	S-SECTION	NO.:	DAT	1810	9 SHEET	
BEGINNING OF M	IEASUREMENT	EDGE OF W	ATER LOOKING D (E)	OWNSTREAM:	LEFT /(RIG	HT Gag	je Rea	ading:	ft	TIME:	10:4	0 am	
vo Gil Stake (S)	Distance	Width	Total	Water	Depth	Revolutio	ons		Veloc	ity (ft/	sec)		
Grassline (G) Waterline (W) Acck (R)	From Initial Point (fi)	(11)	Verlical Depth From Tape/Inst (ft)	Depth (ft)	of Obser- vation (ft)			Time (sec)	At Point	N	Aean in Vertical	Area (ît ²)	Discharge (Cfs)
TS	0		5,32	1.1									
BS	O		5,82										
TB	1.0		6.32										
	1.2		7.67										
	1.6		7.41										······
5WL	1.8		8.05	<u> </u>									
	2.1		8.15	0.1					0.70				· .
	2.4		8.20	0.15					0.61	_			
	2.7		8.15	0,					0.69	1			
	3.0		8.15	0.1					0.35	2			
	3.3		8.15	0.1					0,70	2			
	3.6		8.25	0.2					1.53				
	3.9		6.20	0.15		l			1,30				
L	4.2		8.25	0,2					1.31				
	45		8.35	0.3					1.94				
	4.2		<u>-6.20</u>						-1. 41				
			<u>050</u> NGC	0.45					2.20	<i>¥</i>			
	<u></u>		0 57 V 65						A				
	$\begin{array}{c} \mathbf{D} \cdot \mathbf{I} \\ \mathbf{C} \end{array}$		2.25							L	<u> </u>		
				5.5					1.60				
	$(0, \mathbb{C})$		5 5 A							, 			
	5.0		0.90 7 CE	0,45									· · · · · · · · · · · · · · · · · · ·
			<u> </u>	0.0		· · · ····			1 82)			
	1.6		$\frac{3.30}{5.3(1)}$	0,20					1.01				
	79					1							·
	2			0.7					0,00	<u>'</u>		<u> </u>	
1/1	22		8 05		·	1							
GL	8.7		7.52	-								1	
	9,5		7.39										
	10.7		7.06										
	10.9		6.01										
BS	11.6		5.73		· · · ·								
LTS	11.6		5.06			 					.	ļ	ļ
				······									
				1 						+			-
ļ			· · · · · · · · · · · · · · · · · · ·	<u> </u>					· · · · · · · · · · · · · · · · · · ·	+			<u> </u>
			·····			1				\uparrow		+	
				···		<u> </u>						<u> </u>	
TOTALS:					10.000								2.42
End of Measur	rement Ti	me:\/:08	Gage Reading	g: !!	CALCULAT	TIONS PERFO	ORME	D 8Y:	[CALC	ULATIONS	CHECKED BY:	

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	Grizzly Creek 40 48 23.9; 10 81002	- d/s of previous X-Sect 07 13 05.6
DATE: OBSERVERS:	2-Oct-08 Uppendahl &	Espegren (TU)
1/4 SEC: SECTION: TWP: RANGE: PM:	0 0 10 N 88 W 6	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Routt Slater Creek 6 0	
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA		*** NOTE ***
TAPE WT: TENSION:	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod
CHANNEL PROFILE DATA		
SLOPE:	0.045	
INPUT DATA CHECKED BY	<i>(</i> :	DATE
ASSIGNED TO:		DATE

Grizzly Creek - d/s of previous X-Sect
40 48 23.9; 107 13 05.6
81002

	#	DATA POINTS	3=	27
FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL
TS	0.00	5.88		
BS	0.01	6.37		
1 GL	1.00	6.83		
	1.20	8.31		
	2.00	8.60		
	3.00	8.73		
WL	4.00	8.84	0.00	0.00
	4.30	8.91	0.05	0.05
	4.60	9.00	0.10	0.29
	4.90	9.00	0.10	0.05
	5.20	9.01	0.10	0.05
	5.50	9.07	0.20	0.20
	5.80	9.12	0.25	1.43
	6.10	9.10	0.25	0.92
	6.40	9.10	0.28	0.72
	6.70	9.10	0.20	0.83
	7.00	9.07	0.30	0.77
	7.30	8.98	0.20	1.11
R	7.60	9.00	0.15	0.25
	7.90	9.10	0.20	0.18
WL	8.30	8.87	0.00	0.00
	8.50	8.50		
	9.00	7.97		
	10.50	7.81		
1 GL	11.00	6.70		
BS	11.80	6.23		
TS	11.81	5.53		

TOTALS -----

VALUES COMPL	JTED FR	OM RAW	FIELD	DATA
--------------	---------	--------	-------	------

				.
WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.31	0.05	0.02	0.00	0.2%
0.31	0.10	0.03	0.01	1.9%
0.30) 0.10	0.03	0.00	0.3%
0.30	0.10	0.03	0.00	0.3%
0.31	0.20	0.06	0.01	2.6%
0.30	0.25	0.08	0.11	22.8%
0.30	0.25	0.08	0.07	14.7%
0.30	0.28	0.08	0.06	12.6%
0.30	0.20	0.06	0.05	10.6%
0.30	0.30	0.09	0.07	14.8%
0.31	0.20	0.06	0.07	14.2%
0.30	0.15	0.05	0.01	2.4%
0.32	2 0.20	0.07	0.01	2.7%
0.46	i	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
0.00)	0.00	0.00	0.0%
4.43	0.3	0.72	0.47	100.0%
	(Max.)	_	·	
	Manning's n =		0.1449	
	Hydraulic Radiu	s=	0.16326984	

STREAM NAME:	Grizzly Creek - d/s of previous X-Sect
XS LOCATION:	40 48 23.9; 107 13 05.6
XS NUMBER:	81002

WATER LINE COMPARISON TABLE

	MEAS	COMP	
	0.72	0.75	3 4%
9.61	0.72	2.09	188.0%
9.62	0.72	1.00	170.5%
0.03	0.72	1.90	152 4%
0.00	0.72	1.03	126.9%
8.07	0.72	1.71	130.0%
8.69	0.72	1.59	120.7%
8.71	0.72	1.48	105.0%
8.73	0.72	1.37	89.8%
8.75	0.72	1.26	75.1%
8.77	0.72	1.16	60.8%
8.79	0.72	1.06	47.2%
8.81	0.72	0.97	34.0%
8.82	0.72	0.92	27.6%
8.83	0.72	0.88	21.4%
8.84	0.72	0.83	15.3%
8.85	0.72	0.79	9.3%
8.86	0.72	0.75	3.4%
8.87	0.72	0.70	-2.4%
8.88	0.72	0.66	-8.2%
8.89	0.72	0.62	-13.9%
8.90	0.72	0.58	-19.5%
8.91	0.72	0.54	-25.0%
8.93	0.72	0.46	-35.8%
8.95	0.72	0.39	-46.4%
8.97	0.72	0.31	-56.6%
8.99	0.72	0.24	-66.6%
9.01	0.72	0.18	-75.3%
9.03	0.72	0.13	-81.8%
9.05	0.72	0.09	-87.6%
9.07	0.72	0.05	-92.7%
9.09	0.72	0.02	-97.0%
9.11	0.72	0.00	-99.7%

