DRAFT INSTREAM FLOW RECOMMENDATION

Mr. Dan Merriman Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Mr. Merriman:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its instream flow recommendation for North Fork North Platte River, located in Water Division 6.

Location and Land Status. North Fork North Platte is tributary to the North Platte River approximately six miles west of Walden. This recommendation covers the stream reach beginning at the headwaters downstream to the headgate of the Little Nellie Ditch. Approximately 60% of the 7.50-mile reach is federally owned, while the remaining 40% is privately owned.

Biological Summary. North Fork North Platte River transitions from a high gradient to a low gradient stream within the proposed reach. The stream channel is stable and well anchored by a vigorous riparian community. Water quality, food supplies, and substrate are excellent for salmonids. This stream supports one of the best fisheries in North Park. Fisheries surveys indicate self-sustaining populations of brown trout and brook trout, with brown trout specimens of up to 19 inches in length.

R2Cross Analysis. BLM's data analysis, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

7.10 cubic feet per second is recommended for the high temperature period from May 1 to October 31. This recommendation is driven by the average velocity criteria and the average depth criteria. It is important to provide adequate velocity and physical habitat during this time for fish spawning and incubation of eggs. In addition, it is important to provide adequate depth and velocity to maintain low water temperatures, because the lower elevations portions of the reach do not have significant shading and cover. Protecting flows during this time period is also important for recharging the alluvial aquifer, which discharges water to the stream and maintains flow levels during later summer.

5.60 cubic feet per second is recommended from November 1 through April 30. This recommendation is driven by the average depth criteria. This flow rate will allow fish to survive in pools, provide sufficient physical habitat in riffles between pools, and will prevent the riparian environment from being seriously stressed.

Water Availability. BLM is not aware of any decreed water rights within this reach. However, there are two diversions located on tributaries to this stream reach. The Goose Creek Ditch is located on Goose Creek, and the Shafer Ditch is located on Shafer Creek. The Little Nellie Ditch, which is the proposed lower terminus for this reach, is senior to the Goose Creek Ditch and the Shafer Ditch. BLM recommends that the CWCB utilize the Encampment River gage above Hog Park, WY or Elk River above Clark, Colorado, and perform a basin comparison analysis. Another good source of water availability information would be diversion records for the Little Nellie Ditch.

Relationship to Management Plans. This stream reach is one of the few fisheries managed by BLM in North Park. Accordingly, BLM places a strong emphasis on managing grazing, transportation routes, and recreation use to maintain and enhance both riparian and fisheries resources. BLM's efforts to maintain riparian and fisheries health will be supplemented by an instream flow appropriation that works to keep the riparian community watered, especially during high temperature periods.

The BLM requests that the Board recognize that this recommendation is based only upon the minimum flows necessary to support cold-water fishery values. BLM may wish to work with the Board and/or through the Colorado water rights system to appropriate flows to optimally protect fish values and to protect other water-dependent values specified in BLM resource management plans.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section are enclosed to support this recommendation. We thank both the Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely,

Linda Anania Deputy State Director Resources and Fire

4 Enclosures

cc: Paula Belcher, Kremmling FO John Ruhs, Kremmling FO

Stream: North Fork North Platte River

Executive Summary

Water Division: 6 Water District: 47 CDOW#: 11798 CWCB ID#: 07/6/A-006

Segment:

Upper Terminus: Headwaters

Latitude: 40° 53' 5.5"N Longitude: 106° 38' 5.2"W UTM North: 4528185.6 UTM East: 362289.4

SE SW S29, T11N, R82W 6th PM

1978' East of West Section Line, 749' North of South Section Line

Lower Terminus: Little Nellie Ditch

Latitude: 40° 50' 47.5"N Longitude: 106° 32' 36.4"W UTM North: 4522866.4 UTM East: 369891.4

NW NW S18, T10N, R81W 6th PM

1040' East of the West Section Line, 605' South of North Section Line

Counties: Jackson Length: 9.8 miles

USGS Quad(s): Davis Peak, Pearl and Boettcher Lake ISF Appropriation: 7.1 cfs (April 1 to July 31)

4.5 cfs (August 1 to October 31) 2.8 cfs (November 1 to March 31)

Summary

The information contained in this report and the associated appendix forms the basis for staff's instream flow recommendation to be considered by the Board. It is staff's opinion that the information contained in this report is sufficient to support the findings required in Rule 5i.

Colorado's Instream Flow Program was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (see 37-92-102 (3) C.R.S.). The statute vests the CWCB with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's Instream Flow Program, the statute directs the CWCB to request instream flow recommendations from other state and federal agencies. The Bureau of Land Management recommended this segment of North Fork North Platte River to the CWCB for inclusion into the Instream Flow Program. North Fork North Platte River is being considered for inclusion into the Instream Flow Program because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right. The BLM is very interested in protecting stream flows because the North Fork of the North Platte supports one of the best fisheries in North Park, and it also supports an extremely healthy riparian community.

North Fork North Platte River is 30.4 miles long. It begins at its headwaters on the northeastern flank of Red Elephant Mountain near Big Creek Lakes at an elevation of approximately 9,195 feet. It terminates at the confluence with the Platte River at an elevation of approximately 8,100 feet. Approximately 62% of the 9.8-mile segment addressed by this report is located on federal lands. North Fork North Platte River is located within Jackson County. The total drainage area of the creek is approximately 28.3 square miles. North Fork North Platte River generally flows in a southeasterly direction.

The subject of this report is a segment of the North Fork North Platte River beginning at the headwaters and extending downstream to the headgate of the Little Nellie Ditch. The proposed segment is located northwest of the town of Walden. The staff has received one recommendation for this segment from the BLM. The recommendation for this segment is discussed below.

Instream Flow Recommendation(s)

BLM recommended 7.1 cfs (summer), 5.6 cfs (winter), based on data collection efforts on September 29, 2005. The modeling results from these survey efforts are within the confidence interval produced by the R2Cross model.

Land Status Review

		Total Length	Land Ow	nership
Upper Terminus	Lower Terminus	(miles)	% Private	% Public
Headwaters	Little Nellie Ditch	9.8	38%	62%

Of the 62% of land under public ownership, 12% is managed by BLM and 50% is managed by USFS.

Biological Data

The BLM has conducted field surveys of the fishery resources on this stream and have found a natural environment that can be preserved. As reported in the letter from BLM to the CWCB "North Fork North Platte River transitions from a high gradient to a low gradient stream within the proposed reach. The stream channel is stable and well anchored by a vigorous riparian community. Water quality, food supplies, and substrate are excellent for salmonids. This stream supports one of the best fisheries in North Park. Fisheries surveys indicate self-sustaining populations of brown trout and brook trout, with brown trout specimens of up to 19 inches in length." (See CDOW Fish Survey in the appendix).

Field Survey Data

BLM staff used the R2Cross methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. The R2Cross method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should streamflow cease. This type of hydraulic data collection consists of setting up a transect, surveying the stream channel geometry, and measuring the stream discharge. The appendix contains copies of field data collected for this proposed segment.

Biological Flow Recommendation

The CWCB staff relied upon the biological expertise of the cooperating agencies to interpret output from the R2Cross data collected to develop the initial, biologic instream flow recommendation. This initial recommendation is designed to address the unique biologic requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

For this segment of stream, two data sets were collected with the results shown in Table 1 below. Table 1 shows who collected the data (Party), the date the data was collected (Date), the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's Equation (240% and 40% of Q), the summer flow recommendation based on meeting 3 of 3 hydraulic criteria and the winter flow recommendation based upon 2 of 3 hydraulic criteria.

Table 1: Data

Party	Date	Q	250%-40%	Summer (3/3)	Winter (2/3)
BLM	09/29/2005	13.5	33.6 – 5.4	6.2	5.6
BLM	09/29/2005	15.2	38.0 – 6.1	8.0	(1)

BLM = Bureau of Land Management

DOW = Division of Wildlife

? = Criteria never met in R2CROSS Staging Table.

Biologic Flow Recommendation

The summer flow recommendation, which meets 3 of 3 criteria and is within the accuracy range of the R2CROSS model is 7.1 cfs. This recommendation was produced by averaging the data sets. The winter flow recommendation, which meets 2 of 2 criteria and is within the accuracy range of the R2Cross model is 5.6 cfs. It is our belief that recommendations that fall outside of the accuracy range of the model, over 250% of the measured discharge or under 40% of the measured discharge may not give an accurate estimate of the necessary instream flow required.

Hydrologic Data

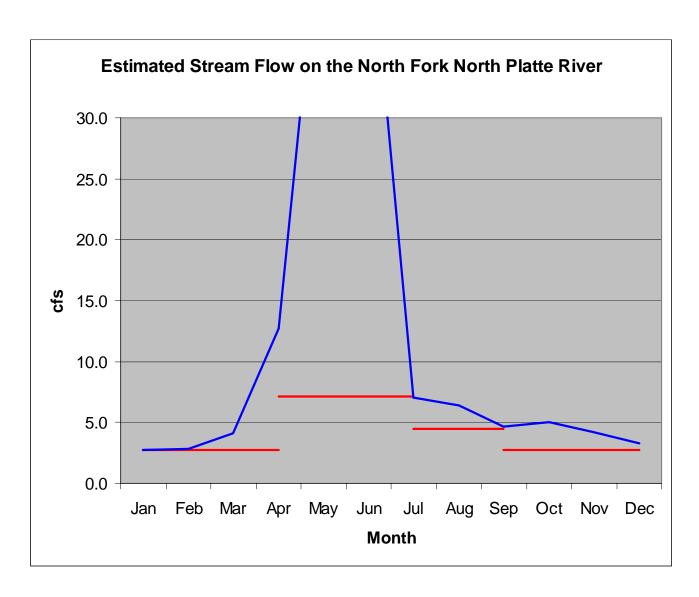

After receiving the cooperating agency's biologic recommendation, the CWCB staff conducted an evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation. While a historic gaging station was found downstream from the proposed instream flow segment on the North Fork North Platte River, the gage is heavily affected by diversions and has a period of record from 1923 to 1945. With so limited a record, it was necessary to use indirect methods to define the stream's flow regime (the appendix contains the summary of gage data for the two gages mentioned above). The hydrograph below was produced using the USDI Geological Survey's StreamStats system. This methodology estimates streamflow in ungaged basins through statistical analyses of selected watershed characteristics. The StreamStats values for discharge represent the "natural" or undiminished flow of the basin. However, water is diverted from the North Fork North Platte River above the point at which the StreamStats analysis was made. To better estimate the actual (depleted) flows of North Fork North Platte River, the mean monthly diversions (or consumptive use associated with upstream diversions) was subtracted from the mean monthly stream flows of StreamStats. To do this it was assumed that 1) consumptive use was 50% of the amount diverted, and 2) diversion occurred during each day of the irrigation season month, for 24 hours a day.

Table 2 and Figure 1 below show that the recommended summer flow of 7.1 cfs is available on average during the period of April 1 through July 31. Due to limited water availability, the summer flow recommendation has been reduced to 4.5 cfs during the period of August 1 to October 31. In addition, due to limited water availability, the winter flow of 5.6 cfs was reduced to 2.8 cfs during the period of November 1 to March 31.

⁽¹⁾ Predicted flow outside of the accuracy range of Manning's Equation.

Table 2: Estimated Stream Flow on North Fork North Platte River:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Unadjusted Mean Monthly Stream Flow (cfs)	2.8	2.9	4.1	13.0	56.2	65.6	17.1	7.1	5.0	5.1	4.2	3.3
Mean Monthly Stream Flow Adjusted for Upstream Diversions (cfs)	2.8	2.9	4.1	12.7	49.1	46.5	7.0	6.4	4.7	5.1	4.2	3.3

Existing Water Right Information

Staff has analyzed the water rights tabulation and consulted with the Division Engineer Office (DEO) to identify any potential water availability problems. One decreed surface diversion is located within the proposed reach, the Pleasant Valley Ditch (36 cfs). Two other diversions are located on tributaries to this reach, Beaverdale Ditch (12 cfs) on Goose Creek and Shafer Ditch (48 cfs) on Shafer Creek. Based on this analysis staff has determined that water is available for appropriation on North Fork North Platte River, from the headwaters to the headgate of the Little Nellie Ditch, to preserve the natural environment to a reasonable degree without limiting or foreclosing the exercise of valid water rights.

CWCB Staff's Instream Flow Recommendation

Based on the CDOW recommendation, staff recommends the Board form its intent to appropriate on the following stream reach:

Segment:

Upper Terminus: Headwaters

Latitude: 40° 53' 5.5"N Longitude: 106° 38' 5.2"W UTM North: 4528185.6 UTM East: 362289.4

SE SW S29, T11N, R82W 6^{th} PM

1978' East of West Section Line, 749' North of South Section Line

Lower Terminus: Little Nellie Ditch

Latitude: 40° 50' 47.5"N Longitude: 106° 32' 36.4"W UTM North: 4522866.4 UTM East: 369891.4

NW NW S 18, T10N, R81W 6^{th} PM

1040' East of the West Section Line, 605' South of North Section Line

Counties: Jackson Length: 9.8 miles

USGS Quad(s): Davis Peak, Pearl and Boettcher Lake ISF Appropriation: 7.1 cfs (April 1 to July 31)

4.5 cfs (August 1 to October 31) 2.8 cfs (November 1 to March 31)

Figure 2: North Fork North Platte River--Land Ownership

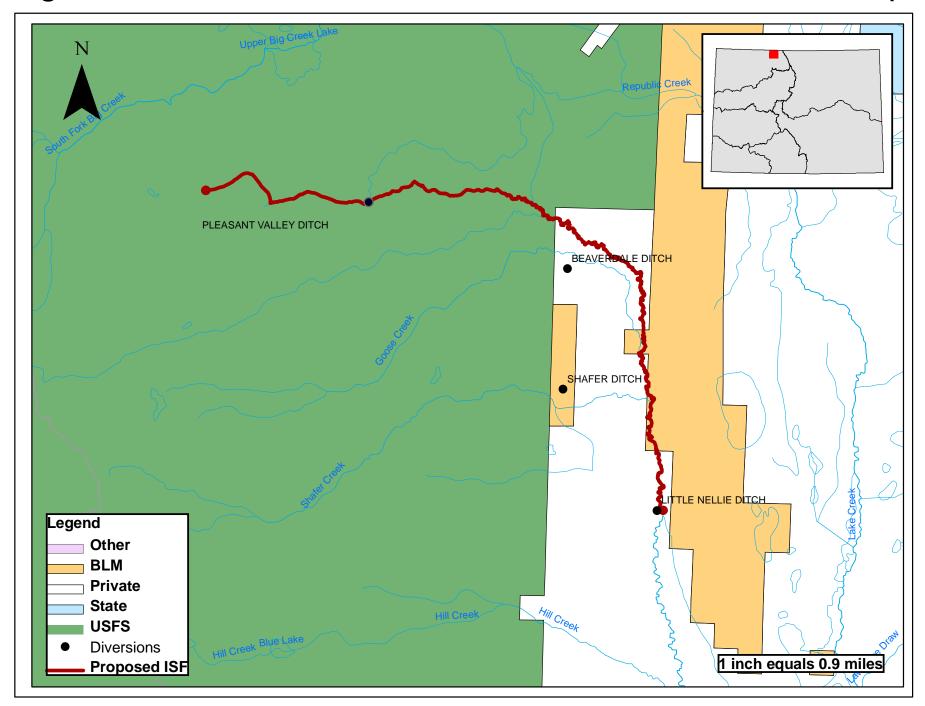
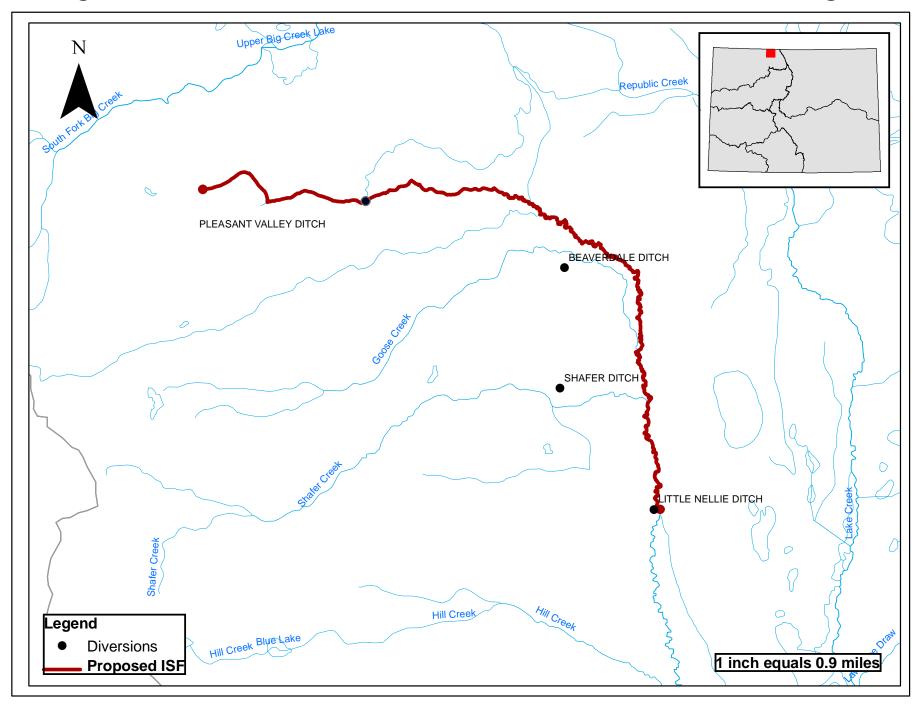



Figure 3: North Fork North Platte River--Water Rights

Field Data

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

OARD					
STREAM NAME: North F	Fork North	Platte	,		CROSS-SECTION NO.:
CROSS-SECTION LOCATION: 1/	z mile down	stream	from conf	ivence.	·
		e Creek			
DATE: 9-29-05 OBSERVERS:	R. Smith,	P. Ledf	_		
LEGAL % SECTION:	NW SECTION:	7 TOWNSHIP:	1000s RANGE	= SY E/W)	PM: 6th
COUNTY: Jackson	WATERSHED: N. PI	otte	WATER DIVISION:	DOW WATER	798
uses: 1200	t-cher Lake		GPS Zone		a casa ma
MAP(S):				45741	
4.00	S	UPPLEMENT	AL DATA	10 2	
SAG TAPE SECTION SAME AS	NO METER TYPE: N	larsh-Mo	. 		
DISCHARGE SECTION: METER NUMBER:	DATE RATED:	1015K-17C	1317May	unveved	surveved
CHANNEL BED MATERIAL SIZE RANGE		CALIB/SPIN:	sec TAPE WEIGHT:	Ibs/foot TAI	PE TENSION: ibs
gravel to L	l" cobbles	PHO	OTOGRAPHS TAKEN YES NO		3
and Aller Andrews	CI	HANNEL PRO	FILE DATA		and the second s
STATION	DISTANCE (ft) F	ROD READING (H)		·	STEELEGEND:
Tape @ Stake LB	0.0 Sul	nreved	and the second of the second o		State (S)
Tape @ Stake RB	0.0	arreved	S K		Stake 🗱
WS @ Tape.LB/RB	0.0 4,6	替/4.70	[[3]-7	TAPE.	Photo (1)
2 WS Upstream	50,0'	4.34	н		
3 WS Downstream	45,0	5.04	/2	7. 6	Direction of Flow
SLOPE 0.70 /	95.0' = 0.00	7	4	/ &	りる
•	AQU	ATIC SAMPLI	NG SUMMARY		
STREAM ELECTROFISHED: YES	DISTANCE ELECTROFISHED	:ft	FISH CAUGHT: YES NO	WATER CHEMISTRY	SAMPLED: (ES/)O
·	LENGTH - FREQUENCY DIS	STRIBUTION BY ONE-	INCH SIZE GROUPS (1.0-1.9, 2	.0-2.9, ETC.)	
SPECIES (FILL IN)	1 2 3	4 5 6	3 7 8 9 10	11 12 13 14	15 >15 TOTAL
see attached	•				
survey					-
AQUATIC INSECTS IN STREAM SECTION	-	_			
caddisfly: m	outly, stor	eatly - c	all abunda	at .	
•		COMMEN	ITS		
Stream Tem	D = 460	Ripario	on in excel	lent condi	tion.

DISCHARGE/CROSS SECTION NOTES

					DISCHAF	KGE/CKO	SS SECT	ION NO	162			
Stake (S) Distance (G) Good Stake (N) Distance (N) Distance (G) Dista	STREAM NAME:	N.F	k. N.	Pla	tte	• .	CROS	S-SECTION N	10.:	DATE: 9-2	9-03 SH	EET OF
Comparison (a) Comparison (b) Comparison (class) Comparison (cla	BEGINNING OF M	EASUREMENT			OWNSTREAM:	LEFT / RIGHT	Gage Re	ading: 🤇	2.4"	TIME: T	.40	a.
7.0 5.04 0.45 1.0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	: : : : :	From Initial Point (ft)		Vertical Depth From Tape/Inst	Depth	of Obser- vation	levolutions	1 1	At	Mean in	Area (ft ²)	Discharge (cfs)
1.0 72.5 5.05 5.08 6.45 6.45 6.46 6.26 6.26 6.26 6.45 6.45 6.45 6.26 6.26 6.26 6.26 6.26 6.26 6.26 6.2	LS/G											
1.0 2.5 3.08 6.4 6.4 6.7 6.86 4.0 5.03 0.35 0.74 5.5 5.14 0.45 1.00 7.0 5.00 0.35 0.81 8.5 4.95 0.30 0.71 11.5 5.05 0.40 1.17 13.0 5.08 0.45 1.51 14.5 4.98 0.40 1.57 16.0 5.14 0.50 1.98 17.0 5.14 0.50 1.95 18.0 5.25 0.60 2.47 19.0 5.19 0.50 0.21 20.0 5.15 0.45 2.70 21.0 5.15 0.45 2.70 21.0 5.04 0.35 W 24.7 3.70 G 25.0 3.60	No. F				, ø			· _;;	Ý.,			·
5.5 5.14 0.45 1.00 7.0 5.00 0.35 0.81 8.5 4.95 0.30 0.90 10.0 4.95 0.30 0.71 11.5 5.05 0.40 1.17 13.0 5.08 0.45 1.51 14.5 4.98 0.40 1.57 16.0 5.14 0.50 1.98 17.0 5.14 0.50 1.98 17.0 5.14 0.50 1.95 18.0 5.25 0.60 2.47 19.0 5.19 0.50 0.21 20.0 5.15 0.45 2.70 21.0 5.15 0.45 2.70 21.0 5.02 0.30 1.74 23.0 5.02 0.30 1.74 23.0 5.02 0.35 W 24.7 3.70 G 25.0 3.60	_		5.35		77 T	C.#	:	>	0.86			
7.0 5.00 0.35 0.81 9.5 4.95 0.30 0.90 10.0 4.95 0.30 0.71 11.5 5.05 0.40 1.17 13.0 5.08 0.45 1.51 14.5 4.98 0.40 1.57 16.0 5.14 0.50 1.95 16.0 5.25 0.60 2.47 19.0 5.19 0.50 0.21 20.0 5.15 0.45 2.70 21.0 5.15 0.45 2.70 21.0 5.07 0.35 W 24.7 5.04 0.35 W 24.7 3.70 G 25.0 3.60												
8.5 4.95 0.50 10.0 4.95 0.30 11.5 5.05 0.40 11.5 5.05 0.40 11.5 13.0 5.08 0.45 11.5 14.5 4.98 0.40 11.57 16.0 5.14 0.50 11.95 16.0 5.25 0.60 21.47 19.0 5.19 0.50 21.0 5.15 0.45 27.0 21.0 5.15 0.45 27.0 21.0 5.02 0.30 2.72 24.3 24.0 2.70 3.70 G 25.0 3.60												
10.0 4.95 0.30 1.17 11.5 5.05 0.40 1.17 13.0 5.08 0.45 1.51 14.5 14.9 14.												
11.5 5.05 0.40 1.51 13.0 5.08 0.45 1.51 14.5 4.98 0.40 1.57 16.0 5.14 0.50 1.95 15.0 5.25 0.60 2.47 19.0 5.19 0.50 21.0 5.15 0.45 22.0 5.15 0.45 22.0 5.02 0.30 21.0 5.02 0.35 24.3 24.0 5.04 0.35 24.7 3.70 G 25.0 3.60		_	1 , 1			•					₹*	
13.0 5.08 0.45 14.5 4.98 0.40 1.57 16.0 5.14 0.50 1.95 15.0 5.25 0.60 2.47 19.0 5.19 0.50 21.0 5.15 0.45 22.0 5.15 0.45 22.0 5.15 0.45 22.0 5.02 0.30 24.3 24.0 5.04 0.35 24.7 3.70 34.7 3.70 3.50 3.60		_			-							
14.5 16.0 5.14 0.50 1.98 17.0 5.14 0.50 1.95 18.0 5.25 0.60 2.47 19.0 5.19 0.50 0.21 20.0 5.16 0.45 2.70 21.0 5.15 0.45 2.70 21.0 5.02 0.30 1.74 23.0 5.02 0.35 1.52 W 24.7 3.70 G 25.0 3.60												
16,0 5.14 0.50 1.95 15.0 5.14 0.50 1.95 16.0 5.25 0.60 2.47 19.0 5.19 0.50 0.21 20.0 5.15 0.45 2.70 21.0 5.02 0.30 1.74 23.0 5.02 0.35 1.52 W 24.4 5.04 0.35 1.52 W 24.4 5.70 G 25.0 3.60										L		•
17.0 5.14 0.50 18.0 5.25 0.60 2.47 19.0 5.19 0.50 21.0 5.16 0.45 22.0 5.15 0.45 22.0 5.02 0.30 24.3 \ 24.0 5.04 0.35 24.7 3.70 G 25.0 3.60												
18.0 5.25 0.60 19.0 5.19 0.50 2.47 20.0 5.16 0.45 2.70 21.0 5.15 0.45 2.36 2.72 24.3 24.0 5.04 0.35 24.7 3.70 G 25.0 3.60	4	-		_								
20.0 5.16 0.45 2.70 21.0 5.15 0.45 2.26 22.0 4.98 0.30 1.74 23.0 5.02 0.30 2.72 24.3 124.0 5.04 0.35, 1.52 W 24.4 4.70 6.35, 1.52 24.7 3.70 G 25.0 3.60	Section 18											
21.0 5.15 6.45 22.0 4.98 0.30 1.74 23.0 5.02 0.30 2.72 24.3 \ 24.0 5.04 0.35, W 24.4 4.70 5.00 \ 2.70 24.7 3.70 G 25.0 3.60			٠.									•
23.0 4.98 0.80 23.0 5.02 0.30 24.3 \ 24.0 \ 5.04 0.35, W 24.4 4.70 \ 3.70 G 25.0 3.60			t									
23.0 5.02 0.30 24.3 \ 24.0 5.04 0.35, W 24.4 4.70 5.70 24.7 3.70 G 25.0 3.60				4 .								
34.3 \ 34.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 75 20 41			_		• •	s ·	Service List		•		
W 24.4 4.70 6 24.7 24.70 G 25.70 G 25.0 3.60	24.3 \	-	·				1 - 11 -					46.5
34.7 3.70 G 25.0 3.60		•	3,00		U , 405	, per s	• •	•			1 12 11 12	
G 25.0 3.60					v /				4)			•
	G							-				
162 324 3.30	ns	22.4		3.20					-			

Find of Measurement | Time: | 1:30 | Gage Reading: 0.4 | CALCULATIONS PERFORMED BY:

CALCULATIONS CHECKED BY:

Data Inc	out & Proofing	GI -1	FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	A	Q	Tape to Water
Data in	out a Frooming	01-1	LATORE	0,01		ta Points = 26	***		_	******
STREAM NAME: [N. Fork N. Platt	۱	1	LS/GL	0.00	3.62	ia Politis = 20		0.00	0.00	0.00
XS LOCATION: 11/2 mi. downstre	eam from confl. w/ Goose Creek	•	20,02	0.50	3.94			0.00	0.00	0.00
XS NUMBER: 11	1		W	0.90	4.65	0.00	0.00	0.00	0.00	0.00
DATE: 19/29/05	i		••	1.00	5.00	0.40	û.8Ū	0.32	Ū.Ž6	4.63
OBSERVERS: [R. Smith, P. Led	broth			2.50	5.08	0.40	0.86	0.60	0.52	4.68
1. 1. 2	,			4.00	5.03	0.35	0.74	0.53	0.39	4.68
1/4 SEC: INW	Į.			5.50	5.14	0.45	1.00	0.68	0.68	4.69
SECTION: j7	1			7.00	5.00	0.35	0.81	0.53	0.43	4.65
TWP: j10 N	į			8.50	4.95	0.30	0.90	0.45	0.41	4.65
RANGE: J81 W	j			10.00	4.95	0.30	0.71	0.45	0.32	4.65
PM: J6th	ĺ			11.50	5.05	0.40	1.17	0.60	0.70	4.65
	,			13.00	5.08	0.45	1.51	0.68	1.02	4.63
COUNTY: Jackson				14.50	4.98	0.40	1.57	0.60	0.94	4.58
WATERSHED: N. Platte				16.00	5.14	0.50	1.98	0.63	1.24	4.64
DIVISION: 16				17.00	5.14	0.50	1.95	0.50	0.98	4.64
DOW CODE: 11798				18.00	5.25	0.60	2.47	0.60	1.48	4.65
USGS MAP: [19.00	5.19	0.50	0.21	0.50	0.11	4.69
USFS MAP: j				20.00	5.16	0.45	2.70	0.45	1.22	4.71
	Level and Rod Survey ▼			21.00	5.15	. 0.45	2.26	0.45	1.02	4.70
TAPE WT: 10.0106	lbs / ft			22.00	4.98	0.30	1.74	0.30	0.52	4.68
TENSION: [99999	lbs			23.00	5.02	0.30	2.72	0.30	0.82	4.72
0.0== .				24.00	5.04	0.35	1.51	0.23	0.34	4.69
SLOPE:	0.007 ft / ft			24.30	5.09	0.40	1.21	0.08	0.10	4.69
			W	24.40	4.70	0.00	0.00	0.00	0.00	0.00
CHECKED DV	5.475		٥.	24.70	3.70			0.00	0.00	0.00
CHECKED BY:	DAIE	1	GL	25.00	3.60			0.00	0.00	0.00
ASSIGNED TO:	DATE		RS	25.40	3.30					

| Totals| 9.45| 13.46|

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:		N. Fork N. Platte 1/2 mi. downstream from confl. w/ Goose Creel 1					
DATE: OBSERVERS:	29-Sep-05 R. Smith,						
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 7 10 N 81 W 6th						
COUNTY: WATERSHED: DIVISION: DOW CODE:	Jackson N. Platte 6 11798						
USGS MAP: USFS MAP:	0						
SUPPLEMENTAL DATA		*** NOTE *** Leave TAPE WT and TENSION at defaults for data collected					
TAPE WT: TENSION:	0.0106 99999	with a survey level and rod					
CHANNEL PROFILE DATA							
SLOPE:	0.007						
INPUT DATA CHECKED B	Y:	DATE					
ASSIGNED TO:	•••••	DATE					