WATERLINE AT ZERO	
AREA ERROR =	8.861

 STREAM NAME
 Grizzly Creek - d/s of previous X-Sect

 XS LOCATION
 40.48.23.9; 107.13.05.6

 XS NUMBER:
 81002

Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO WATER	TOP WIDTH	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG. VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(ET)	(CFS)	(FT/SEC)
•GL*	6.83	9.94	1.77	2 29	17 57	12.52	100 0%	1.40	47.94	2.73
	7,86	888	0.86	1.26	7.65	9.92	79.3%	0.77	13.99	1.83
	7,91	8 4 1	0.86	1.21	721	9.40	75.1%	0.77	13.16	1.82
	7.96	7 93	0.86	1 16	6.81	8 88	70.9%	0.77	12.40	1.82
	8.01	7 80	0.82	1.11	6.41	8.69	69.4%	0.74	11.40	1.78
	8,06	7.75	0.78	1.06	6.03	8.57	68.4%	0.70	10.37	1.72
	8.11	7.69	0.73	1.01	5.64	8.45	67.5%	0.67	9.37	1.66
	8.16	7.64	0.69	0.96	5.26	8.33	66.5%	0.63	8.42	1.60
	8.21	7.59	0.64	0.91	4.88	8.21	65.6%	0.59	7 50	1.54
	8.26	7.53	0.60	0.66	4.50	8.09	64.6%	0.56	6.62	1.47
	8,31	7.48	0.55	0.81	4.12	7.97	63.7%	0.52	5.78	1.40
	8.36	7.29	0.51	0.75	3.75	7.75	61 9%	0.48	5.03	1.34
	8.41	7.11	0.48	0.71	3.39	7.54	60.2%	0.45	4.34	1.28
	8.46	6 92	0.44	0.66	3.04	7.32	58.5%	0.42	3 69	1.21
	B.51	6.74	0.40	0.61	2.70	7.11	56.8%	0.38	3.08	1.14
	8.56	6.58	0.36	0.56	2.37	6.91	55,2%	0.34	2.52	1.07
	8.61	6.38	0.32	0.51	2.04	6.65	53,1%	0.31	2.02	0.99
	8.88	5 95	0.29	0.46	1.74	6.21	49.6%	0.28	1.62	0.93
	8.71	5.53	0.26	0.41	1.45	5,76	46.0%	0.25	1 26	0.87
	8.76	5.08	0.23	0.36	1.18	5.27	42.1%	0.22	0.95	0.80
	8,81	4.60	0.20	0.31	0.94	4.76	38.0%	0.20	0.70	0.74
"WL"	8.86	4.22	0.17	0.26	0.72	4.34	34 7%	0.17	0.48	0.66
	8.91	3.93	0.13	0.21	0.52	4.03	32.2%	0.13	0.29	0.55
	8.96	3.67	0.09	0.16	0.33	3.76	30.0%	0.09	D.14	0.43
	9.01	2.42	0.07	0.11	0.16	2.47	19.8%	0.07	D.06	0.36
	9.06	1.76	0.03	0.06	0,06	1.79	14.3%	0.03	0.01	0.23
	9.11	0.19	0.00	0.01	0 00	0.19	1.5%	0.00	0.00	0.06

 $\frac{3}{3} = \frac{2}{17}$ $\frac{2}{3} = \frac{1}{17}$

STREAM NAME:	Grizzly Creek - d/s of previous X-Sect
XS LOCATION:	40 48 23.9; 107 13 05.6
XS NUMBER:	81002

SUMMARY SHEET

0.47	cfs
0.48	cfs
-1.2	%
8.86	ft
8.86	ft
-0.1	%
0.30	ft
0.26	ft
13.6	%
0.66	ft/sec
0.145	
0.045	ft/ft
0.2	cfs
1.2	cfs
	0.47 0.48 -1.2 8.86 8.86 -0.1 0.30 0.26 13.6 0.66 0.145 0.045 0.045 0.2 1.2

RECOMMENDED INST	REAM FLOW:
FLOW (CFS)	PERIOD
==========	=======

RATIONALE FOR RECOMMENDATION:

 STREAM NAME:Grizzly Creek - d/s of previous X-SectXS LOCATION:40 48 23.9; 107 13 05.6XS NUMBER:81002

Jarrett Variable Manning's n Correction Applied

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	6.83	9.94	1.77	2.29	17.57	12.52	100.0%	1.40	67.45	3.84
	7.86	8.88	0.86	1.26	7.65	9.92	79.3%	0.77	17.88	2.34
	7.91	8.41	0.86	1.21	7.21	9.40	75.1%	0.77	16.81	2.33
	7.96	7.93	0.86	1.16	6.81	8.88	70.9%	0.77	15.84	2.33
	8.01	7.80	0.82	1.11	6.41	8.69	69.4%	0.74	14.48	2.26
	8.06	7.75	0.78	1.06	6.03	8.57	68.4%	0.70	13.06	2.17
	8.11	7.69	0.73	1.01	5.64	8.45	67.5%	0.67	11.71	2.08
	8.16	7.64	0.69	0.96	5.26	8.33	66.5%	0.63	10.42	1.98
	8.21	7.59	0.64	0.91	4.88	8.21	65.6%	0.59	9.19	1.88
	8.26	7.53	0.60	0.86	4.50	8.09	64.6%	0.56	8.03	1.78
	8.31	7.48	0.55	0.81	4.12	7.97	63.7%	0.52	6.93	1.68
	8.36	7.29	0.51	0.76	3.75	7.75	61.9%	0.48	5.97	1.59
	8.41	7.11	0.48	0.71	3.39	7.54	60.2%	0.45	5.09	1.50
	8.46	6.92	0.44	0.66	3.04	7.32	58.5%	0.42	4.27	1.40
	8.51	6.74	0.40	0.61	2.70	7.11	56.8%	0.38	3.52	1.30
	8.56	6.58	0.36	0.56	2.37	6.91	55.2%	0.34	2.83	1.20
	8.61	6.36	0.32	0.51	2.04	6.65	53.1%	0.31	2.23	1.09
	8.66	5.95	0.29	0.46	1.74	6.21	49.6%	0.28	1.76	1.01
	8.71	5.53	0.26	0.41	1.45	5.76	46.0%	0.25	1.34	0.93
	8.76	5.08	0.23	0.36	1.18	5.27	42.1%	0.22	1.00	0.84
	8.81	4.60	0.20	0.31	0.94	4.76	38.0%	0.20	0.71	0.76
WL	8.86	4.22	0.17	0.26	0.72	4.34	34.7%	0.17	0.48	0.66
	8.91	3.93	0.13	0.21	0.52	4.03	32.2%	0.13	0.28	0.53
	8.96	3.67	0.09	0.16	0.33	3.76	30.0%	0.09	0.13	0.39
	9.01	2.42	0.07	0.11	0.16	2.47	19.8%	0.07	0.05	0.31
	9.06	1.76	0.03	0.06	0.06	1.79	14.3%	0.03	0.01	0.17
	9.11	0.19	0.00	0.01	0.00	0.19	1.5%	0.00	0.00	0.03

3/3 = 1,8 2/3 = 1,7 STREAM NAME: XS LOCATION: XS NUMBER: Grizzly Creek - d/s of previous X-Sect 40 48 23.9; 107 13 05.6 81002

Thorne-Zevenbergen D84 Correction Applied Estimated D84 =

=

0.59

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

DIST TO TOP							DEDOENT	Velo	city based on	test of R/D84>1
	DIST TO	TOP	AVG.	MAX.		WEITED	PERCENT	HIDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH		PERIM.		RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(+1)	(FT)	(SQFI)	(FT)	(%)	(+1)	(CFS)	(F1/SEC)
GL	6.83	9.94	1.77	2.29	17.57	12.52	100.0%	1.40	147.72	8.41
	7.86	8.88	0.86	1.26	7.65	9.92	79.3%	0.77	34.49	4.51
	7.91	8.41	0.86	1.21	7.21	9.40	75.1%	0.77	32.15	4.46
	7.96	7.93	0.86	1.16	6.81	8.88	70.9%	0.77	30.03	4.41
	8.01	7.80	0.82	1.11	6.41	8.69	69.4%	0.74	27.07	4.22
	8.06	7.75	0.78	1.06	1.06 6.03 8.5		68.4%	0.70	24.03	3.99
	8.11	7.69	0.73	1.01	5.64	8.45	67.5%	0.67	21.14	3.75
	8.16	7.64	0.69	0.96	5.26	8.33	66.5%	0.63	18.42	3.50
	8.21	7.59	0.64	0.91	4.88	8.21	65.6%	0.59	15.85	3.25
	8.26	7.53	0.60	0.86	4.50	8.09	64.6%	0.56	21.19	4.71
	8.31	7.48	0.55	0.81	4.12	7.97	63.7%	0.52	16.81	4.08
	8.36	7.29	0.51	0.76	3.75	7.75	61.9%	0.48	13.52	3.60
	8.41	7.11	0.48	0.71	3.39	7.54	60.2%	0.45	10.69	3.15
	8.46	6.92	0.44	0.66	3.04	7.32	58.5%	0.42	8.30	2.73
	8.51	6.74	0.40	0.61	2.70	7.11	56.8%	0.38	6.30	2.33
	8.56	6.58	0.36	0.56	2.37	6.91	55.2%	0.34	4.65	1.96
	8.61	6.36	0.32	0.51	2.04	6.65	53.1%	0.31	3.36	1.64
	8.66	5.95	0.29	0.46	1.74	6.21	49.6%	0.28	2.46	1.42
	8.71	5.53	0.26	0.41	1.45	5.76	46.0%	0.25	1.74	1.20
	8.76	5.08	0.23	0.36	1.18	5.27	42.1%	0.22	1.20	1.01
	8.81	4.60	0.20	0.31	0.94	4.76	38.0%	0.20	0.79	0.84
WL	8.86	4.22	0.17	0.26	0.72	4.34	34.7%	0.17	0.48	0.66
	8.91	3.93	0.13	0.21	0.52	4.03	32.2%	0.13	0.25	0.48
	8.96	3.67	0.09	0.16	0.33	3.76	30.0%	0.09	0.11	0.33
	9.01	2.42	0.07	0.11	0.16	2.47	19.8%	0.07	0.03	0.21
	9.06	1.76	0.03	0.06	0.06	1.79	14.3%	0.03	0.01	0.12
	9.11	0.19	0.00	0.01	0.00	0.19	1.5%	0.00	0.00	0.01