STREAM NAME: XS LOCATION:

N. Fork N. Platte

1/2 mi. downstream from confl. w/ Goose Creek

XS NUMBER:

	#	DATA POINTS	S=	26	VALUES COMP	UTED FROM R	AW FIELD DA	AT.	
FEATURE		VERT	WATER		WETTED	WATER	AREA	– _Q -	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	_DEPTH	(Am)	(Qm)	CELL
1 LS/GL	0.00	3.62			0.00		0.00	0.00	0.0%
	0.50	3.94			0.00		0.00	0.00	0.0%
W	0.90	4.65	0.00	0.00	0.00		0.00	0.00	0.0%
	1.00	5.03	0.40	0.80	0.39	0.40	0.32	0.26	1.9%
	2.50	5.08	0.40	0.86	1.50	0.40	0.60	0.52	3.8%
	4.00	5.03	0.35	0.74	1.50	0.35	0.53	0.39	2.9%
	5.50	5.14	0.45	1.00	1.50	0.45	0.68	0.68	5.0%
	7.00	5.00	0.35	0.81	1.51	0.35	0.53	0.43	3.2%
	8.50	4.95	0.30	0.90	1.50	0.30	0.45	0.41	3.0%
	10.00	4.95	0.30	0.71	1.50	0.30	0.45	0.32	2.4%
	11.50	5.05	0.40	1.17	1.50	0.40	0.60	0.70	5.2%
	13.00	5.08	0.45	1.51	1.50	0.45	0.68	1.02	7.6%
	14.50	4.98	0.40	1.57	1.50	0.40	0.60	0.94	7.0%
	16.00	5.14	0.50	1.98	1.51	0.50	0.63	1.24	9.2%
	17.00	5.14	0.50	1.95	1.00	0.50	0.50	0.98	7.2%
	18.00	5.25	0.60	2.47	1.01	0.60	0.60	1.48	11.0%
	19.00	5.19	0.50	0.21	1.00	0.50	0.50	0.11	0.8%
	20.00	5.16	0.45	2.70	1.00	0.45	0.45	1.22	9.0%
	21.00	5.15	0.45	2.26	1.00	0.45	0.45	1.02	7.6%
	22.00	4.98	0.30	1.74	1.01	0.30	0.30	0.52	3.9%
	23.00	5.02	0.30	2.72	1.00	0.30	0.30	0.82	6.1%
	24.00	5.04	0.35	1.51	1.00	0.35	0.23	0.34	2.6%
	24.30	5.09	0.40	1.21	0.30	0.40	0.08	0.10	0.7%
W	24.40	4.70	0.00	0.00	0.40		0.00	0.00	0.0%
	24.70	3.70			0.00		0.00	0.00	0.0%
1 GL	25.00	3.60			0.00		0.00	0.00	0.0%
ТО	TALS				24.15	0.6	9.45	- 13.46	100.0%

Manning's n = 0.0467 Hydraulic Radius= 0.391377337

(Max.)

N. Fork N. Platte

XS LOCATION:

1/2 mi. downstream from confl. w/ Goose Creek

XS NUMBER:

1

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
		-	
	9.45	9.13	-3.4%
4.43	9.45	15.03	59.0%
4.45	9.45	14.55	54.0%
4.47	9.45	14.08	49.0%
4.49	9.45	13.61	44.0%
4.51	9.45	13.13	39.0%
4.53	9.45	12.66	34.0%
4.55	9.45	12.19	29.0%
4.57	9.45	11.72	24.0%
4.59	9.45	11.25	19.0%
4.61	9.45	10.78	14.0%
4.63	9.45	10.30	9.0%
4.64	9.45	10.07	6.5%
4.65	9.45	9.83	4.0%
4.66	9.45	9.60	1.5%
4.67	9.45	9.36	-0.9%
4.68	9.45	9.13	-3.4%
4.69	9.45	8.89	-5.9%
4.70	9.45	8.66	-8.4%
4.71	9.45	8.42	-10.9%
4.72	9.45	8.19	-13.4%
4.73	9.45	7.95	-15.9%
4.75	9.45	7.48	-20.8%
4.77	9.45	7.02	-25.8%
4.79	9.45	6.55	-30.7%
4.81	9.45	6.08	-35.7%
4.83	9.45	5.61	-40.7%
4.85	9.45	5.14	-45.6%
4.87	9.45	4.67	-50.6%
4.89	9.45	4.20	-55.5%
4.91	9.45	3.74	-60.5%
4.93	9.45	3.27	-65.4%

WATERLINE AT ZERO AREA ERROR =

4.661

N Fork N. Platte

XS LOCATION: XS NUMBER:

1/2 mi. downstream from confl. w/ Goose Creek

"GL = lowest Grassline elevation corrected for sag

STAGING TABLE *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX		WETTED	PERCENT	HYDR	51 OM	AVG VELOCITY
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	, (FT)	(CFS)	(FT/SEC)
·GL·	3.62	24.94	1.38	1.63	34.45	26.86	100.0%	1.28	108.25	3.14
	3.66	24.75	1 35	1.59	33.43	26 65	99.2%	1.25	103.47	3 10
	3 71	24.55	1.31	1.54	32.20	26.42	98.4%	1.22	97.75	3 04
	3.76	24.46	1.27	1 49	30.97	26 28	97.8%	1.18	91.97	2.97
	3.81	24.37	1.22	1.44	29.75	26.13	97.3%	1 14	86.32	2 90
	3 86	24.27	1.18	1.39	28.54	25.99	96.8%	1.10	80.82	2.83
	3.91	24.18	1.13	1 34	27 32	25 84	96 2%	1,06	75.47	2.76
	3.96	24.11	1.08	1.29	26.12	25 71	95.7%	1.02	70.23	2.69
	4.01	24.07	1.04	1.24	24.91	25.60	95.3%	0.97	65 10	2.61
	4.06	24.02	0.99	1.19	23.71	25.49	94.9%	0 93	60.12	2.54
	4,11	23.98	0.94	1.14	22.51	25.39	94.5%	0.89	55.29	2 46
	4.16	23.94	0.89	1.09	21.31	25 28	94.1%	0 84	50.62	2.38
	4.21	23.89	0.84	1.04	20.12	25.17	93.7%	0.80	46.11	2.29
	4.26	23.85	0.79	0.99	18.92	25.06	93.3%	0.76	41.76	2.21
	4.31	23.81	0.74	0.94	17.73	24.95	92.9%	0.71	37.58	2.12
	4.36	23.76	0.70	0.89	16.54	24.84	92.5%	0.67	33 57	2.03
	4.41	23.72	0.65	0.84	15.36	24.73	92.1%	0.62	29.74	1.94
	4.46	23.68	0.60	0.79	14.17	24.62	91.7%	0.58	26 09	1.84
	4.51	23.63	0.55	0.74	12.99	24.51	91.3%	0.53	22.63	1.74
	4.56	23.59	0.50	0.69	11.81	24.40	90 8%	0.48	19.37	1.64
	4.61	23.55	0 45	0.64	10 63	24.29	90.4%	0.44	16.30	1.53
WL.	4.66	23.51	0 40	0.59	9 45	24.18	90.0%	0.39	13 45	1.42
	4.71	23 48	0.35	0.54	8.28	24.08	89.6%	0.34	10.81	1.31
	4.76	23 46	0.30	0 49	7.10	23.97	89.3%	0.30	8.40	1.18
	4.81	23.43	0.25	0.44	5.93	23 87	88.9%	0.25	6.24	1.05
	4.86	23.40	0.20	0.39	4.76	23.77	88.5%	0.20	4.34	0.91
	4.91	23.38	0.15	0.34	3.59	23.66	88.1%	0.15	2.72	0.76
	4 96	21.35	0.11	0.29	2.44	21.56	80.3%	0.11	1.52	0.62
	5.01	17.56	0.08	0.24	1.46	17.69	65.8%	0 08	0.74	0.50
	5.06	10.71	0 07	0.19	0.73	10.76	40.1%	0.07	0.32	0.44
	5.11	6.20	0.06	0.14	0.35	6.21	23 1%	0.06	0.14	0.39
	5.16	2.77	0.04	0.09	0.11	2.77	10.3%	0.04	0.03	0.31
	5.21	1.00	0.02	0.04	0.02	1.00	3.7%	0.02	0.00	0.19

3/3: 6,24 els 2/3: 5,56 cls

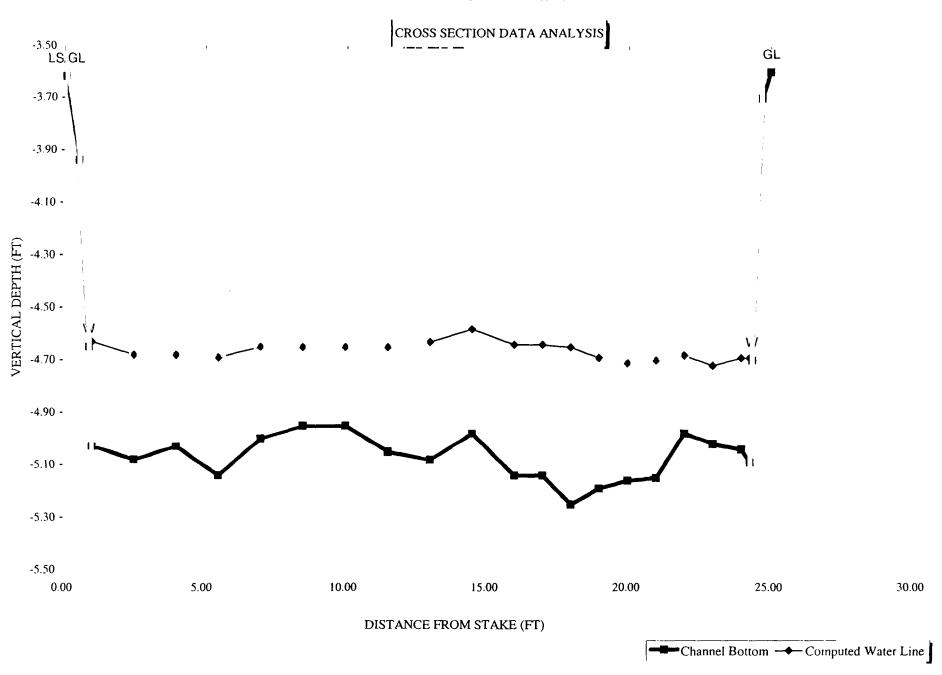
Constant Manning's n

STREAM NAME XS LOCATION

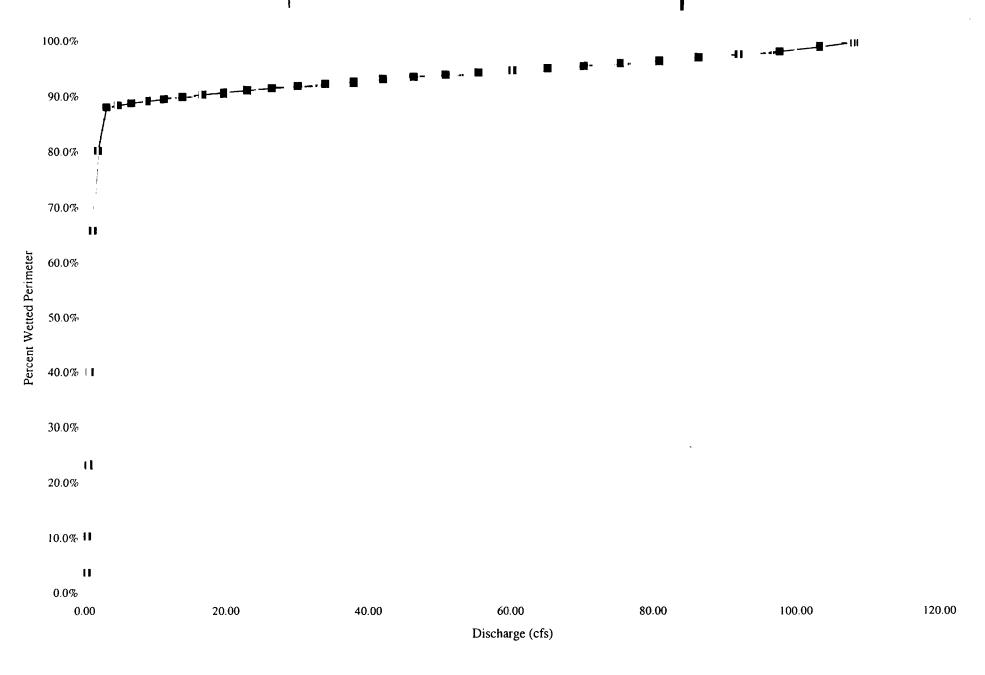
N Fork N. Platte

XS NUMBER:

1/2 mi. downstream from confl. w/ Goose Creek


SUMMARY SHEET

MEACHER STOWNS			
MEASURED FLOW (Qm)=	13 46 cfs	RECOMMENDED INST	REAM FLOW:
CALCULATED FLOW (Qc)=	13.45 cfs	=======================================	
(Om-Qc)/Qm * 100 =	0.1 %		
		FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	4.68 ft	*=======	=======
CALCULATED WATERLINE (WLc)=	4.66 ft		
(WLm-WLc)/WLm * 100 =	0.3 %		
MAX MEASURED DEPTH (Dm)=	0.60 ft		
MAX CALCULATED DEPTH (Dc)=	0.59 tt		
(Dm-Dc)/Dm * 100	1.9 %	,	
(2 20)/2111 100	1.9 %		
MEAN VELOCITY=	1.42 ft/sec		
MANNING'S N=	0.047		
SLOPE=	0 007 ft/ft		
	0 007 1011		
4 ° Qm =	5.4 cfs		
2 5 * Qm=	33.6 cfs		


RATIONALE FOR	RECOMMENDATION
=======================================	222222222222

RECOMMENDATION BY	AGENCY	DATE
CWCB REVIEW BY		DATE:

N. Fork N. Platte

Percent Wetted Perimeter vs. Discharge

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

STREAM NAME:	Fork North	a Platte			CROSS-SECTION NO.:
CROSS-SECTION LOCATION: 1/		instream from	· conflue	u ca	~
	_		an continue	NOE WI	:
DATE: 9-29-05 OBSERVERS		CEER			
LEGAL SECTION: DESCRIPTION COUNTY: Jackson	WATERSHED:	7 TOWNSHIP:	10 M/S RANG	E: 8/ E.W. DOW WATER	•
MAP(S): USFS: VBOCT	tcher Lak	ce 7.5'		036969 452 <i>4</i> 309	
		SUPPLEMENTAL	DATA		
SAG TAPE SECTION SAME AS YED ISCHARGE SECTION: METER NUMBER: CHANNEL BED MATERIAL SIZE RANGE	S/NO METER TYPE	Mash-Ne	Soc TAPE WEIGHT	weyed TA	SUNEYEA
an annea 100 4	es ladd or	РНОТО	GRAPHS TAKEN YES NO	NUMBER OF PHOT	OGRAPHS: 3
V		CHANNEL PROF	ILE DATA		
	DISTANCE	•			
STATION Tape @ Stake LB	FROM TAPE (ft)	ROD READING (ft)	-	③	LEGEND:
Tape @ Stake RB		surreyed			Stake 🗶
•	0.0	surveyed k		ш 🛼	Station (1)
1) WS @ Tape LB/RB	0.0	6.78/6.75	(6)	→ × * × * *	Photo (i)
2 WS Upstream	44.0	6.55		2	•
3 WS Downstream	50.0	6.80			Direction of Flo
SLOPE . 0, 25	195.0' =	· 0.00.3	\bigcirc	(%)	The state of the s
		AQUATIC SAMPLING	SUMMARY		
STREAM ELECTROFISHED: YES NO	DISTANCE ELECTRO	DFISHEDft FI	SH CAUGHT: YES/NO	WATER CHEMISTR	Y SAMPLED (YES)NO
	LENGTH - FREQUE	NCY DISTRIBUTION BY ONE-INC	H SIZE GROUPS (1.0-1.9	•	
SPECIES (FILL IN)		2 3 4 5 6	7 8 9 10	11 12 13 14	15 >15 TOTAL
see attach	21				
see attach	•				
1					
AQUATIO INICECTO III CTOTALA CTOTALA)				
AQUATIC INSECTS IN STREAM SECTION	_		14 - 1- i	≈Í.	
caddisfly. n	Lacumo, 5	GOONLHU_ a	11 abunda	ruy	
		COMMENT	S		

FORM #ISF FD 1-85

DISCHARGE/CROSS SECTION NOTES

		DISCHA	ARGE/CROS	S SECTION N	OTES			
STREAM NAME:	N. FK. N.	Plathe		CROSS-SECTIO	n no.: 2	DATE: 9-29-1	OS SHEE	T OF
BEGINNING OF M	EDGE OF WA	ATER LOOKING DOWNSTREADE)	M: LEFT RIGHT	Gage Reading:	0.4"	TIME: No		-
Stake (S)	Distance Width From (ft)	Total Water Vertical Depth	Deptin) Rev	volutions	Veloci	y (ft/sec)		
Stake (S) Grassline (G) Waterline (W) Rock (R)	From (ft) Initial Point (ft)	Vertical Depth Depth From (ft) Tape/inst (ft)	Observation (ft)	Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
LS	a4.5	5,46	1 1	1	1			_
G	24.0	5,62		•				
W	23.5	6 78						
	23.4 22.0	7,72 0,95	7		1.46 1.71	•		
	21.0	7.62 0.9			1. 29			
	20.0	7.56 0.8			1. 58			
	19,0	7,46 0.75			0.87		1.	
	18.0	7.36 0.6			1,07			
•	17.0	7.32 0.5			1. 28			
	16.0	7,18 0.4	5		1. 15			
	15:0	7,18 0.45		;	1.00			
	13.5	7,18 0.4			1. 26			
٠.	12.0	7.10 0.3	-		1, 65			,
	10.5	7:10: 0:4	والمراجون مما المما		1.92			
	9.0	7,20 0.4		· .	1.88			
	7.5	7,30 0.5			1.81	,		٠.
	6.0	7.07 0.3 7.22 0.4			1.74	5		
•	3.0	7, ZI 0, H			0.81			
	1.5	7.38 0.55			0.32			
\(\)	0.9	7.32 0.55		•	0.16	. •		
W	0.8	6.75	, .		U, 16			
PISIG	0.3	5.34					•	-

					VERT	WATER				Tape to
Data Input & Proofing		GL=1	FEATURE	DIST	DEPTH	DEPTH	VEL	A	Q	Water
					Total Da	ta Points = 23				
STREAM NAME: [N. Fork N. Platte River	1	1	RS/GL	0.30	5.34			0.00	0.00	0.00
XS LOCATION: 11/4 mi. downstream from confl. w/	Goose Crk		W	0.80	6.75	0.00		0.00	0.00	0.00
XS NUMBER: 12	1			0.90	7.32	0.55	0.16	0.19	0.03	6.77
DATE: 9/29/05	!			1.50	7.36	ũ.55	0.32	0.58	0.18	6.83
OBSEHVERS: R. Smith	ì			3.00	7.21	0.40	0.36	0.60	0.22	6.81
	'			4.50	7.22	0.40	0.81	0.60	0.49	6.82
1/4 SEC: INW				6.00	7.07	0.30	1.74	0.45	0.78	6.77
SECTION: 17				7.50	7.30	0.50	1.81	0.75	1,36	6.80
TWP: [10 N	Ì			9.00	7.20	0.40	1.88	0.60	1.13	6.80
RANGE: J81 W	Ì			10.50	7.10	0.40	1.92	0.60	1.15	6.70
PM: [6th	Ì			12.00	7.10	0.30	1.65	0.45	0.74	6.80
				13.50	7.18	0.40	1.26	0.60	0.76	6.78
COUNTY: Jackson				15.00	7.18	0.45	1.00	0.56	0.56	6.73
WATERSHED: North Platte				16.00	7.18	0.40	1.15	0.40	0.46	6.78
DIVISION: 16				17.00	7.32	0.50	1.28	0.50	0.64	6.82
DOW CODE: 11798				18.00	7.36	0.60	1.07	0.60	0.64	6.76
USGS MAP:				19.00	7.46	0.75	0.87	0.75	0.65	6.71
USFS MAP: [20.00	7.56	0.80	1.58	0.80	1.26	6.76
Level and Rod Survey	. ▼			21.00	7.62	′ 0.90	1.29	0.90	1.16	6.72
TAPE WT: (0.0106	bs/ft			22.00	7.66	0.95	1.71	1.14	1.95	6.71
TENSION: [99999	lbs			23.40	7. 72	0.95	1.46	0.71	1.04	6.77
			W	23.50	6.78	0.00		0.00	0.00	0.00
SLOPE: 0	.003 ft / ft	1	GL	24.00	5.62			0.00	0.00	0.00
			LS	24.50	5.46					
CHECKED BY:DATE	•••••									
ASSIGNED TO:DATE										

| Totals| 11.79| 15.21|

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	N. Fork N. F 1/4 mi. dowi 2	Platte River nstream from confl. w/ Goose Crk
DATE: OBSERVERS:	29-Sep-05 R. Smith	
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 7 10 N 81 W 6th	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Jackson North Platte 6 11798	
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA		*** NOTE *** Leave TAPE WT and TENSION
TAPE WT: TENSION:	0.0106 99999	at defaults for data collected with a survey level and rod
CHANNEL PROFILE DATA	.	
SLOPE:	0.003	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:	••••••	DATE

N. Fork N. Platte River

XS LOCATION: XS NUMBER:

1 GL

24.00

TOTALS -----

5.62

1/4 mi. downstream from confl. w/ Goose Crk 2

	# DATA POINTS≃			23	VALUES COMPUTED FROM RAW FIELD DATA				
FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
1 RS/GL	0.30	5.34			0.00		0.00	0.00	0.0%
W	0.80	6.75	0.00		0.00		0.00	0.00	0.0%
	0.90	7.32	0.55	0.16	0.58	0.55	0.19	0.03	0.2%
	1.50	7.38	0.55	0.32	0.60	0.55	0.58	0.18	1.2%
	3.00	7.21	0.40	0.36	1.51	0.40	0.60	0.22	1.4%
	4.50	7.22	0.40	0.81	1.50	· 0.40	0.60	0.49	3.2%
	6.00	7.07	0.30	1.74	1.51	0.30	0.45	0.78	5.1%
	7.50	7.30	0.50	1.81	1.52	0.50	0.75	1.36	8.9%
	9.00	7.20	0.40	1.88	1.50	0.40	0.60	1.13	7.4%
	10.50	7.10	0.40	1.92	1.50	0.40	0.60	1.15	7.6%
	12.00	7.10	0.30	1.65	1.50	0.30	0.45	0.74	4.9%
	13.50	7.18	0.40	1.26	1.50	0.40	0.60	0.76	5.0%
	15.00	7.18	0.45	1.00	1.50	0.45	0.56	0.56	3.7%
	16.00	7.18	0.40	1.15	1.00	0.40	0.40	0.46	3.0%
	17.00	7.32	0.50	1.28	1.01	0.50	0.50	0.64	4.2%
	18.00	7.36	0.60	1.07	1.00	0.60	0.60	0.64	4.2%
	19.00	7.46	0.75	0.87	1.00	0.75	0.75	0.65	4.3%
	20.00	7.56	0.80	1.58	1.00	0.80	0.80	1.26	8.3%
	21.00	7.62	0.90	1.29	1.00	0.90	0.90	1.16	7.6%
	22.00	7.66	0.95	1.71	1.00	0.95	1.14	1.95	12.8%
	23.40	7.72	0.95	1.46	1.40	0.95	0.71	1.04	6.8%
W	23.50	6.78	0.00		0.95		0.00	0.00	0.0%

(Max.) Manning's n = 0.0392 Hydraulic Radius= 0.489108631

0.00

24.09

0.95

0.00

11.79

0.00

15.21

0.0%

100.0%

N. Fork N. Platte River

XS LOCATION:

1/4 mi. downstream from confl. w/ Goose Crk

XS NUMBER:

2

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	11.79	11.95	1.4%
6.50			
6.52	11.79	17.65	49.8%
6.54	11.79	17.19	45.9%
6.56	11.79	16.73	42.0%
6.58	11.79	16.28	38.1%
6.60	11.79	15.82	34.2%
6.62	11.79	15.36	30.4%
6.64	11.79	14.91	26.5%
6.66	11.79	14.45	22.6%
6.68	11.79	14.00	18.8%
6.70	11.79	13.54	14.9%
6.72	11.79	13.09	11.0%
6.73	11.79	12.86	9.1%
6.74	11.79	12.63	7.2%
6.75	11.79	12.40	5.2%
6.76	11.79	12.18	3.3%
6.77	11.79	11.95	1.4%
6.78	11.79	11.72	-0.5%
6.79	11.79	11.50	-2.5%
6.80	11.79	11.27	-4.4%
6.81	11.79	11.04	-6.3%
6.82	11.79	10.81	-8.2%
6.84	11.79	10.36	-12.1%
6.86	11.79	9.91	-15.9%
6.88	11.79	9.45	-19.8%
6.90	11.79	9.00	-23.6%
6.92	11.79	8.55	-27.5%
6.94	11.79	8.09	-31.3%
6.96	11.79	7.64	-35.2%
6.98	11.79	7.19	-39.0%
7.00	11.79	6.74	-42.8%
7.02	11.79	6.28	-46.7%

WATERLINE AT ZERO AREA ERROR =

6.772

N. Fork N. Platte River

XS LOCATION:

1/4 mi. downstream from confl. w/ Goose Crk

XS NUMBER:

2

GL = lowest Grassiine elevation corrected for sag

STAGING TABLE *WL* = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
•GL•	5.62	23.60	1.63	2.10	38.46	26.56	100.0%	1.45	102.33	2.66
	5.77	23.48	1.49	1.95	34.87	26.23	98.8%	1.33	87.66	2.51
	5.82	23.44	1.44	1.90	33.70	26.12	98.4%	1.29	83.03	2.46
	5.87	23.40	1.39	1.85	32.53	26.01	98.0%	1.25	78.49	2 41
	5.92	23.36	1.34	1.80	31.36	25.91	97.6%	1,21	74.05	2.36
	5.97	23.32	1.29	1.75	30.19	25.80	97.1%	1.17	69.70	2.31
	6.02	23.28	1.25	1.70	29.03	25.69	96.7%	1:13	65.46	2.26
	6.07	23.25	1.20	1.65	27.86	25.58	96.3%	1.09	61.32	2.20
	6.12	23.21	1.15	1.60	26.70	25.48	95.9%	1.05	57.28	2.15
	6.17	23.17	1.10	1.55	25.54	25.40	95.5%	1.01	53.34	2.09
	6.22	23.13	1.05	1.50	24.39	25.26	95.1%	0.97	49.52	2.03
	6.27	23.09	1.01	1.45	23.23	25.20	94.7%	0.92	45.80	1.97
	6.32	23.05	0.96	1.40	22.08	25.15	94.3%	0.88	42.19	1.91
	6.37	23.01	0.91	1.35	20.93	24.94	93.9%	0.84	38.70	1.85
	6.42	22.97	0.86	1.33	19.78	24.83	93.5%	0.80	35.32	1.79
	6.47	22.93	0.81	1.25	18.63	24.03	93.1%	0.75	32.07	1.72
	6.52	22.89	0.76	1.20	17.48	24.72	92.7%	0.73	28.93	1.65
	6.57	22.85	0.76	1.15	16.34	24. 5 2 24.51	92.3%	0.67	25.92	1.59
	6.62	22.81	0.67	1.10	15.20	24.40	91.9%	0.62	23.92	1.52
	6.67	22.77	0.62	1.05	14.06	24.40	91.5%	0.58	20.29	1.44
	6.72	22.73	0.62	1.05	12.92	24.29	91.1%	0.53	17.68	1.37
·WL•	6.7 7	22.73	0.52	0.95	11.78	24.19	90.7%	0.49	15.21	1.29
VVL	6.82	22.68	0.52	0.90	10.65	23.98	90.3%	0.49	12.89	1.29
	6.87	22.67	0.42	0.85	9.52	23.88	89.9%	0.40	10.71	1.21
	6.92	22.65	0.42	0.80	8.38	23.78	89.5%	0.35	8.70	1.04
	6.97	22.64	0.32	0.75	7.25	23.76	89.2%	0.31	6.85	0.94
	7.02	22.63	1 0.27	0.73	6.12	23.57	88.8%	0.26	5.18	0.85
	7.02	22.58	0.22	0.70	4.99	23.44	88.3%	0.21	3.70	0.83
	7.12	19.49	0.20	0.60	3.92	20.25	76.3%	0.19	2.73	0.70
	7.12	16.96	0.18	0.55	3.92	17.63	66.4%	0.19	1.93	0.70
	7.17	10.83	0.22	0.50	2.33	11.41	42.9%	0.17	1.68	0.72
	7.27	8.95	0.21	0.45	1.84	9.42	35.5%	0.20	1.00	0.72
	7.32	7.47	0.19	0.40	1.43	7.85	29.6%	0.18	0.96	0.70
	7.37	5.46	0.20	0.40	1.11	5.79	21.8%	0.18	0.90	0.69
	7.42	4.81	0.20	0.30	0.86	5.79	19.2%	0.19	0.77	0.64
	7.42 7.47	4.30	0.15	0.30	0.63	4.54	17.1%	0.17		
	7.47 7.52	3.80	0.15	0.25 0.20	0.63	4.5 4 3.98	17.1%		0.35	0.56
		3.80	0.11		0.43			0.11	0 20	0.47
	7.57	2.35	0.08	0.15 0.10		3.35	12.6% 9.2%	0.08	0.09	0.37
	7.62	1.12	0.05	0.10	0.11	2.44		0.05	0.03	0.27
	7.67	1.12	0.02	0.05	0.03	1.16	4.4%	0.02	0.00	0.17

3/3 = 7.96 2/3 = out of range

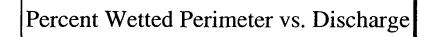
Constant Manning's n

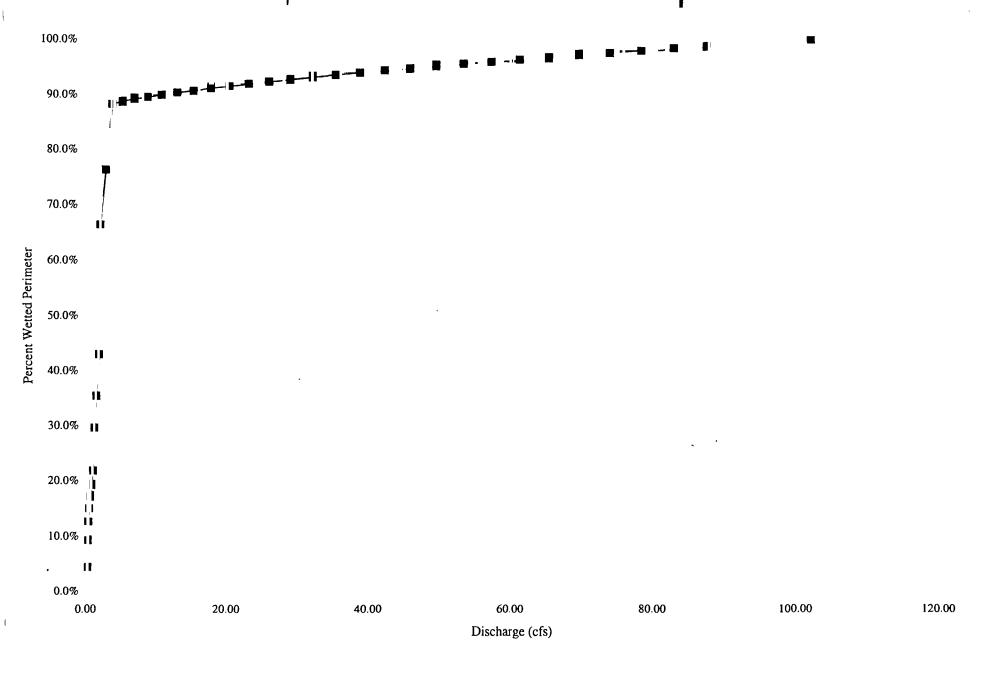
STREAM NAME: XS LOCATION: XS NUMBER:

N. Fork N. Platte River 1/4 mi. downstream from confl. w/ Goose Crk

SUMMARY SHEET

MEASURED FLOW (Qm)= CALCULATED FLOW (Qc)=	15.21 cfs	RECOMMENDED INSTREAM FLOW:			
\ - ,	15.21 cfs	=======================================			
(Qm-Qc)/Qm * 100 =	0.0 %				
		FLOW (CFS)	PERIOD		
MEASURED WATERLINE (WLm)=	6.77 ft	=======================================			
CALCULATED WATERLINE (WLc)=	6.77 ft				
(WLm-WLc)/WLm * 100 =	-0.1 %				
MAX MEASURED DEPTH (Dm)=	0.95 ft	•			
MAX CALCULATED DEPTH (Dc)=	0.95 ft	,			
(Dm-Dc)/Dm * 100	0.2 %				
MEAN VELOCITY=	1.29 ft/sec				
MANNING'S N=	0.039				
SLOPE=	0.003 ft/ft				
.4 ° Qm =	6.1 cts				
2.5 ° Qm=	38.0 cfs				


RATIONALE	FOR RECO	OMMENDATION


RECOMMENDATION BY:	AGENCY	. DATE:
	•	
CWCB REVIEW BY:		. DATE:

N. Fork N. Platte River

CROSS SECTION DATA ANALYSIS

Water: North Fork of North Platte River

Date: 08/10/2005

Location: Boetcher Ranch - BLM

Drainage: NP Water Code: 11798 UTM Zone: 13T

UTM X: 369850 UTM Y: 4522873

Station Length = 655 Station Width = 23

Crew:K2 Crew

Notes: | 1st Pass YOY Count = 4, 2nd Pass YOY Count = 1

Species	Count	Le	ngth (m W	eight (g] Sta	itus	Mark	TagID
LOC		1	440	910	1		
LOC		1	430	770	1		
LOC		1	463	1055	1		
LOC		1	540	1900	1		
LOC		1	425	800	1		
LOC		1	490	1170	1		
LOC		1	480	1150	1		
LOC		1	340	440	1		
LOC		1	440	950	1		
LOC		1	420	760	1		
LOC		1	355	500	1		
LOC		1	400	675	1		
LOC		1	470	1160	1		
LOC		1	370	580	1		
LOC		1	378	650	1		
LOC		1	280	220	1		
LOC		1	305	300	1		
LOC		1	230	140	1		
LOC		1	155	50	1		
LOC		1	111	5	1		
LOC		1	152	15	1	•	
LOC		1	110	5	1		
LOC		1	135	15	1		
LOC		1	105	7	1		
LOC		1	120	8	1		
LOC		1	110	7	1		
LOC		1	110	6	1		
LOC		1	110	5	1		
LOC		1	90	3	1		
BRK	-	1	145	30	1		
LGS	_	1	160	45	1		
LOC	-	1	470	1125	2		
LOC	-	1	480	1250	2		
LOC		1	460	1150	2		
LOC	_	1	470	1200	2		

LOC	1	365	500	2
LOC	1	220	115	2
LOC	1	210	100	2
LOC	1	125	20	2
BRK	1	315	375	2
LOC	1	195	80	2
LOC	1	105	13	2
LOC	1	115	17	2
LOC	1	110	13	2
LOC	1	105	12	2

.

•

Water Availability

StreamStats

North Fork North Platte River

Location: above confluence with Hill Creek

Streamflow Statistics Report

Date: Tue Dec 12 2006 13:25:29

Site Location: Colorado Latitude: 40.8188 Longitude: -106.5400 Drainage Area: 31.2 mi2

Peak Flow Basin Characteristics												
100% Mountain Region Peak Flow (31.2 mi2)												
Parameter	Value	Min	Max									
Drainage Area (square miles)	31.2	5.5	945									
Mean Basin Slope ft per ft (dimensionless)	0.00 (below min value 0.126)	0.126	0.554									

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

Low Flow Basin Characteristics													
100% Mountain Region Low Flow (31.2 mi2)													
Parameter	Value	Min	Max										
Drainage Area (square miles)	31.2	1	1150										
Mean Basin Elevation (feet)	9430	8400	12200										
Mean Annual Precipitation (inches)	22.7	17.5	39.4										

Warning: Some parameters are outside the suggested range. Estimates will be extrapolations with unknown errors.

		Standard Error	Equivalent	90-Percent Prediction Interv				
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum			
PK2	108							
PK5	184							
PK10	243							
PK25	321							
PK50	383							
PK100	448							
PK200	513							
PK500	603							

Streamflow Statistics

		Estimation Error	Equivalent	90-Percent Prediction Interva				
Statistic	Flow (ft ³ /s)	(percent)	years of record	Minimum	Maximum			
Q1	2.78	49						
Q2	2.85	49						
Q3	4.13	43						
Q4	13	56						
Q5	56.2	58						
Q6	68.6	510						
Q7	17.1	63						
Q8	7.1	70						
Q9	5.04	63						
QA	19.4	43						
Q10	5.07	50						
Q11	4.19	43						
Q12	3.27	45						
Low-Flow Stat	istics							
M7D2Y	1.57	62						
M7D10Y	0.74	100						
M7D50Y	0.41	160						

StreamStats

North Fork North Platte River

Location: above confluence with Hill Creek

Basin Characteristics Report

Date: Tue Dec 12 2006 13:29:51

Latitude: 40.8188 Longitude: -106.5400

Parameter	Value
Area that drains to a point on a stream in square miles	31.2
Maximum - minimum basin elevation in feet	3830
Mean Basin Elevation in feet	9430
Maximum basin elevation in feet	12200
Minimum basin elevation in feet	8340
Mean basin slope in percent, computed from 10 m DEM	21.8
Mean annual precipitation in inches (undajusted)	24.5
Mean basin slope determined using the grid-sampling method (dimensionless)	0.20
Percent of area with slope greater than 30%	24.3
Percent of area with slope greater than 30% and facing North	8.89
Percent of area covered by forest	59.7
Mean annual precipitation in inches (adjusted)	22.7
Percentage of basin above 7500 ft elevation	100
Elevation at basin outlet in feet	8340

StreamStats: A U.S. Geological Survey Web Application for **Stream Information** by Kernell G. Ries III, Peter A. Steeves, Jacqueline D. Coles, Alan H. Rea, and David W. Stewart

Introduction

he U.S. Geological Survey (USGS) provides streamflow and other stream-related information needed to protect people and property from floods, to plan and manage water resources, and to protect water quality. Streamflow statistics provided by the USGS, such as the 100-year flood, the annual mean flow, and the 7day 10-year low flow (7Q10), frequently are used by engineers, land managers, biologists, and many others to help guide

decisions in their everyday work. For example, streamflow statistics are used for flood-plain mapping, which is used as the basis for setting insurance rates and zoning land use. Streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management, and water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and habitat preservation for protection of endangered species. In addition, researchers, planners, regulators, and others often need to know the physical

and climatic characteristics (basin characteristics) of the drainage basins upstream from locations of interest to help them understand the mechanisms that control water availability and water quality at these locations.

Streamflow statistics can be needed at any location along a stream. Commonly, the statistics are computed from available data when they are needed at the locations of USGS data-collection stations, which include streamgaging stations, where streamflow data are collected continuously; partial-record stations, where streamflow measurements

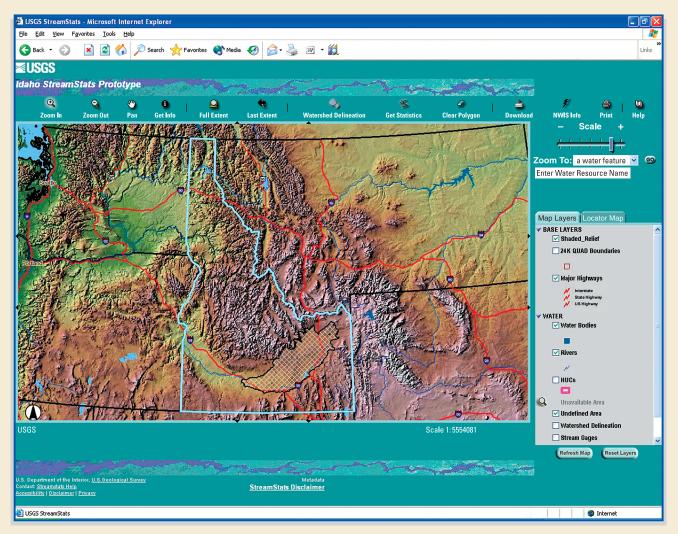


Figure 1. View of the StreamStats user interface zoomed in to Idaho.

are collected systematically over a period of years to estimate peak-flow or low-flow statistics; and miscellaneous-measurement stations, where streamflow measurements usually are collected for specific hydrologic studies with various objectives. More often, however, the statistics are needed at ungaged sites, where no observed data are available to compute the statistics.

StreamStats is a map-based Web application that makes it easy for users to obtain streamflow statistics, basin characteristics, and other information for user-selected USGS data-collection stations and ungaged sites of interest. If a user selects the location of a data-collection station. StreamStats will provide previously published information for the station from a database. If a user selects a location where no data are available (an ungaged site), StreamStats will run a Geographic Information System (GIS) program to measure basin characteristics and estimate streamflow statistics for the site. These estimates assume that natural flow conditions exist at the ungaged site. In the past, it could take an experienced person more than a day to determine the estimates. StreamStats reduces the effort to only a few minutes.

StreamStats was developed cooperatively by the USGS and the Environmental Systems Research Institute, Inc. (ESRI, http://www.esri.com), and was designed for national implementation. The application consists of five major components: (1) a user interface that displays maps and allows users to select stream locations where they want streamflow statistics information (fig. 1), (2) a database that contains previously published streamflow statistics and descriptive information for USGS datacollection stations, (3) an automated GIS process that determines drainage boundaries for user-selected ungaged sites and measures the basin characteristics for those sites, (4) a GIS database that stores base-map data needed for users to locate sites of interest and other map data needed for measuring basin characteristics, and (5) an automated process that takes the measured basin characteristics for ungaged sites as input, solves regression equations to estimate various streamflow statistics, and outputs the estimates for display to the user in a Web browser window. Each of these components are described below and guidance for using the application is provided.

StreamStats User Interface

The StreamStats user interface (fig. 1) allows users to navigate to areas of the map and select gaged and ungaged sites of interest. The largest part of the user interface consists of the Map Frame, which displays default and selected map layers. The Map Layers Frame, located to the right of the Map Frame, shows the layers that are or can be displayed on the Map Frame, and allows users to change the layers that are displayed. Above the Map Frame is a series of buttons that allow navigation by zooming in and out (going to a larger or smaller scale view while the map is centered on the same position), panning (moving the center of view in any direction), or returning to the previous or original map extent. Additional buttons allow the user to guery for information on features in selected map layers, delineate drainage boundaries for ungaged sites, get streamflow statistics for ungaged sites, clear drainage boundaries, download drainage boundaries to a file, print the views shown in the Map Frame, retrieve information for USGS data-collection site stations from the National Water Information System (NWIS) database, and get help on using StreamStats. A "Zoom To" pull-down menu above the Map Layers Frame allows users to zoom to a named place, a water feature, an address, or a specified latitude and longitude.

The user interface is accessed initially through a Web page (http://streamstats.usgs.gov) that briefly describes StreamStats, provides links to documentation, and presents a map of the United States that indicates where StreamStats has been implemented. Clicking on a highlighted State on the map will take users to the user interface for that State. The initial homepage also includes a map that indicates where cooperative studies are underway to implement StreamStats for additional States.

Streamflow Statistics for Data-Collection Stations

The USGS periodically computes and publishes streamflow statistics and basin characteristics for its streamflow data-collection stations. This information typically is published in data reports prepared annually by each of the 48 USGS District offices, or in reports that are

products of statewide or regional studies done in cooperation with State and local agencies. Because available streamflow statistics and basin characteristics for a given area commonly are scattered among many reports, and many older reports may not be readily available to the public, users of this information often find it difficult to obtain the information they need. StreamStats provides convenient access to a database, StreamStatsDB, that contains previously published information for data-collection stations.