3/3 = 2.6 2/3-- 2.0

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

STREAM NA	ME:	G217	2217	Ceee	¥					CROSS-SECTION NO.:
CROSS-SEC	TION LOC		or	PREVIOUS		XSEZ	- @ e	ind of	Road.	
		40	D° 49	3' 23.9	<i>.</i>	7	10701-	505.0		
	2/08	OBSERVERS:	UPP	EN.DAtt		1E3	PEGLEN	J		
LEGAL Í DESCRIPTIO	N N	% SECTION:	••	SECTION:		TOWNSHIP:	N/S	RANGE:	E/W	РМ:
COUNTY:	lout	τ		HED:				>	DOW WATER	CODE:
MAR(S)	USGS:						-			
mor (3).	USFS:									

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS		SH MCBIRNEY	FLOWMATE	<u>z 2007</u>	5
METER NUMBER:	DATE RATED:	CALIB/SPIN: sec		Ibs/foot	TAPE TENSION: Ibs
CHANNEL BED MATERIAL SIZE RANGE:	D COBBLE D		KEN: (FESINO	NUMBER OF PH	HOTOGRAPHS: 3

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (ft)	ROD READING (ft)				LEGEND:
X Tape @ Stake LB	0.0					Staka 😧
Tape @ Stake RB	0.0		s к	4		
1 WS @ Tape LB/RB	0.0		E T C	TAPE	_	Photo (1)
2 WS Upstream	1401	814	н		≁ ⊘	~
3 WS Downstream	60	904				Direction of Flow
SLOPE	20. = \$,\$	ØS		(*)	<u>u</u>	

AQUATIC SAMPLING SUMMARY

STREAM ELECTROFISHED: YES	DISTANCE	DISTANCE ELECTROFISHED:ft				FISH CAUGHT: YES/NO					WATER CHEMISTRY SAMPLED: YES/NO							
LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.)																		
SPECIES (FILL IN)		1	2	3	-4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
SPANNING BROOK																		
TEAT OBSPENE	2																	
AQUATIC INSECTS IN STREAM SECTION BY COMMON OR SCIENTIFIC ORDER NAME:																		

COMMENTS

OBSARUE D	CADDIS	FLY	Ŷ	MAYFLY	HATCH	
	•			,		
						-

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	IM NAME: GRIZZLY CODEX						CROS	SS-SECTION	NO.:	DATE:	පි	SHEET	<u> </u>
BEGINNING OF M	EASUREMEN	EDGE OF W	ATER LOOKING D	OWNSTREAM:	LEFT RIG	HT I	Gage Re	eading:	ſt	TIME: 12	:55		
ທ່ ວັStake (S)	Distance	Width	Total	Water	Depth	Revol	utions		Veloci	ty (ft/sec)			
Grassline (G) Waterline (W) Bock (R)	From Initial Point (ft)	(ft)	Vertical Depth From Tape/Inst (ft)	Depth (ft)	of Obser- vation (ft)			Time (sec)	- At Point	Mean in Vertical	Ar (ft	ea 2 ₎	Discharge (CfS)
	~ <u>~</u>		-29										
TOP JAKE	O^{-}		500										
	10-		$\frac{\sqrt{21}}{183}$										
92	2		831										
	22		5,60										
	20		873										
\sim	Nº-	_	884	0-					°-				
-	43		821	005					005				
	16		200	010					029				
	49		Ó@	010					005				
	52		901	0'0					005				
	55		907	020					020				
	53		912	025					143				
	6-		910	025					092				
	64		J 10	0275				_	077	=			
	67		910	020					083		_		
	70			030					0				
	72			25					23	-			
K	79		010	020					018	•			
	$\overline{}$		087						0-	-			
\sim	0-		<u> </u>	<u></u>					0-				
	00-		97										
	105		-781										
4	112		170		_								
(-202)~D	118		623										
TUP	118		553										
					,								
					x								
								<u> </u>		-			
-													<u> </u>
TOTALS:		İ	·····				•	i		j			
End of Measurement Time:) 2 \ Gage Reading			CALCULAT	IONS PE	RFORME	D BY:		CALCULATIONS	CHECK	ED BY:	I		

Grizzly Creek At End of Road

NW S25 T10N R88W 6PM

Grizzly Creek At Original XS site NW S25 T10N R88W 6PM

Grizzly Creek At Original XS site NW S25 T10N R88W 6PM

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

Ì

LOCATION INFORMATION

.

STREAM NAME: XS LOCATION: XS NUMBER:	Grizzly Creek 071007 d/s of unnamed tributary. 40 47 51.0; 107 13 11. 071007-001					
DATE: OBSERVERS:	10-Jul-07 Uppendahl; H	Skinner				
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 25 10 N 88 W 6					
COUNTY: WATERSHED: DIVISION: DOW CODE:	Routt Slater Creek 6 0					
USGS MAP: USFS MAP:	0 0					
SUPPLEMENTAL DATA	-	*** NOTE ***				
TAPE WT: TENSION: CHANNEL PROFILE DATA	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod				
SLOPE:	0.02468085					
INPUT DATA CHECKED BY	(:	DATE				
		D.475				

ASSIGNED TO:DATE......

Grizzly Creek 071007 d/s of unnamed tributary. 40 47 51.0; 107 13 11.1 071007-001 STREAM NAME: XS LOCATION: XS NUMBER:

.a

	# DATA POINTS=						
FEATURE		VERT	WATER				
	DIST	DEPTH	DEPTH	VEL			
TS	0.00	4.62					
BS	0.00	5.10					
	2.00	5.44					
	3.00	5.61					
1 GL	4.00	5.84					
	5.90	6.51					
WL	6.40	6.65	0.00	0.00			
	6.80	6.78	0.10	0.00			
	7.20	6.82	0.15	0.00			
	7.60	6.83	0.15	0.00			
	8.00	6.90	0.15	0.41			
	8.40	6.90	0.20	0.47			
	8.80	7.06	0.40	0.22			
	9.20	7.05	0.35	0.10			
	9.60	7.00	0.30	0.38			
	10.00	7.00	0.25	0.19			
	10.40	6.92	0.25	0.15			
	10.80	6.85	0.20	0.06			
	11.20	6.80	0.15	0.00			
	11.60	6.75	0.10	0.00			
	12.00	6.70	0.05	0.00			
	12.50	6.70	0.05	0.00			
WL	13.00	6.65	0.00	0.00			
	14.00	6.38					
1 GL	15.00	6.25					
	15.50	6.00					
	16.80	5.60					
	18.60	5.15					
BS	20.00	4.45					
TS	20.00	4.04					
тс	TALS						

WETTED	WATER	AREA	Q	% Q
PERIM.	DEPTH	(Am)	(Qm)	CELL
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.42	0.10	0.04	0.00	0.0%
0.40	0.15	0.06	0.00	0.0%
0.40	0.15	0.06	0.00	0.0%
0.41	0.15	0.06	0.02	12.6%
0.40	0.20	0.08	0.04	19.2%
0.43	0.40	0.16	0.04	18.0%
0.40	0.35	0.14	0.01	7.2%
0.40	0.30	0.12	0.05	23.3%
0.40	0.25	0.10	0.02	9.7%
0.41	0.25	0.10	0.02	7.7%
0.41	0.20	0.08	0.00	2.5%
0.40	0.15	0.06	0.00	0.0%
0.40	0.10	0.04	0.00	0.0%
0.40	0.05	0.02	0.00	0.0%
0.50	0.05	0.03	0.00	0.0%
0.50		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
6.69	0.4	1.15	0.20	100.0%
	(Max.)			
Ν	/anning's n =		0.4224	

Manning's n = Hydraulic Radius= 0.171558578

VALUES COMPUTED FROM RAW FIELD DATA

STREAM NAME:	Grizzly Creek 071007
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1
XS NUMBER:	071007-001

WATER LINE COMPARISON TABLE

ų,

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	1.15	1.33	16.0%
6.40	1.15	3.20	179.3%
6.42	1.15	3.04	164.8%
6.44	1.15	2.88	150.6%
6.46	1.15	2.72	136.7%
6.48	1.15	2.56	122.9%
6.50	1.15	2.40	109.4%
6.52	1.15	2.25	96.2%
6.54	1.15	2.10	83.1%
6.56	1.15	1.95	70.4%
6.58	1.15	1.81	57.8%
6.60	1.15	1.67	45.6%
6.61	1.15	1.60	39.5%
6.62	1.15	1.53	33.6%
6.63	1.15	1.46	27.7%
6.64	1.15	1.40	21.8%
6.65	1.15	1.33	16.0%
6.66	1.15	1.27	10.3%
6.67	1.15	1.20	4.8%
6.68	1.15	1.14	-0.7%
6.69	1.15	1.08	-6.1%
6.70	1.15	1.02	-11.3%
6.72	1.15	0.91	-20.6%
6.74	1.15	0.81	-29.5%
6.76	1.15	0.71	-38.0%
6.78	1.15	0.62	-46.2%
6.80	1.15	0.53	-53.8%
6.82	1.15	0.45	-60.8%
6.84	1.15	0.38	-66.8%
6.86	1.15	0.32	-72.2%
6.88	1.15	0.26	-77.2%
6.90	1.15	0.21	-81.8%

WATERLINE AT ZERO	
AREA ERROR =	6.679

STREAM NAME Grizzly Creek 071007 XS LOCATION d/s of unnamed tributa XS NUMBER 071007-001

d/s of unnamed tributary 40 47 51 0, 107 13 11.1 071007-001

Constant Manning's n

STAGING TABLE

'GL' = lowest Grassline elevation corrected for sag

"WL" = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
IGL .	6.25	9.84	0.46	0.81	4 56	10.03	100.0%	0.45	1.49	0.33
Gh.	6 28	9.54	0.45	0.78	4.28	9.72	96.9%	0.44	1.37	0.32
	6.33	9.01	0.42	0.73	3.82	9 19	91.6%	0.42	1.18	0.31
	6 38	5 48	0.40	0.68	3.38	8.65	86.2%	0.39	1.00	0.30
	6.43	8 15	0.36	0.63	2.97	8.30	82.7%	0.36	0.83	0.28
	6.48	7.82	0.33	0.58	2.57	7.96	79.3%	0.32	0.67	0.26
	6.53	7 48	0.29	0.53	2.19	7.60	75 8%	0.29	0.53	0.24
	6.58	7.12	0.26	0.48	1.82	7.23	72.0%	0.25	0.40	0.22
	6.63	6.75	0.22	0.43	1.47	6.85	68.3%	0.22	0.29	0.20
WL."	5.68	6.22	0.18	0.38	1.15	6.31	62.9%	0.18	0 20	0.1B
	6.73	5.13	0.17	0.33	0.87	5.20	51.8%	0.17	0.14	0.17
	6.78	4.57	0.14	0 28	0.62	4.64	46.2%	0.13	0.09	0.15
	6,83	3 42	0.12	0.23	0.42	3.48	34 7%	0 12	0.06	0.13
	6.88	2.76	0.10	0.18	0.27	2.81	28.0%	0.09	0.03	0 1 1
	6.93	1 88	0.08	0.13	0.15	1.92	19.1%	0.08	0.02	0.10
	6.98	1.51	0.04	0.08	0.07	1.53	15 3%	0.04	0.00	0.07
	7.03	0.65	0.02	0 03	0.01	0.66	6.5%	0.02	0.00	0.04

3|3= ? 2/3= .25

STREAM NAME:	Grizzly Creek 071007
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1
XS NUMBER:	071007-001

SUMMARY SHEET

MEASURED FLOW (Qm)=	0.20	cfs
CALCULATED FLOW (Qc)=	0.20	cfs
(Qm-Qc)/Qm * 100 =	-4.0	%
MEASURED WATERLINE (WLm)=	6.65	ft
CALCULATED WATERLINE (WLc)=	6.68	ft
(WLm-WLc)/WLm * 100 =	-0.4	%
MAX MEASURED DEPTH (Dm)≕	0.40	ft
MAX CALCULATED DEPTH (Dc)=	0.38	ft
(Dm-Dc)/Dm * 100	4.7	%
MEAN VELOCITY=	0.18	ft/sec
MANNING'S N=	0.422	10000
	0.722	f+/f+
3L0FE-	0.02400005	1010
.4 * Qm =	0.1	cfs
2.5 * Qm=	0.5	cfs

RECOMMENDED INSTREAM FLOW:									
FLOW (CFS) ========	PERIOD								

RATIONALE FOR RECOMMENDATION:

.....

ų

					VERT	WATER				Tape to
	Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
	``				Total Da	ta Points = 30				
STREAM NAME:	Grizzly Creek 071007		TS	0.00	4.62			0.00	0.00	0.00
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1		BS	0.00	5.10			0.00	0.00	0.00
XS NUMBER:	071007-001			2.00	5.44			0.00	0.00	0.00
DATE:	7/10/2007			3.00	5.61			0.00	0.00	0.00
OBSERVERS:	Uppendahl; H Skinner	1	GL	4.00	5.84			0.00	0.00	0.00
				5.90	6.51			0.00	0.00	0.00
1/4 SEC:	NW		WL	6.40	6.65	0.00	0.00	0.00	0.00	0.00
SECTION:	25			6.80	6.78	0.10	0.00	0.04	0.00	6.68
TWP:	10 N			7.20	6.82	0.15	0.00	0.06	0.00	6.67
RANGE:	88 W			7.60	6.83	0.15	0.00	0.06	0.00	6.68
PM:	6			8.00	6.90	0.15	0.41	0.06	0.02	6.75
				8.40	6.90	0.20	0.47	0.08	0.04	6.70
COUNTY:	Routt			8.80	7.06	0.40	0.22	0.16	0.04	6.66
WATERSHED:	Slater Creek			9.20	7.05	0.35	0.10	0.14	0.01	6.70
DIVISION:	6			9.60	7.00	0.30	0.38	0.12	0.05	6.70
DOW CODE:				10.00	7.00	0.25	0.19	0.10	0.02	6.75
USGS MAP:				10.40	6.92	0.25	0.15	0.10	0.02	6.67
USES MAP:				10.80	6.85	0.20	0.06	0.08	0.00	6.65
TADENE	Level and Rod Survey			11.20	6.80	0.15	0.00	0.06	0.00	6.65
TAPE WI:	0.0106 Ibs / ft			11.60	6.75	0.10	0.00	0.04	0.00	6.65
TENSION:	aaaaa			12.00	6.70	0.05	0.00	0.02	0.00	6.65
	0.0046000541#7#		14/1	12.50	6.70	0.05	0.00	0.03	0.00	6.65
SLOPE:	0.024680851 π/π		VVL	13.00	0.05	0.00	0.00	0.00	0.00	0.00
				14.00	0.38			0.00	0.00	0.00
		1	GL	15.00	0.25			0.00	0.00	0.00
CHECKED BT	DATE			10.00	5.00			0.00	0.00	0.00
				10.00	5.60			0.00	0.00	0.00
ASSIGNED IT	JDATE		DC	20.00	0.10			0.00	0.00	0.00
			BS	20.00	4.40			0.00	0.00	0.00