The different types of data-collection stations are shown on the map in the user interface by different symbol shapes and colors. Clicking on the location of a station gives access to the available information for that station. The available information varies by station type and by the needs of local cooperators, who may have shared in the cost of computing the statistics. The information is entered into StreamStatsDB and is quality-assured by scientists in the USGS District offices where the data were collected.

StreamStats output for data-collection stations includes descriptive information, any streamflow statistics and basin characteristics that are available for the stations, and links to the homepages for the stations in NWISWeb (http://waterdata.usgs.gov/usa/nwis/nwis), the online database that contains data collected for all USGS data-collection stations. Descriptive information in StreamStatsDB includes: USGS station identification number, station name, station type, period of record, latitude, longitude, hydrologic unit code, major drainage basin name, county name, U.S. Census Bureau Minor Civil Division (MCD) name, directions to locate the station, and remarks indicating any effects of human impacts or other pertinent information about the stations.

More than 165 different basin characteristics are available in StreamStatsDB, though typically there are less than one dozen available for most stations. Drainage area is the most commonly available basin characteristic. Some other widely available characteristics include stream slope, mean annual precipitation, and area of surface-water storage (lakes, ponds, and wetlands).

About 500 different streamflow statistics are available in StreamStatsDB, including peak-flow and low-flow frequencies, annual and monthly means, medians, and flow-duration percentiles.

Most stations, however, have only a small number of statistics available. Data from NWISWeb were used to determine the statistics. Though there is some overlap in the information contained in NWISWeb and StreamStatsDB, NWISWeb was not designed to store most of the streamflow statistics and many of the basin characteristics contained in StreamStatsDB.

All streamflow statistics and basin characteristics for stations in StreamStatsDB were published in previous reports, and citations for those reports are provided in the StreamStats output. Methods used to determine the information are described in the reports. A link from the StreamStats homepage provides definitions of the streamflow statistics and basin characteristics in the database.

Streamflow Statistics for Ungaged Sites

The USGS has developed numerous equations that can be used to estimate various streamflow statistics for locations

on ungaged streams throughout the Nation. The equations were obtained by use of regression analysis to statistically relate the streamflow statistics to the basin characteristics of the drainage basins for a group of data-collection stations. The basin characteristics can be measured for an ungaged site and inserted into the regression equations to obtain estimates of the streamflow statistics under natural flow conditions for the site. (See box on p. 4)

Use of the regression equations has been limited in the past because measuring the basin characteristics was difficult and time-consuming, and the equations sometimes are difficult to calculate. Historically, most physical characteristics were measured by hand from various maps. This process could take from an hour to a few days to complete for a single site, depending on the size of the basin and the characteristics measured. In addition, many of the maps were not widely circulated, and many potential users did not possess the equipment or expertise necessary to measure the values from the maps. StreamStats eliminates these problems by automatically

defining the drainage boundary, measuring the basin characteristics, and solving the regression equations to obtain estimates of streamflow statistics for user-selected ungaged sites in a process that takes only a few minutes. Users simply select the location of interest from the map displayed in the user interface, and StreamStats does the rest.

StreamStats determines the drainagebasin boundary for a selected site using a Digital Elevation Model (DEM), which is a regularly spaced grid of elevation points, and a digital representation of the stream network. When a user selects a site along the digital stream network, the site location is transferred to a point in the DEM, which is then used to determine the drainage boundary for the site. Usually the DEM used for delineation has been enhanced by a process that makes it conform to the stream network and a data set of pre-existing drainage boundaries. As a result, delineations obtained from StreamStats usually are of greater accuracy than delineations obtained from a standard DEM (fig. 2).

StreamStats was designed to allow use of data sets at various scales so that

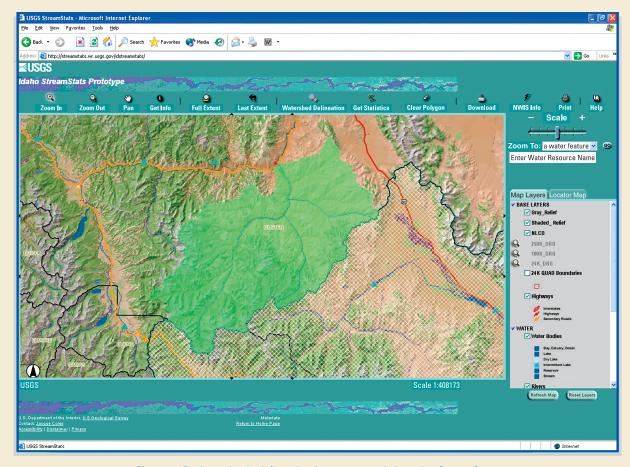


Figure 2. Drainage basin delineation for an ungaged site using StreamStats.

Regression Equations

The USGS has developed equations to estimate peakflow frequency statistics, such as the 100-year flood, for ungaged sites in every State. Regression equations also have been developed to estimate other types of streamflow statistics for many States. As an example, the equation for estimating the 100-year flood for ungaged sites in part of northern Idaho is:

$$\mathbf{Q}_{100} = 5.39 \; \mathbf{A}^{0.874} (\mathbf{E}/1,000)^{-1.13} \; \mathbf{P}^{1.18}$$

where

Q₁₀₀ is the peak flow that occurs, on average, once in 100 years (1-percent chance of occurrence in any year), in cubic feet per second;

A is the drainage area, in square miles;

E is the mean basin elevation, in feet; and

P is the mean annual precipitation, in inches.

Reference

Berenbrock, Charles, 2002, Estimating the magnitude of peak flows at selected recurrence intervals for streams in Idaho: U.S. Geological Survey Water-Resources Investigations Report 02-4170, 59 p.

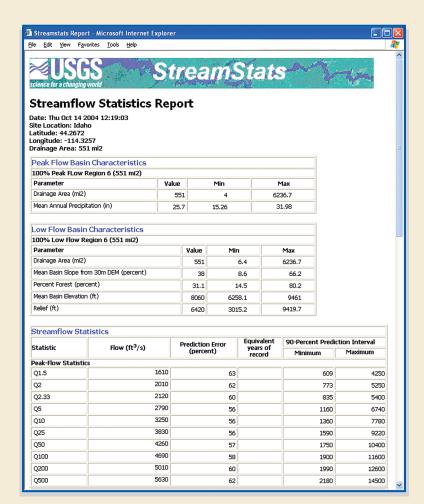


Figure 3. Partial output from StreamStats for an ungaged site.

the best available local data can be used to determine drainage boundaries and to measure basin characteristics. The local USGS District offices determine the source and scale of the data layers used.

StreamStats determines what regression equations are available in the region in which the ungaged site is located, and what basin characteristics are needed to solve them. StreamStats then measures the basin characteristics and inserts them into the National Flood Frequency (NFF) program, which solves the equations. The estimated streamflow statistics, indicators of the errors associated with the estimates, and the basin characteristics for the site appear in a pop-up Web browser window (fig. 3). Documentation of the equations in NFF and the methods used to develop them is provided through links for each State on the NFF Web page at http://water.usgs.gov/software/nff.html.

Limitations

StreamStats provides estimates of streamflow statistics for ungaged sites

assuming natural flow conditions. If human activities such as dam regulation and water withdrawals substantially affect the timing, magnitude, or duration of flows at a selected site, the estimates provided by StreamStats should be adjusted by the user to account for those activities. StreamStats can be used to obtain regression-equation-based estimates of streamflow statistics for USGS data-collection stations that are affected by human activities. Users should not assume, however, that the differences between the data-based estimates for the stations and the regression equationbased estimates are equivalent to the effects of the human activities on streamflow at the stations because there are errors associated with both sets of estimates. When StreamStats is used to obtain estimates for sites with basin characteristics outside the ranges of the basin characteristics for the sites used to develop the regression equations, the estimates are extrapolated, and the errors associated with the estimates are unknown. StreamStats provides a warning when extrapolation occurs.

Additional Information

For further information, please contact:
District Chief, MD-DE-DC District
U.S. Geological Survey
8987 Yellow Brick Road
Baltimore, Maryland 21237
http://md.water.usgs.gov
(410-238-4200)

or visit the USGS Office of Surface Water StreamStats Program homepage at: http://water.usgs.gov/osw/programs /streamstats.html

The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Editor: Valerie M. Gaine Graphics and design: Timothy W. Auer

FS 2004-3115

area (sq. mile)	at Little Ne	ellie Ditch	า		28.	8								
factor		0.18												
	Jan	F	eb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Exceedences														
	1%	6.3	5.4	14.4	4 9	0 69.966	83.052	63.468	45.234	21.744	1 21.114	4 14.364	8.1	
	5%	6.3	5.4	14.4	4 74.5	2 54.36	62.28	49.536	31.122	17.46	16.434	4 11.88	8.1	
	10%	4.5	4.5	14.4	4 5	4 45	5 54.54	42.12	24.048	14.4	14.94	4 10.8	8.1	
	20%	4.5	4.5	13.	5 41.	4 34.956	46.98	35.82	19.8	11.52	2 11.916	6 9	7.2	2
	50%	3.6	3.6	7.2	2 1	8 15.48	3 25.92	23.76	13.86	7.02	2 8.64	4 7.2	3.6	6
	80%	2.7	2.7	4.5	5	9 5.184	4 13.5	10.98	8.82	4.32	2 5.76	5.4	3.6	6
	90%	2.34	2.7	4.	5 6.4	8 2.7	7 9.72	6.48	7.56	3.78	3 4.86	3.78	3.6	6
	95%	1.8	2.7	2.	7 6.	3 1.8	6.84	4.86	6.246	3.24	4.5	5 3.42	3.6	6
	99%	1.8	2.7	2.	7 1.9	8 0.828	3 4.536	2.88	5.58	2.52	2 3.3624	4 2.7	3.6	6
	0.5	3.6	3.6	7.2	2 18.	0 15.5	5 25.9	23.8	13.9	7.0	8.6	6 7.2	2 3.6	8.1
Little Nellie Dito		0.0	0.0	0.0) 1.	1 13.4	48.3	28.0	0.0	0.1	I 0.4	4 0.0	0.0	0.0
avg. monthly di (cfs)	iversion													
	Jan	F	eb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
StreamStats	2	2.8	2.9	4.1	13.0	56.2	65.6	17.1	7.1	5.0	5.1	4.2	3.3	
All Diversions*	*** 0	0.0	0.0	0.0	0.3	7.1	19.1	10.1	0.7	0.3	0.0	0.0	0.0	
Minus Diversio	ns 2	2.8	2.9	4.1	12.7	49.1	46.5	7.0	6.4	4.7	5.1	4.2	3.3	
	2	2.8	2.8	2.8	2.8					2.8	2.8	2.8	2.8	
			-		7.1	7.1	7.1	7.1						
								4.5	4.5	4.5	5			

^{****}This includes diversion amount for Pleasant Valley Ditch and the CU (assumed 50% of diversion) for Beaver Dale Ditch and Shafer Ditch.

Unadjusted Mean	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Monthly Stream Flow (cfs)	2.8	2.9	4.1	13.0	56.2	65.6	17.1	7.1	5.0	5.1	4.2	3.3
Mean Monthly Stream Flow Adjusted for Upstream Diversions (cfs)	2.8	2.9	4.1	12.7	49.1	46.5	7.0	6.4	4.7	5.1	4.2	3.3

	30 Nov	31 Dec	31 Jan	28 Feb	31 Mar	30 Apr	31 May	30 June	31 July	31 Aug	30 Sep	31 Oct
Pleasant Valley Ditch Beaver Dale Ditch (CU only) Shafer Ditch (CU only)	0 0	0 0	0 0	0 0	0 0	6.57 3.13 7.1	323 27.75 85	666 140 328.5	347 85.5 186	0 35.85 5.3	0 19.8 0	0 0 0
Total (AF) cfs	0	0	0	0	0	16.8 0.3	435.75 7.1	1134.5 19.1	618.5 10.1	41.15 0.7	19.8 0.3	0
Pleasant Valley Ditch Little Nellie Ditch Beaver Dale Ditch Shafer Ditch	30 Nov	31 Dec	31 Jan	28 Feb	31 Mar	30 Apr 6.57 64.5 6.26 14.2	31 May 323 824 55.5 170	30 June 666 2877 280 657	31 July 347 1723 171 372	31 Aug 0 0 71.7 10.6	30 Sep 0 8.7 39.6	31 Oct 0 21.8
Consumptive Use Beaver Dale Ditch Shafer Ditch	0 0	0 0	0 0	0 0	0 0	3.13 7.1	27.75 85	140 328.5	85.5 186	35.85 5.3	19.8 0	0 0

Station Name NORTH FORK NORTH PLATTE RIVER NEAR WALDEN, CO.