Totals 1.15 0.20

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS														Service Service		
COLORADO WATER CONSERVATION BOARD)		LOC	ΑΤΙΟ)N IN	IFOF	MATIC)N								OF W
STREAM NAME: Grost Grost																
	\bigtriangleup		SU	PPLE	EMEI	NTAI										
SAG TAPE SECTION SAME AS DISCHARGE SECTION: METER NUMBER: CHANNEL BED MATERIAL SIZE	VES NO DATE RATI	ED:	45		B/SPIN:	Вік 	SBC		NEIGHT: S)10	:	IL NUMBE	os/foot ER OF F	таре	E TENSI BRAPH	ion: 5:	ibs 2
4			СН/	ANN	EL P	ROF	ILE DA	TA								
STATION Tape @ Stake LB Tape @ Stake RB WS @ Tape LB/RB WS Upstream WS Downstream SLOPE	DISTANCE FROM TAPE () 0.0 0.0 0.0 11, 5 12, 0 23, 5 =	$\begin{array}{c c} \text{DISTANCE} & \text{(II)} & \text{ROD READING (II)} \\ \hline 0.0 & & \\ \hline 11, 5 & 6, 42 \\ \hline 12, 0 & 7, 00 \\ \hline \end{array}$					SKE CH H							.EGEND: ake 🛞 ition (1) ition of Flow		
		A		LIC S	SAMF	PLIN	G SUM	MAR	ſ							
STREAM ELECTROFISHED: Y	ESINO DISTANC	EELECTROF	SHED: _	ft	t	F	ISH CAUGH	T: YES/N	0		WATER	RCHEN	AISTRY	SAMPL	ED: YES	sino
SPECIES (FILL IN) FISH	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.) SPECIES (FILL IN) F1/Sh SCenn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 TOTAL SPECIES (FILL IN) F1/Sh SCenn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 TOTAL OPECIES (FILL IN) F1/Sh SCenn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 TOTAL OPECIES (FILL IN) F1/Sh SCenn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 >15 TOTAL OPECIES (FILL IN) F1/Sh SPECIES (SCENT) 1 1 1 1 1 1 1 1 1 1 13 <td< th=""><th>TOTAL</th></td<>											TOTAL				
							- 17	2		<i>K</i> -	. ~~	<u>ر د د</u>	- (<u> </u>	1	
What Tomp =	zh see 60-1 7 C	<i>∖</i>	S	R	DMM	ENT BRK 7- 2-	5 NO 7251 7249	Sf 	JW VZ		* -+ 		- G		·)	

FORM #ISF FD 1-85

- . . - . . -

DISCHARGE/CROSS SECTION NOTES

S	TREAM NAME:	6	> [122.	14	Cree	k		CROS	S-SECTION	NO.:	PATE	17	SHEET	
BE	GINNING OF M	EASUREMENT	EDGE OF W	ATER LOOKING E	OWNSTREAM:	LEFT RIG	HT Ga	ge Re	ading:	ft		10.'	39	5
res	Stake (S)	Distance	Width	Total Vertical	Water	Depth	Revoluti	ons		Velocit	y (ft/sec)			Disebaras
Featu	Grassline (G) Waterline (W) Rock (R)	Initial Point (ft)		Depth Erom Tape(Inst (ft)	(ft)	Obser- vation (ft)			Time (sec)	At Point	Mean in Vertical	Are (ft ²	a ?)	(cfs)
~	IS_	Ø,		4.62										
	BS_	Ø		5,10										
		72.0		5,44										
F	61.	4,8		5.811										
		5,9		651										
	NL	6.4		6.65	Ø	0,6				Ð				•••
Ĺ		68		6.78	.10	\land				Ľ				
L		7.2		6,87	15					Ő	_			
L		7.6		6.83	.15					-O_				
L		8.0		(-9)	,15					- 91	_			
Ŀ-		8,4		690	120	1				<u>647</u>				
┝		XX		7.06	,90					. 22	<u>.</u>			
┢		9,6		7 NO	30					38				
L	i.	10,0		7.00	.25					.19				
L		10,4		6,92	. 25					.15		_		
┝		10.8		6.85	,20							_		
┝		11.2		6,80	.15					$-\frac{1}{2}$				
┝		11.0		$\frac{6.17}{10}$	10	ł	[D D				
┢		12.0		6,70	405					N 1X	_			
┢	121	1310		6. 70	- C - C - C - C - C - C - C - C - C - C					Ð	-			
F		14,0		6.38	~	0.0					,			
	66	150		6,25										
		15.5		6,00										
		16,8		5,60										
	25	10.6		5,15										
-	75	20,0		4,47										
_														
┢														
L														
Ĺ														
\vdash														
\vdash														
-														
	TOTALS:					•					· · · · · ·	1		
E	nd of Measur	ement Tin	ne: 17, 65	Gage Reading	g: ft	CALCULAT	IONS PERF	ORME	D BY:		CALCULATIONS	CHECK	ED 8Y:	

.

Grizzly Creek d/s of unnamed tributary NW S25 T10N R88W 6PM

Grizzly Creek d/s of unnamed tributary NW S25 T10N R88W 6PM

STREAM NAME:	Grizzly Creek 071007
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1
XS NUMBER:	071007-001

Thorne-Zevenbergen D84 Correction Applied Estimated D84 =

1.99

Ţ

1

i

ł

ł

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *GL* = lowest Grassline elevation corrected for say *WL* = Waterline corrected for variations in field measured water surface elevations and sag Velocity based on test of R/D84>1

								Velo	city based on	LESI OF R/D0421
	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	<u>(FT)</u>	<u>(FT)</u>	(FT)	(SQ FT)	(FT)	(%)	<u>(FT)</u>	(CFS)	(FT/SEC)
"GL"	6.25	9.84	0.46	0.81	4.56	10.03	100.0%	0.45	2.39	0.52
	6.28	9.54	0.45	0.78	4.28	9.72	96.9%	0.44	2.14	0.50
	6.33	9.01	0.42	0.73	3.82	9.19	91.6%	0.42	1.74	0.46
	6.38	8.48	0.40	0.68	3.38	8.65	86.2%	0.39	1.41	0.42
	6.43	8.15	0.36	0.63	2.97	8.30	82.7%	0.36	1.10	0.37
	6.48	7.82	0.33	0.58	2.57	7.96	79.3%	0.32	0.84	0.33
	6.53	7.48	0.29	0.53	2.19	7.60	75.8%	0.29	0.62	0.28
	6.58	7.12	0.26	0.48	1.82	7.23	72.0%	0.25	0.45	0.25
	6.63	6.75	0.22	0.43	1.47	6.85	68.3%	0.22	0.31	0.21
WL	6.68	6.22	0.18	0.38	1.15	6.31	62.9%	0.18	0.20	0.18
	6.73	5.13	0.17	0.33	0.87	5.20	51.8%	0.17	0.13	0.15
	6.78	4.57	0.14	0.28	0.62	4.64	46.2%	0.13	0.07	0.12
	6.83	3.42	0.12	0.23	0.42	3.48	34.7%	0.12	0.04	0.09
	6.88	2.76	0.10	0.18	0.27	2.81	28.0%	0.09	0.02	0.06
	6.93	1.88	0.08	0.13	0.15	1.92	19.1%	0.08	0.01	0.04
	6.98	1.51	0.04	0.08	0.07	1.53	15.3%	0.04	0.00	0.03
	7.03	0.65	0.02	0.03	0.01	0.66	6.5%	0.02	0.00	0.01

STREAM NAME:Grizzly Creek 071007XS LOCATION:d/s of unnamed tributary. 40 47 51.0; 107 13 11.1XS NUMBER:071007-001Jarrett Variable Manning's n Correction Applied

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	6.00	11.05	0.65	1.06	7.17	11.34	100.0%	0.63	3.56	0.50
	6.03	10.91	0.63	1.03	6.86	11. 19	98.7%	0.61	3.32	0.48
	6.08	10.67	0.59	0.98	6.32	10.93	96.4%	0.58	2.92	0.46
	6.13	10.42	0.56	0.93	5.79	10.67	94.1%	0.54	2.54	0.44
	6.18	10.18	0.52	0.88	5.28	1 0.41	91.7%	0.51	2.18	0.41
	6.23	9.94	0.48	0.83	4.77	10.15	89.4%	0.47	1.86	0.39
	6.28	9.54	0.45	0.78	4.28	9.72	85.7%	0.44	1.58	0.37
	6.33	9.01	0.42	0.73	3.82	9.19	81.0%	0.42	1.34	0.35
	6.38	8.48	0.40	0.68	3.38	8.65	76.2%	0.39	1.13	0.33
	6.43	[´] 8.15	0.36	0.63	2.97	8.30	73.2%	0.36	0.92	0.31
	6.48	7.82	0.33	0.58	2.57	7.96	70.2%	0.32	0.73	0.28
	6.53	7.48	0.29	0.53	2.19	7.60	67.0%	0.29	0.57	0.26
	6.58	7.12	0.26	0.48	1.82	7.23	63.7%	0.25	0.42	0.23
	6.63	6.75	0.22	0.43	1.47	6.85	60.4%	0.22	0.30	0.20
WL	6.68	6.22	$(0.18)^{-}$	0.38	1.15	6.31	55.6%	0.18	0.20	0.18
	6.73	5.13	0.17	0.33	0.87	5.20	45.8%	0.17	0.14	0.16
	6.78	4.57	0.14	0.28	0.62	4.64	40.9%	0.13	0.09	0.14
	6.83	3.42	0.12	0.23	0.42	3.48	30.7%	0.12	0.05	0.13
	6.88	2.76	0.10	0.18	0.27	2.81	24.7%	0.09	0.03	0.10
	6.93	1.88	0.08	0.13	0.15	1.92	16.9%	0.08	0.01	0.09
	6.98	1.51	0.04	0.08	0.07	1.53	13.5%	0.04	0.00	0.05
	7.03	0.65	0.02	0.03	0.01	0.66	5.8%	0.02	0.00	0.03

3/3 = ? 2/3 = ,25

STREAM NAME: G XS LOCATION: d XS NUMBER: 0

Grizzly Creek - Top Stake ≈ 3.00 d/s of unnamed tributary. 40 47 51.0; 107 13 11.1 071007-001

Constant Manning's n

I

STAGING TABLE

. 🅯

6

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

=	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.	•
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY	
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	_(FT)	(%)	(FT)	(CFS)	(FT/SEC)	
GL	4.63	9.84	0.46	0.81	4.56	10.03	100.0%	0.45	1.49	0.33	
	4.66	9.54	0.45	0.78	4.28	9.72	96.9%	0.44	1.37	0.32	
	4.71	9.01	0.42	0.73	3.82	9.19	91.6%	0.42	1.18	0.31	
	4.76	8.48	0.40	0.68	3.38	8.65	86.2%	0.39	1.00	0.30	
	4.81	8.15	0.36	0.63	2.97	8.30	82.7%	0.36	0.83	0.28	
	4.86	7.82	0.33	0.58	2.57	7.96	79.3%	0.32	0.67	0.26	
	4.91	7.48	0.29	0.53	2.19	7.60	75.8%	0.29	0.53	0.24	
	4.96	7.12	0.26	0.48	1.82	7.23	72.0%	0.25	0.40	0.22	
	5.01	6.75	0.22	0.43	1.47	6.85	68.3%	0.22	0.29	0.20	
WL	5.06	6.22	0.18	0.38	1.15	6.31	62.9%	0.18	0.20	0.18	am
	5.11	5.13	0.17	0.33	0.87	5.20	51.8%	0.17	0.14	0.17	Qm=0.11
	5.16	4.57	0.14	0.28	0.62	4.64	46.2%	0.13	0.09	0.15	-
	5.21	3.42	0.12	0.23	0.42	3.48	34.7%	0.12	0.06	0.13	
	5.26	2.76	0.10	0.18	0.27	2.81	28.0%	0.09	0.03	0.11	
	5.31	1.88	0.08	0.13	0.15	1.92	19.1%	0.08	0.02	0.10	
	5.36	1.51	0.04	0.08	0.07	1.53	15. 3%	0.04	0.00	0.07	
	5.41	0.65	0.02	0.03	0.01	0.66	6.5%	0.02	0.00	0.04	

					VERT	WATER				Tape to
	Data Input & Proofing	GL=1 FEATL	JRE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
	i i				Total Da	ta Points = 30				
STREAM NAME:	Grizzly Creek - Top Stake = 3.00		TS	0.00	3.00			0.00	0.00	0.00
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1		BS	0.00	3.48			0.00	0.00	0.00
XS NUMBER:	071007-001			2.00	3,82			0.00	0.00	0.00
DATE:	7/10/2007			3.00	3.99			0.00	0.00	0.00
OBSERVERS:	Uppendahl; H Skinner	1	GL	4.00	4.22			0.00	0.00	0.00
				5.90	4.89			0.00	0.00	0.00
1/4 SEC:	NW		WL	6.40	5.03	0.00	0.00	0.00	0.00	0.00
SECTION:	25			6.80	5.16	0.10	0.00	0.04	0.00	5.06
TWP:	10 N			7.20	5.20	0.15	0.00	0.06	0.00	5.05
RANGE:	88 W			7.60	5.21	0.15	0.00	0.06	0.00	5.06
PM:	6			8.00	5.28	0.15	0.41	0.06	0.02	5.13
				8.40	5.28	0.20	0.47	0.08	0.04	5.08
COUNTY:	Routt			8.80	5.44	0.40	0.22	0.16	0.04	5.04
WATERSHED:	Slater Creek			9.20	5.43	0.35	0.10	0.14	0.01	5.08
DIVISION:	6			9.60	5.38	0.30	0.38	0.12	0.05	5.08
DOW CODE:				10.00	5.38	0.25	0.19	0.10	0.02	5.13
USGS MAP:				10.40	5.30	0.25	0.15	0.10	0.02	5.05
USFS MAP:				10.80	5.23	0.20	0.06	0.08	0.00	5.03
	Level and Rod Survey			11.20	5.18	0.15	0.00	0.06	0.00	5.03
TAPE WT:	0.0106 Ibs / ft			11.60	5.13	0.10	0.00	0.04	0.00	5.03
TENSION:	99999 lbs			12.00	5.08	0.05	0.00	0.02	0.00	5.03
				12.50	5.08	0.05	0.00	0.03	0.00	5.03
SLOPE:	0.024680851 ft / ft		WL	13.00	5.03	0.00	0.00	0.00	0.00	0.00
				14.00	4.76			0.00	0.00	0.00
		1	GL	15.00	4.63			0.00	0.00	0.00
CHECKED BY	':DATE			15.50	4.38			0.00	0.00	0.00
				16.80	3.98			0.00	0.00	0.00
ASSIGNED TO	D:DATE			18.60	3.53			0.00	0.00	0.00
			BS	20.00	2.83			0.00	0.00	0.00

. -----

Ā

đ

Totals 1.15 0.20

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

Г

÷ξ

STREAM NAME: XS LOCATION: XS NUMBER:	Grizzly Creek d/s of unname 071007-002	Grizzly Creek - 090507 d/s of unnamed tributary. 40 47 51.0; 107 13 11.1 071007-002							
DATE: OBSERVERS:	5-Sep-07 Uppendahl &	Roach (TU)							
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 25 10 N 88 W 6								
COUNTY: WATERSHED: DIVISION: DOW CODE:	Routt Slater Creek 6 0								
USGS MAP: USFS MAP:	0 0								
SUPPLEMENTAL DATA	-	*** NOTE *** Leave TAPE WT and TENSION							
TAPE WT: TENSION:	0.0106 99999	with a survey level and rod							
CHANNEL PROFILE DATA	-								
SLOPE:	0.01727273								
INPUT DATA CHECKED BY	<i>t</i> :	DATE							

ASSIGNED TO:DATE.....

STREAM NAME: Grizzly Creek - 090507 XS LOCATION: XS NUMBER: 071007-002

d/s of unnamed tributary. 40 47 51.0; 107 13 11.1

	5=	26		
FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL
тs	0.00	3.00		
BS	0.01	3.53		
	2.00	3.80		
1 GL	4.00	4.25		
	6.00	4.95		
WL	6.70	5.10	0.00	0.00
	7.10	5.05	0.00	0.00
	7.50	5.10	0.00	0.00
	7.90	5.20	0.10	0.32
	8.30	5.20	0.10	0.44
	8.70	5.35	0.25	0.21
	9.10	5.40	0.30	0.31
	9.50	5.35	0.25	0.42
	9.90	5.30	0.20	0.18
	10.30	5.30	0.20	0.10
	10.70	5.20	0.10	0.05
	11.10	5.15	0.05	0.00
WL	11.70	5.10	0.00	0.00
	13.00	5.05		
	13.80	4.80		
1 GL	14.90	4.65		
	16.00	4.35		
	18.00	3.70		
	19.10	2.90		
BS	20.00	2.80		
TS	20.01	2.42		

TOTALS -----

0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
0.00		0.00	0.00	0.0%
4.27	0.3	0.63	0.16	100.0%
(Max.)			
Man	ning's n =		0.2188	

Manning's n = Hydraulic Radius= 0.146495159

VALUES COMPUTED FROM RAW FIELD DATA

WATER

DEPTH

0.10

0.10

0.25

0.30

0.25

0.20

0.20

0.10

0.05

AREA

(Am)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.04

0.10

0.12

0.10

0.08

0.08

0.04

0.03

0.00

0.00

0.00

0.00

0.00

0.00

% Q

CELL

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

8.3%

11.4%

13.5%

24.0%

27.1%

9.3%

5.2%

1.3%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

Q

(Qm)

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.02

0.02

0.04

0.04

0.01

0.01

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

WETTED

PERIM.