Station ID 6614000

Param STREAM FLOW CFS

Statistic Mean State CO

JACKSON County Latitude 40:43:40 Longitude 106:24:41 Elevation 7972.23 Start Year 1923 End Year 1945 Num Years 16 sq miles 160

	January	February	March	April	May	June	July	August	September 0	October	November	December `	r ear
# Days	434	396	434	420	434	420	434	434	420	434	420	434	5114
Avg Day	19.5	20.72	44.29	147.1	114	167.4	135.9	85.01	45.36	50.74	41.5	26.43	74.95
Max Day	35	30	80	636	425	508	365	314	160	273	97	45	636
Min Day	10	15	15	10	2.8	18	11	28	13	18	15	20	2.8
# Months	14	14	14	14	14	14	14	14	14	14	14	14	14
SDev Month	6.17	4.75	20.74	81.52	63.09	71.31	61.93	36.79	20.92	19.19	12.04	9.69	22.92
Skew Month	1.01	0.308	0.789	0.426	0.432	-0.089	0.115	1.66	0.521	1.37	0.136	1.3	0.501
Min Month	10	15	15	35	41.82	66.2	35.58	40.26	18.77	28.29	24.07	20	46.81
Max Month	35	30	80	272.7	219.3	260.1	245.2	186	83.6	101.1	60	45	113.3
Exceedences													
19	% 35	30	80	500	388.7	461.4	352.6	251.3	120.8	117.3	79.8	45	359.9
59	% 35	30	80	414	302	346	275.2	172.9	97	91.3	66	45	247
109	% 25	25	80	300	250	303	234	133.6	80	83	60	45	180.6
209	% 25	25	75	230	194.2	261	199	110	64	66.2	50	40	111
509	% 20	20	40	100	86	144	132	77	39	48	40	20	45
809	% 15	15	25	50	28.8	75	61	49	24	32	30	20	20
909	% 13	15	25	36	15	54	36	42	21	27	21	20	20
959	% 10	15	15	35	10	38	27	34.7	18	25	19	20	15
999	% 10	15	15	11	4.6	25.2	16	31	14	18.68	15	20	10

Water Rights

Name of Structure	Typ Name of Source	WD -	LOCATIONUse	Net Abs	Net Cond AltP/Exch U Adj Date	P Adj Date Appro Date O	r AdminNumber
WEST FORK DITCH	NORTH FORK	47	NE NE 24 9 N 81 W S I	12.000	C 09/19/1892	2 05/29/1884	12568.00000
LITTLE NELLIE DITCH	NORTH FORK	47	NW NW 18 10 N 81 W S I	3.500	C 09/19/1892	2 04/30/1886	13269.00000
WEST FORK DITCH	NORTH FORK	47	NE NE 24 9 N 81 W S I	7.000	C 09/19/1892	2 08/31/1886	13392.00000
LITTLE NELLIE DITCH	NORTH FORK	47	NW NW 18 10 N 81 W S I	14.000	C 09/19/1892	2 04/30/1887	13634.00000
INDEPENDENT DITCH	NORTH FORK	47	SE NW 22 9 N 81 W S I	33.750	C 04/23/1902	2 09/01/1888	14124.00000
VICTOR DITCH	NORTH FORK	47	SE SE 13 9 N 81 W S I	19.500	C 04/23/1902	2 05/20/1889	14385.00000
LEGAL TENDER DITCH	NORTH FORK	47	SE NW 22 9 N 81 W S I	7.000	C 09/19/1892	2 06/01/1889	14397.00000
LITTLE NELLIE DITCH	NORTH FORK	47	NW NW 18 10 N 81 W S I	1.660	C 09/19/1892	2 06/20/1889	14416.00000
REITHMEYER D	NORTH FORK	47	NE NW 14 9 N 81 W S ICD	3.340	C 09/19/1892	06/20/1889	14416.00000
LAKE JOHN CMPGRD GALLERY	NORTH FORK	47	SE SW 11 9 N 81 W S ICD		0.500 C 09/19/1892	2 06/20/1889	14416.00000
PLEASANT VALLEY DITCH	NORTH FORK	47	NE SW 4 10 N 82 W S I	36.000	C 04/23/1902	2 10/18/1889	14536.00000
LEGAL TENDER DITCH	NORTH FORK	47	SE NW 22 9 N 81 W S I	10.000	C 04/23/1902	06/01/1890	14762.00000
LITTLE NELLIE DITCH	NORTH FORK	47	NW NW 18 10 N 81 W S I	70.000	C 04/23/1902	06/05/1890	14766.00000
VICTOR DITCH	NORTH FORK	47	SE SE 13 9 N 81 W S I	3.000	C 04/23/1902	04/25/1892	15456.00000
ULRICH DITCH	NORTH FORK	47	NE NW 14 9 N 81 W S I	2.000	C 07/01/1908	09/19/1892	15603.00000
WATTENBERG DITCH	NORTH FORK	47	SW SE 12 9 N 81 W S I	2.000	C 07/01/1908	09/19/1892	15603.00000
NORTH FORK DITCH	NORTH FORK	47	NE NW 31 10 N 81 W S I	6.000	C 07/01/1908	05/01/1901	18748.00000
VICTOR DITCH	NORTH FORK	47	SE SE 13 9 N 81 W S I	12.500	C 07/01/1908	06/30/1901	18808.00000
BRIGGS BOHN DITCH	NORTH FORK	47	SW NW 16 9 N 81 W S I	36.000	C 01/06/1913	3 01/06/1913 10/14/1907	21366.21105
SHEEP MTN SPRING	NORTH FORK	47	NE NW 5 9 N 81 W S SW	0.004	C 12/31/1970	04/17/1926	27865.00000
WEST FORK DITCH	NORTH FORK	47	NE NE 24 9 N 81 W S I	13.100	C 06/20/1939	06/20/1939 09/10/1888	30280.14133
INDEPENDENT DITCH	NORTH FORK	47	SE NW 22 9 N 81 W S I	36.000	C 06/20/1939	06/20/1939 09/15/1888	30280.14138
LEGAL TENDER DITCH	NORTH FORK	47	SE NW 22 9 N 81 W S I	47.000	C 06/20/1939	06/20/1939 06/01/1889	30280.14397
VICTOR DITCH	NORTH FORK	47	SE SE 13 9 N 81 W S I	26.400	C 06/20/1939	06/20/1939 05/01/1901	30280.18748
BRIGGS BOHN DITCH	NORTH FORK	47	SW NW 16 9 N 81 W S I	8.000		3 01/10/1958 05/31/1908	33534.21335
INDEPENDENT DITCH	NORTH FORK	47	SE NW 22 9 N 81 W S I	43.300	C 01/10/1958	3 01/10/1958 05/31/1908	33534.21335
RICHARD SPG NO 1	NORTH FORK	47	SW SW 9 9 N 81 W S D	0.027	C 12/31/1972	2 12/31/1972 01/15/1902	44559.19007
SHARENS SPRING	NORTH FORK	47	SE NW 5 9 N 81 W S S	0.006	C 12/31/1982	2 12/31/1982 09/30/1981	48212.48120
SODA SPRING	NORTH FORK	47	SE NW 10 9 N 81 W S D	0.033		2 12/31/2002 12/31/1886	55517.13514
SHEEP MOUNTAIN SPRING NO	NORTH FORK	47	SE NW 10 9 N 81 W S I	1.250	C 12/31/2002	2 12/31/2002 04/23/1902	55517.19105
SHEEP MOUNTAIN SPRING NO	NORTH FORK	47	nE SW 10 9 N 81 W S I	0.250	C 12/31/2002	2 12/31/2002 04/23/1902	55517.19105
SODA SPRING	NORTH FORK	47	SE NW 10 9 N 81 W S C			2 12/31/2002 08/07/2001	55517.55371
SHEEP MOUNTAIN SPRING NO	NORTH FORK	47	SE NW 10 9 N 81 W S N			2 12/31/2002 12/30/2002	55881.00000
SHEEP MOUNTAIN SPRING NO	NORTH FORK	47	nE SW 10 9 N 81 W S N		0.140 C 12/31/2002	2 12/31/2002 12/30/2002	55881.00000

STRUCTURE SUMMARY FOR: PLEASANT VALLEY DITCH

WATER DISTRICT: 47

ID NUMBER: 837

WATER SOURCE: NORTH FORK AT STREAM MILE: 61.00 LOCATION: 10N 82W 4 SW NE IN JACKSON COUNTY

TOTAL IRRIGATED ACRES: See irrigated acres summary.

STRUCTURE TYPE: Headgate

CIU (CURRENTLY IN USE): Active Structure with contemporary diversion records

IS TRANSBASIN:

ESTIMATED CAPACITY:

DECREED CAPACITY (SUM OF ABSOLUTE NET AMOUNT RIGHTS): 36.0000 CFS

MEASURING DEVICE/RECORDER: 4 FT PF METAL CONTACT: SILVER SPUR RANCHES (OWNER)

WATER RIGHTS TRANSACTION INFORMATION

DECREED DECREED ADJUDICATION

ADMIN NO ADJ DATE APPRO DATE COURT NO RATE (CFS) VOL. (AF) TYPE USES COMMENT

14536.00000 1902-04-23 1889-10-18 CA1523 36.00 O IRR

WATER RIGHTS NET AMOUNT INFORMATION

ADMIN NO ADJ DATE PADJ DATE APRO DATE NO CASE NO TYPE ABS (CFS) ABS (AF) COND (CFS) COND (AF) APEX (CFS) APEX (AF) TYPE

14536.0000 1902-04-23 1889-10-18 0 103 0 36.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1RR

IRRIGATED ACRES SUMMARY -- TOTALS FROM VARIOUS SOURCES

GIS Total (Acres): Reported:
Diversion Comments Total (Acres): 169.0 Reported: 2004
Structure Total (Acres): 169.0 Reported: 1988

IRRIGATED ACRES FROM GIS DATA -- BY CROP, YEAR, AND IRRIGATION METHOD

No GIS irrigated acres records to display

DIVERSION SUMMARY IN ACRE FEET - TOTAL THROUGH STRUCTURE

YEAR	FDU	LDU	DWC	MAXQ & DAY	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	TOTAL
1973	05/01	07/12	73	36.0 05/01	0	0	0	0	0	0	2214	2142	857	0	0	0	5213
1974	05/01	07/08	69	36.0 05/01	0	0	0	0	0	0	2214	2142	571	0	0	0	4927

1975 05/15 07/16	63	40.0 05/15	0	0	0	0	0	0	1349	2380	1269	0	0	0	4998
1976 05/01 07/10	71	45.0 07/08	0	0	0	0	0	0	2162	595	407	0	0	0	3164
1977 05/08 06/20	44	4.70 06/01	0	0	0	0	0	0	47.6	186	0	0	0	0	234
1978 06/05 07/16	42	10.0 06/05	0	0	0	0	0	0	0	516	317	0	0	0	833
1979 06/10 07/25	46	10.0 06/10	0	0	0	0	0	0	0	417	496	0	0	0	912
1980 06/14 07/25	42	10.0 06/14	0	0	0	0	0	0	0	337	496	0	0	0	833
1981 05/28 07/07	41	10.0 05/28	0	0	0	0	0	0	79.3	496	69.4	0	0	0	645
1982 06/01 07/21	51	12.0 06/15	0	0	0	0	0	0	0	520	500	0	0	0	1020
1983 06/11 07/20	40	20.0 06/11	0	0	0	0	0	0	0	793	793	0	0	0	1587
1984 06/01 07/20	50	20.0 06/21	0	0	0	0	0	0	0	873	608	0	0	0	1480
1985 05/25 07/14	51	20.0 06/01	0	0	0	0	0	0	139	1190	333	0	0	0	1662
1986 06/01 07/14	44	20.0 06/18	0	0	0	0	0	0	0	897	555	0	0	0	1452
1987 05/13 07/05	54	6.40 05/30	0	0	0	0	0	0	160	353	39.7	0	0	0	553
1988 05/22 07/10	50	16.0 06/01	0	0	0	0	0	0	79.3	952	179	0	0	0	1210
1989 05/01 07/11	72	8.00 06/01	0	0	0	0	0	0	184	413	87.3	0	0	0	684
1990 05/08 07/14	68	12.0 06/08	0	0	0	0	0	0	286	631	250	0	0	0	1166
1991 05/11 07/15	66	10.0 06/01	0	0	0	0	0	0	167	589	179	0	0	0	934
1992 04/11 07/10	91	5.50 06/01	0	0	0	0	0	198	270	318	79.3	0	0	0	866
1993 06/15 07/14	30	12.0 06/15	0	0	0	0	0	0	0	381	298	0	0	0	678
1994 05/28 07/08	42	12.0 05/28	0	0	0	0	0	0	95.2	702	127	0	0	0	924
1995 06/23 07/20	28	12.0 06/23	0	0	0	0	0	0	0	190	476	0	0	0	666
1996 06/15 07/20	36	12.0 06/15	0	0	0	0	0	0	0	381	378	0	0	0	759
1997 06/18 07/06	19	16.0 06/18	0	0	0	0	0	0	0	413	190	0	0	0	603
1998 06/15 07/10	26	10.0 06/15	0	0	0	0	0	0	0	294	99.2	0	0	0	393
1999 06/18 07/14	27	16.0 06/18	0	0	0	0	0	0	0	397	309	0	0	0	706
2000 05/26 07/24	60	8.00 06/11	0	0	0	0	0	0	23.8	357	159	0	0	0	540
2001 04/25 07/19	86	15.0 05/15	0	0	0	0	0	11.9	569	397	188	0	0	0	1166
2002 05/01 07/01	60	10.0 06/26	0	0	0	0	0	0	256	277	12.9	0	0	0	546
2003 06/13 07/31	49	15.0 06/24	0	0	0	0	0	0	0	426	651	0	0	0	1077
2004 05/22 07/14	54	8.00 06/13	0	0	0	0	0	0	49.6	365	139	0	0	0	553
AVE: 05/24 07/14	51	15.5 06/07	0	0	0	0	0	6.57	323	666	347	0	0	0	1343
32 years with di	vers	ion records										Averag	e Flow =	13.	.28 CFS

Notes: The average considers all years with diversion records, even if no water is diverted. The above summary lists total monthly diversions.

* = Infrequent data. All other values are derived from daily records.

Average values include infrequent data if infrequent data are the only data for the year.

DIVERSION COMMENTS

YEAR COMMENTS

STRUCTURE SUMMARY FOR: NORTH FORK DITCH

WATER DISTRICT: 47
ID NUMBER: 797

WATER SOURCE: NORTH FORK AT STREAM MILE: 50.52 LOCATION: 10N 81W 31 NW NE IN JACKSON COUNTY TOTAL IRRIGATED ACRES: See irrigated acres summary.

STRUCTURE TYPE: Headgate

CIU (CURRENTLY IN USE): Active Structure with contemporary diversion records

IS TRANSBASIN:

ESTIMATED CAPACITY:

DECREED CAPACITY (SUM OF ABSOLUTE NET AMOUNT RIGHTS): 6.0000 C

MEASURING DEVICE/RECORDER: 3 FT WOOD PARSHALL

CONTACT: WATTENBERG RANCH CITY/STATE/ZIP: WALDEN CO

WATER RIGHTS TRANSACTION INFORMATION

DECREED DECREED ADJUDICATION

ADMIN NO ADJ DATE APPRO DATE COURT NO RATE (CFS) VOL. (AF) TYPE USES COMMENT

18748.00000 1908-07-01 1901-05-01 CA1784 6.00 O IRR CHG PT OF DIVERSION W1419

WATER RIGHTS NET AMOUNT INFORMATION

ADMIN NO ADJ DATE PADJ DATE APRO DATE NO CASE NO TYPE ABS (CFS) ABS (AF) COND (CFS) COND (AF) APEX (CFS) APEX (AF) TYPE

18748.00000 1908-07-01 1901-05-01 0 155 O 6.0000 0.0000 0.0000 0.0000 0.0000 0.0000 IRR

IRRIGATED ACRES SUMMARY -- TOTALS FROM VARIOUS SOURCES

GIS Total (Acres): 85.9 Reported: 2001
Diversion Comments Total (Acres): 28.0 Reported: 2005
Structure Total (Acres): 28.0 Reported: 2001

IRRIGATED ACRES FROM GIS DATA -- BY CROP, YEAR, AND IRRIGATION METHOD

							ACRES	ACRES TOTAL
		ACRES	ACRES	ACRES	ACRES	ACRES	TOTAL	ALL CROPS
YEAR	CROP	FLOOD	FURROW	SPRINKLER	DRIP	UNKNOWN	(FOR CROP)	(FOR YEAR)
2001	GRASS PASTURE	85.940	0.000	0.000	0.000	0.000	85.940	85.940