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.41

0.40

0.43

0.40

0.40

0.40

0.40

0.41

0.40

0.60

0.00

0.00

0.00

0.00

0.00

Ń

STREAM NAME:	Grizzly Creek - 090507
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1
XS NUMBER:	071007-002

WATER LINE COMPARISON TABLE

ŵ

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	0.63	0.63	0.0%
4.85	0.63	2.35	275.7%
4.87	0.63	2.19	250.6%
4.89	0.63	2.04	225.8%
4.91	0.63	1.88	201.4%
4.93	0.63	1.73	177.4%
4.95	0.63	1.59	153.8%
4.97	0.63	1.44	130.6%
4.99	0.63	1.30	107.9%
5.01	0.63	1.16	85.8%
5.03	0.63	1.03	64.1%
5.05	0.63	0.89	42.9%
5.06	0.63	0.83	32.9%
5.07	0.63	0.77	23.5%
5.08	0.63	0.72	14.9%
5.09	0.63	0.67	7.1%
5.10	0.63	0.63	0.0%
5.11	0.63	0.58	-6.6%
5.12	0.63	0.54	-12.9%
5.13	0.63	0.51	-19.0%
5.14	0.63	0.47	-24.8%
5.15	0.63	0.44	-30.4%
5.17	0.63	0.37	-40.9%
5.19	0.63	0.31	-50.6%
5.21	0.63	0.26	-59.0%
5.23	0.63	0.21	-66.2%
5.25	0.63	0.17	-73.1%
5.27	0.63	0.13	-79.5%
5.29	0.63	0.09	-85.4%
5.31	0.63	0.06	-90.3%
5.33	0.63	0.04	-93.9%
5.35	0.63	0.02	-96.8%

WATERLINE AT ZERO AREA ERROR = 5.100
 STREAM NAME
 Grizzly Creek - 090507

 XS LOCATION
 d/s of unnamed tributary 40 47 51.0; 107 13 11 1

 XS NUMBER
 071007-002

STAGING TABLE

Constant Manning's n

"GL" = lowest Grassline elevation corrected for sag

"WL" = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG	MAX		WETTED	PERCENT	HYDR		AVG
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(ET)	(%)	(FT)	(CFS)	(FT/SEC)
GL'	4 65	9.76	0.42	0.75	4,10	9.95	99,8%	0.41	2.03	0.49
	4.65	9.76	0.42	0.75	4.10	9.95	100.0%	0.41	2 03	0.49
	4.70	9,25	0.39	0.70	3.63	9.42	94 8%	0.38	1.71	0.47
	4.75	8 74	0.36	0.65	3.18	8.90	89.5%	0.36	1 43	0.45
	4.80	8.23	0 33	0.60	2.75	8.38	84 3%	0.33	1.17	0.42
	4.85	7.93	0.30	0.55	2.35	8 06	81 1.%	0.29	0 92	0.39
	4.90	7.62	0.26	0.50	1,96	7.74	77 9%	0.25	0.70	0.36
	4,95	7.32	022	0.45	1.59	7.42	74.7%	0.21	0.51	0.32
	5.00	6.93	0.18	0.40	1 23	7.02	70.6%	0.18	0.34	0.28
	5.05	6.53	0.14	0.35	0.89	6,61	66.5%	0.14	0.21	0.23
WL.	5.10	4.20	0.15	0.30	0.62	4.27	42 9%	0.15	0.18	0.25
	5.15	3.40	0.13	0.25	0.44	3.46	34.8%	0.13	0.10	0.22
	5.20	2.40	0.12	0.20	0.28	2.45	24 6%	0.11	0.06	0.21
	5.25	2.07	0.08	0 15	0.17	2.10	21 1%	0.08	0.03	0.17
	5.30	1 33	0.06	0 10	0.07	1 35	13.6%	0.05	0.01	0.13
	5.35	0 80	0.03	0.05	0.02	0.81	8.1%	0.02	0.00	0.08
	5.40	0.00	#DIV/01	0.00	0.00	0.00	0.0%	#D[V/0!	NDIV/01	#DIV/01

۰.

3/3 = ? 2/3 = 0,45

STREAM NAME:	Grizzly Creek - 090507
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1
XS NUMBER:	071007-002

SUMMARY SHEET

MEASURED FLOW (Qm)=	0.16	cfs
CALCULATED FLOW (Qc)=	0.16	cfs
(Qm-Qc)/Qm * 100 =	0.0	%
	5.40	4
MEASURED WATERLINE (WLM)=	5.10	π
CALCULATED WATERLINE (WLc)=	5.10	ft
(WLm-WLc)/WLm * 100 ≏	0.0	%
MAX MEASURED DEPTH (Dm)=	0.30	ft
MAX CALCULATED DEPTH (Dc)=	0.30	ft
(Dm-Dc)/Dm * 100	0.0	%
	0.25	ft/sec
	0.25	10366
MANNING'S N=	0.219	
SLOPE=	0.01727273	ft/ft
.4 * Qm =	0.1	cfs
2.5 * Qm=	0.4	cfs

RECOMMENDED INSTREAM FLOW:									
FLOW (CFS)	PERIOD								

RATIONALE FOR RECOMMENDATION:

٩

RECOMMENDATION BY:	AGENCY	DATE:
CWCB REVIEW BY:		DATE:

					VERT	WATER				Tape to
	Data Input & Proofing	GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	Α	Q	Water
	• -				Total Da	ta Points = 26				
STREAM NAME:	Grizzly Creek - 090507		TS	0.00	3.00			0.00	0.00	0.00
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1		BS	0.01	3.53			0.00	0.00	0.00
XS NUMBER:	071007-002			2.00	3.80			0.00	0.00	0.00
DATE:	9/5/2007	1	GL	4.00	4.25			0.00	0.00	0.00
OBSERVERS:	Uppendahl & Roach (TU)			6.00	4.95			0.00	0.00	0.00
			WL	6.70	5.10	0.00	0.00	0.00	0.00	0.00
1/4 SEC:	NW			7.10	5.05	0.00	0.00	0.00	0.00	0.00
SECTION:	25			7.50	5.10	0.00	0.00	0.00	0.00	0.00
TWP:	10 N			7.90	5.20	0.10	0.32	0.04	0.01	5.10
RANGE:	88 W			8.30	5.20	0.10	0.44	0.04	0.02	5.10
PM:	6			8.70	5.35	0.25	0.21	0.10	0.02	5.10
				9.10	5.40	0.30	0.31	0.12	0.04	5.10
COUNTY:	Routt			9.50	5.35	0.25	0.42	0.10	0.04	5.10
WATERSHED:	Slater Creek			9.90	5.30	0.20	0.18	0.08	0.01	5.10
DIVISION:	6			10.30	5.30	0.20	0.10	0.08	0.01	5.10
DOW CODE:				10.70	5.20	0.10	0.05	0.04	0.00	5.10
USGS MAP:				11.10	5.15	0.05	0.00	0.03	0.00	5.10
USFS MAP:			WL	11.70	5.10	0.00	0.00	0.00	0.00	0.00
	Level and Rod Survey			13.00	5.05			0.00	0.00	0.00
TAPE WT:	0.0106 lbs / ft			13.80	4.80			0.00	0.00	0.00
TENSION:	99999 Ibs	1	GL	14.90	4.65			0.00	0.00	0.00
				16.00	4.35			0.00	0.00	0.00
SLOPE:	0.017272727 ft / ft			18.00	3.70			0.00	0.00	0.00
				19.10	2.90			0.00	0.00	0.00
			BS	20.00	2.80			0.00	0.00	0.00
CHECKED BY	':DATE		TS	20.01	2.42			0.00	0.00	0.00
ASSIGNED TO										

· •

Totals 0.63 0.16

FIELD DATA FOR **INSTREAM FLOW DETERMINATIONS**

COLORADO WATER

LOCATION INFORMATION

CROSS	
STREAM NAME: Grizzly Creets 200	SECTION NO.: 7 - 02
CROSS-SECTION LOCATION: \$1/3 of unnemed tributary 40°4750.6	0 2 2 4 2 4
107" 13' 10,5	
DATE: 9/5/07 OBSERVERS: Unpoulabl Paral	
LEGAL VASECTION: NW SECTION: 25 TOWNSHIP: 10 (NYS RANGE: 88 EW) PM	6
COUNTY: ROUTT WATERSHED: Later CR WATER DIVISION: 6 DOW WATER CODE:	
USGS:	
USFS:	

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS YES NO	METER TYPE:	Marsh-Mc	Boney	Flo-Made.		
METER NUMBER:	DATE RATED:	CALIB/SPIN:			Ibs/foot	TAPE TENSION: lbs
CHANNEL BED MATERIAL SIZE RANGE:			PHOTOGRAPHS TA	KEN YESINO	NUMBER OF PI	IOTOGRAPHS:

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (ft)	ROD READING (ft)	Π	$\leq \otimes h$	LEGEND:
🛞 Tape @ Stake LB	0.0				State 🕥
Tape @ Stake RB	0.0		s ĸ		
1 WS @ Tape LB/RB	0.0	5.10/5.10	E T C	A A A A A A A A A A A A A A A A A A A	Photo (1)
2 WS Upstream	11.0	4.85	н		
3 WS Downstream	22.0	5,42			Direction of Flow
SLOPE	51/230	-	1 1	\$	

AQUATIC	SAMPLING	SUMMARY
---------	----------	---------

5,42		AC	JUAT	IC S	AMF	PLIN	G SI	JMM	ARY	,							
STREAM ELECTROFISHED: YES NO DIS	STREAM ELECTROFISHED: YESNO DISTANCE ELECTROFISHED:ft						FISH CAUGHT: YES/NO WATER CHEMISTRY SAMPLED: YES NO										
LE	NGTH - FRE	QUENC	Y DIST	RIBUTIC	ON BY	ONEIN	ICH SIZ	E GRO	UPS (1.	0-1.9, 2	2.0-2.9,	, ETC.)					
SPECIES (FILL IN)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
Fish seen			1/														
		∔		<u> </u>	<u> </u>	ļ'	Ļ	ļ	 				<u> </u>				
					ļ	'											
AQUATIC INSECTS IN STREAM SECTION BY COM	MON OR SC	IENTIFI	C ORDE	ER NAM	IE:												
					<u> </u>												-

COMMENTS

DISCHARGE/CROSS SECTION NOTES

ſ	STREAM NAME:	Grizz	14	creek	-			ROSS-SECTION	N NO.: OZ	DATE:	2	SHEET	OF	
ľ	BEGINNING OF M	EASUREMENT	EDGE OF W	ATER LOOKING D	OWNSTREAM:	LEFT / RIG	HT Gage	Reading:	ft	тіме: 14:0	0			
t	op Stake (S)	Distance	Width	Total	Water	Depth	Revolution	s	Veloci	ty (ft/sec)				7
	Grassline (G) Waterline (W) BRock (R)	From Initial Point (ft)	(ft)	Vertical Depth From Tape Inst (ft)	Depth (ft) 11.62	of Obser- vation (ft)		Time (sec)	At Point	Mean in Vertical	Ar- (ft	ea ²)	Discharge (Cfs)	
*	TS	0		3.00					-					
	<u> </u>	0		3,53										_
		2.0		3,80										_
	- LL	4.0		4,25										-
		$\left(\begin{array}{c} 6.0\\ 7\end{array}\right)$		510	R				Ø					1
		71		5 06	T	·			Ð					٦
		+,		$5, c_{\mathcal{I}}$	ð				8	***				٦
	_	7.7 79		570	$\frac{2}{10}$.32	2				
		71		520	. 15				. 44	-				
		v 🖓		5.35	75				.21					٦
		9.1		5.40	20				.31					
		9.5		5.6.6	,25				.42	_				
		1.9		5,30	.20				-18					
1		10.3		5:30	,20				10					_
		li), p		5,20	.10				,05					_
		1/, /		5,15	.05									-
	we	11.7		5,10	9				K.					-
		13.0		11 8/2										-
	1.1	14 9		460			I							
	_ () (11 0		1,25										
		ile. IV D		230										
		19.1		2.90										
	85	20.0		2,80										
Y	-15	20.21		2.42										
•														
														_
														_
				_	,									-
														1
			_											
											_			_
						,								-
				_										-
	TOTALS				··· ···· i		í r	 	· <mark> </mark> · · · · · · · ·					
	TUTALS:		10.10	<u>i</u>							: CHECK		I. 9, 16	
	End of Measur	ement Tin	ne: (トリア)	I Gage Reading	i: ft				_4		2.1201			

STREAM NAME:	Grizzly Creek - 090507
XS LOCATION:	d/s of unnamed tributary. 40 47 51.0; 107 13 11.1
XS NUMBER:	071007-002

Thorne-Zevenbergen D84 Correction Applied Estimated D84 = 0.77

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

STAGING TABLE		*WL* = Waterline corrected for variations in field measured water surface elevations and sag								
Velocity based on test of R/D84>1										
	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
*CI *	4 65	9.76	0.42	0.75	4 10	0.05	100.0%	0.41	4 48	1.09
OL	4.65	9.76	0.42	0.75	4 10	9.95	100.0%	0.41	4.48	1.09
	4.70	9.25	0.39	0.70	3.63	9.42	94.8%	0.38	3.57	0.98
	4.75	8.74	0.36	0.65	3.18	8.90	89.5%	0.36	2.79	0.88
	4.80	8.23	0.33	0.60	2.75	8.38	84.3%	0.33	2.14	0.78
	4.85	7.93	0.30	0.55	2.35	8.06	81.1%	0.29	1.54	0.66
	4.90	7.62	0.26	0.50	1.96	7.74	77.9%	0.25	1.07	0.55
	4.95	7.32	0.22	0.45	1.59	7.42	74.7%	0.21	0.71	0.45
	5.00	6.93	0.18	0.40	1.23	7.02	70.6%	0.18	0.44	0.36
	5.05	6.53	0.14	0.35	0.89	6.61	66.5%	0.14	0.25	0.28
WL	5.10	4.20	0.15	0.30	0.62	4.27	42.9%	0.15	0.16 ≮	0.25
	5.15	3.40	0.13	0.25	0.44	3.46	34.8%	0.13	0.08	0.19
	5.20	2.40	0.12	0.20	0.28	2.45	24.6%	0.11	0.04	0.15
	5.25	2.07	0.08	0.15	0.17	2.10	21.1%	0.08	0.02	0.10
	5.30	1.33	0.06	0.10	0.07	1.35	13.6%	0.05	0.00	0.05
	5.35	0.80	0.03	0.05	0.02	0.81	8.1%	0.02	0.00	0.02
	5.40	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!

3/3 = 3.752/3 = 0.6

 STREAM NAME:
 Grizzly Creek - 090507

 XS LOCATION:
 d/s of unnamed tributary. 40 47 51.0; 107 13 11.1

 XS NUMBER:
 071007-002

 Jarrett Variable Manning's n Correction Applied

STAGING TABLE

GL = lowest Grassline elevation corrected for sag *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	4.65	9.76	0.42	0.75	4.10	9.95	100.0%	0.41	2.39	0.58
	4.65	9.76	0.42	0.75	4.10	9.95	100.0%	0.41	2.39	0.58
	4.70	9.25	0.39	0.70	3.63	9.42	94.8%	0.38	2.00	0.55
	4.75	8.74	0.36	0.65	3.18	8.90	89.5%	0.36	1.64	0.52
	4.80	8.23	0.33	0.60	2.75	8.38	84.3%	0.33	1.33	0.48
	4.85	7.93	0.30	0.55	2.35	8.06	81.1%	0.29	1.03	0.44
	4.90	7.62	0.26	0.50	1.96	7.74	77.9%	0.25	0.76	0.39
	4.95	7.32	(0.22)	0.45	1.59	7.42	74.7%	0.21	0.54	0.34
	5.00	6.93	0.18	0.40	1.23	7.02	70.6%	0.18	0.35	0.29
	5.05	6.53	0.14	0.35	0.89	6.61	66.5%	0.14	0.21	0.23
WL	5.10	4.20	0.15	0.30	0.62	4.27	42.9%	0.15	0.16	0.25
	5.15	3.40	0.13	0.25	0.44	3.46	34.8%	0.13	0.10	0.22
	5.20	2.40	0.12	0.20	0.28	2.45	24.6%	0.11	0.06	0.20
	5.25	2.07	0.08	0.15	0.17	2.10	21.1%	0.08	0.03	0.15
	5.30	1.33	0.06	0.10	0.07	1.35	13.6%	0.05	0.01	0.11
	5.35	0.80	0.03	0.05	0.02	0.81	8.1%	0.02	0.00	0.06
	5.40	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!

3/3 = ? 2/3 = ,45

Grizzly Creek d/s of unnamed tributary NW S25 T10N R88W 6PM