DIVERSION SUMMARY IN ACRE FEET - TOTAL THROUGH STRUCTURE

YEAR	FDU	LDU	DWC	MAXQ	& DAY	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	TOTAL
1970	06/25	07/20	 26	6.00	06/25	0	0	0	0	0	0	0	71.4	238	0	0	0	309
1971	06/01	07/20	50	5.00	06/01	0	0	0	0	0	0	0	298	198	0	0	0	496
1974	05/01	07/19	80	6.00	05/01	0	0	0	0	0	0	369	357	226	0	0	0	952
1975	05/25	07/06	43	6.00	05/25	0	0	0	0	0	0	83.3	357	71.4	0	0	0	512
1977	05/01	08/31	123	1.00	05/01	0	0	0	0	0	0	61.5	59.5	61.5	61.5	0	0	244
1978	06/15	08/31	78	2.00	06/15	0	0	0	0	0	0	0	63.5	123	123	0	0	309
1979	06/15	08/31	78	2.00	06/15	0	0	0	0	0	0	0	63.5	123	123	0	0	309
1980	06/01	08/31	92	2.00	06/01	0	0	0	0	0	0	0	119	81.3	61.5	0	0	262
1981	05/28	08/31	96	2.00	05/28	0	0	0	0	0	0	15.9	101	61.5	61.5	0	0	240
1982	06/01	08/31	92	2.00	06/01	0	0	0	0	0	0	0	119	89.3	61.5	0	0	270
1983	06/01	08/31	92	2.00	06/01	0	0	0	0	0	0	0	119	91.2	61.5	0	0	272
1984	06/01	08/31	92	2.00	06/01	0	0	0	0	0	0	0	119	75.4	61.5	0	0	256
1985	06/01	08/31	92	2.00	06/01	0	0	0	0	0	0	0	119	61.5	61.5	0	0	242
1986	06/06	08/31	87	2.00	06/06	0	0	0	0	0	0	0	99.2	75.4	61.5	0	0	236
1987	06/11	07/07	27	3.00	06/11	0	0	0	0	0	0	0	101	13.9	0	0	0	115
1988	06/01	07/07	37	3.00	06/01	0	0	0	0	0	0	0	179	27.8	0	0	0	206
1989	06/08	06/25	18	1.00	06/08	0	0	0	0	0	0	0	35.7	0	0	0	0	35.7
1990	06/08	07/07	30	2.00	06/08	0	0	0	0	0	0	0	91.2	13.9	0	0	0	105
1991	06/01	07/07	37	3.00	06/01	0	0	0	0	0	0	0	161	13.9	0	0	0	175
1992	06/01	08/13	73	3.00	07/02	0	0	0	0	0	0	0	118	83.3	25.8	0	0	227
1993	06/01	08/20	81	3.00	06/01	0	0	0	0	0	0	0	179	131	39.7	0	0	349
1994	05/26	08/14	81	2.00	05/26	0	0	0	0	0	0	23.8	119	89.3	27.8	0	0	260
1995	06/08	08/31	85	2.00	06/08	0	0	0	0	0	0	0	91.2	123	91.2	0	0	305
1996	06/11	08/31	82	2.00	06/11	0	0	0	0	0	0	0	79.3	123	61.5	0	0	264
1997	06/11	08/14	65	4.00	06/11	0	0	0	0	0	0	0	149	141	27.8	0	0	317
1998	06/12	09/13	94	5.00	06/23	0	0	0	0	0	0	0	145	159	226	51.6	0	581
1999	06/07	08/22	77	3.00	06/25	0	0	0	0	0	0	0	81.3	87.3	21.8	0	0	190
2000	05/24	09/30	130	4.00	06/09	0	0	0	0	0	0	15.9	151	123	61.5	44.6	0	396
2001	04/21	10/09	141	2.00	05/01	0	0	0	0	0	19.8	97.2	51.6	0	61.5	59.5	8.93	299
2002	06/01	06/14	14	3.50	06/01	0	0	0	0	0	0	0	79.3	0	0	0	0	79.3
2003	06/08	08/31	85	1.00	06/08	0	0	0	0	0	0	0	41.7	46.1	25.8	0	0	114
2004	06/13	08/31	80	2.00	06/22	0	0	0	0	0	0	0	53.6	54.5	21.3	0	0	129
2005	06/01	09/12	104	4.50	06/18	0	0	0	0	0	0	0	217	180	41.7	11.9	0	450
AVE:	06/01	08/15	74	2.88	06/05	0	0	0	0	0	0.60	20.2	127	90.5	44.6	5.08	0.27	288
33 7	ears v	with d	ivers	ion r	ecords										Aver	age Flo	w = 1	.96 CFS

Notes: The average considers all years with diversion records, even if no water is diverted. The above summary lists total monthly diversions.

Average values include infrequent data if infrequent data are the only data for the year.

DIVERSION COMMENTS

YEAR COMMENTS

^{* =} Infrequent data. All other values are derived from daily records.

STRUCTURE SUMMARY FOR: LITTLE NELLIE DITCH

WATER DISTRICT: 47
ID NUMBER: 730

WATER SOURCE: NORTH FORK AT STREAM MILE: 55.23 LOCATION: 10N 81W 18 NW NW IN JACKSON COUNTY TOTAL IRRIGATED ACRES: See irrigated acres summary.

STRUCTURE TYPE: Headgate

CIU (CURRENTLY IN USE): Active Structure with contemporary diversion records

IS TRANSBASIN:

ESTIMATED CAPACITY:

DECREED CAPACITY (SUM OF ABSOLUTE NET AMOUNT RIGHTS): 89.1600 CFS

MEASURING DEVICE/RECORDER: 8 FT PF METAL

CONTACT: WATTENBERG & PARK RANGE RANCH (OWNER)

WATER RIGHTS TRANSACTION INFORMATION

ADMIN NO	ADJ DATE	APPRO DATE C	COURT NO	DECREED RATE (CFS)	DECREED VOL. (AF)	ADJUDICATION TYPE	USES	COMMENT
13269.00000	1892-09-19	1886-04-30 C	CA0922	3.50		0	IRR	
13634.00000	1892-09-19	1887-04-30 C	CA0922	14.00		0	IRR	
14416.00000	1892-09-19	1889-06-20 C	CA4185	1.66		O,TT	IRR	TF REITHMEYER D.
14766.00000	1902-04-23	1890-06-05 C	CA1523	70.00		0	IRR	

WATER RIGHTS NET AMOUNT INFORMATION

ADMIN NO	ADJ DATE	PADJ DATE	APRO DATE	ORDER NO	R PRIOR CASE NO	ADJ TYPE	RATE ABS (CFS)	VOL ABS	(AF)	RATE COND	(CFS)	VOL COND	(AF)	RATE APEX	(CFS)	VOL APEX	(AF)	USE TYPE
13269.00000	1892-09-19		1886-04-30		26	0	3.5000		0.0000	(0.0000		0.0000	(0.000	(0.0000	IRR
13634.00000	1892-09-19		1887-04-30	C	38	0	14.0000		0.0000	C	0.0000		0.0000	C	0.000	(0.0000	IRR
14416.00000	1892-09-19		1889-06-20	C	99(89)	0	1.6600		0.0000	C	0.0000		0.0000	(0.0000	(0.0000	IRR
14766.00000	1902-04-23		1890-06-05	C	115	0	70.0000		0.0000	(0.0000		0.0000	C	0.000	(0.0000	IRR

IRRIGATED ACRES SUMMARY -- TOTALS FROM VARIOUS SOURCES

GIS Total (Acres): Reported:
Diversion Comments Total (Acres): 1031.0 Reported: 2004
Structure Total (Acres): 1031.0 Reported: 2001

IRRIGATED ACRES FROM GIS DATA -- BY CROP, YEAR, AND IRRIGATION METHOD

No GIS irrigated acres records to display

DIVERSION SUMMARY IN ACRE FEET - TOTAL THROUGH STRUCTURE

YEAR	FDU	L'DII	DWC	MAXO	.u DAY &	NOV	DEC	JAN	E FEEI FEB	- TOTAL	APR	JH SIKU MAY	JUN	JUL	AUG	SEP	OCT	TOTAL
	06/25				06/25	0	0	0	0	0	0	0	1083	3610	0	0	0	4693
	05/20				05/20	0	0	0	0	0	0	1904	4760	3174	0	0	0	9838
	06/15				06/15	0	0	0	0	0	0	0	2460	893	0	0	0	3352
	05/10				05/10	0	0	0	0	0	0	1964	2678	1418	0	0	0	6060
	06/18				07/10	0	0	0	0	0	0	0	1289	998	0	0	0	2288
	06/05				07/16	0	0	0	0	0	0	0	2855	3308	0	0	0	6164
1976	05/14	07/20	68	80.0	05/14	0	0	0	0	0	0	2801	3094	2007	0	0	0	7902
	05/01				06/09	0	0	0	0	0	0	982	1844	793	0	0	0	3619
1978	05/20	07/20	62	45.0	05/20	0	0	0	0	0	0	1071	2678	1785	0	0	0	5534
1979	06/01	07/25	55	45.0	06/01	0	0	0	0	0	0	0	2678	2231	0	0	0	4909
1980	06/01	07/20	50	45.0	06/01	0	0	0	0	0	0	0	2678	1785	0	0	0	4463
1981	05/01	07/14	75	30.0	05/28	0	0	0	0	0	0	345	1785	555	0	0	0	2686
1982	06/01	07/21	51	45.0	06/15	0	0	0	0	0	0	0	1984	1874	0	0	0	3858
1983	06/08	07/21	44	45.0	06/08	0	0	0	0	0	0	0	2053	1874	0	0	0	3927
1984	06/06	07/17	42	45.0	06/06	0	0	0	0	0	0	0	2231	1517	0	0	0	3749
1985	05/22	07/10	50	45.0	06/01	0	0	0	0	0	0	397	2678	893	0	0	0	3967
1986	05/28	07/15	49	45.0	05/28	0	0	0	0	0	0	357	2678	1339	0	0	0	4374
1987	05/26	07/12	48	45.0	06/05	0	0	0	0	0	0	476	2596	952	0	0	0	4025
1988	05/26	07/14	50	56.0	06/01	0	0	0	0	0	0	238	3332	1250	0	0	0	4820
1989	05/08	10/31	100	50.0	05/30	0	0	0	0	0	0	897	2876	793	0	7.93	123	4697
1990	05/15	10/31	103	50.0	06/08	0	0	0	0	0	0	540	2698	1111	0	43.6	123	4514
1991	05/15	07/15	62	50.0	05/26	0	0	0	0	0	0	1031	2975	1388	0	0	0	5395
1992	04/28	07/20	84	60.0	06/25	0	0	0	0	0	107	2097	2573	1901	0	0	0	6677
1993	05/15	10/24	119	58.0	07/13	0	0	0	0	0	0	952	3273	1974	0	238	190	6627
1994	05/25	10/31	85	70.0	05/25	0	0	0	0	0	0	972	4086	1795	0	0	173	7026
1995	06/01	07/20	50	70.0	06/15	0	0	0	0	0	0	0	3193	2658	0	0	0	5851
1996	05/25	10/31	91	70.0	06/01	0	0	0	0	0	0	486	4165	2579	0	14.9	154	7398
1997	05/26	07/20	56	65.0	06/26	0	0	0	0	0	0	476	3719	2341	0	0	0	6536
1998	06/01	07/09	39	50.0	06/18	0	0	0	0	0	0	0	1542	893	0	0	0	2435
1999	05/24	07/19	57	80.0	06/09	0	0	0	0	0	0	952	4681	2499	0	0	0	8132
2000	04/20	07/24	96	70.0	06/20	0	0	0	0	0	218	2103	3739	2777	0	0	0	8836
2001	04/01	07/09	100	70.0	05/22	0	0	0	0	0	1934	3888	3541	803	0	0	0	10165
2002	05/01	07/09	70	62.0	06/17	0	0	0	0	0	0	1238	2878	343	0	0	0	4458
2003	05/09	07/20	73	70.0	06/01	0	0	0	0	0	0	1617	3888	2116	0	0	0	7621
2004	05/09	07/20	73	65.0	06/10	0	0	0	0	0	0	1051	3422	2083	0	0	0	6555
AVE:	05/20	08/01	64	58.4	06/08	0	0	0	0	0	64.5	824	2877	1723	0	8.70	21.8	5519
35	years v	with d	ivers	sion r	ecords										Avera	age Flor	w = 43	.47 CFS

Notes: The average considers all years with diversion records, even if no water is diverted. The above summary lists total monthly diversions.

Average values include infrequent data if infrequent data are the only data for the year.

DIVERSION COMMENTS

YEAR COMMENTS

^{* =} Infrequent data. All other values are derived from daily records.

STRUCTURE SUMMARY FOR: BEAVERDALE DITCH

WATER DISTRICT: 47
ID NUMBER: 507

WATER SOURCE: GOOSE CK AT STREAM MILE: 58.65 LOCATION: 11N 82W 36 SW NW IN JACKSON COUNTY TOTAL IRRIGATED ACRES: See irrigated acres summary.

STRUCTURE TYPE: Headgate

CIU (CURRENTLY IN USE): Active Structure with contemporary diversion records

IS TRANSBASIN:

ESTIMATED CAPACITY:

DECREED CAPACITY (SUM OF ABSOLUTE NET AMOUNT RIGHTS): 12.0000 CFS

MEASURING DEVICE/RECORDER: NONE
CONTACT: PARK RANGE RANCH (OWNER)
ADDRESS 1: 1 RIVERFRONT PLZ S1404 40202

WATER RIGHTS TRANSACTION INFORMATION

				DECREED	DECREED	ADJUDICATION		
ADMIN NO	ADJ DATE	APPRO DATE COU	RT NO	RATE (CFS)	VOL. (AF)	TYPE	USES	COMMENT
15603.00000	1908-07-01	1892-09-19 CA1	784	3.00		0	IRR	
30280.14528	1939-06-20	1889-10-10 CAC	286	9.00		S	IRR	

WATER RIGHTS NET AMOUNT INFORMATION

	ORDER PRIOR	ADJ RATE	VOL RAT	TE VOL	RATE VOL	USE
ADMIN NO ADJ DATE PADJ DATE APRO DATE	NO CASE NO	TYPE ABS (CFS)	ABS (AF) CON	OND (CFS) COND (AF)	APEX (CFS) APEX (AF)	TYPE
15603.00000 1908-07-01 1892-09-1	9 0 131	0 3.0000	0.0000	0.0000 0.0000	0.0000 0.000	0 IRR
30280.14528 1939-06-20 1932-11-26 1889-10-1	0 0 662	s 9.0000	0.0000	0.0000 0.0000	0.0000 0.000	0 IRR

IRRIGATED ACRES SUMMARY -- TOTALS FROM VARIOUS SOURCES

GIS Total (Acres): Reported:

Diversion Comments Total (Acres): 100.0 Reported: 2004 Structure Total (Acres): 226.0 Reported: 1987

IRRIGATED ACRES FROM GIS DATA -- BY CROP, YEAR, AND IRRIGATION METHOD

No GIS irrigated acres records to display

DIVERSION SUMMARY IN ACRE FEET - TOTAL THROUGH STRUCTURE

YEAR FDU LDU DWC MAXO & DAY NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT TOTAL

1972 06/15 07/09 25	3.00 06/15	0	0	0	0	0	0	0	91.2	44.6	0	0	0	136
1973 06/15 09/20 98	12.0 06/15	0	0	0	0	0	0	0	381	738	738	464	0	2321
1974 06/10 09/20 103	5.00 06/10	0	0	0	0	0	0	0	208	307	307	198	0	1022
1975 06/10 06/10 1	12.0 06/10	0	0	0	0	0	0	0	23.8	0	0	0	0	23.8
1976 05/15 07/11 58	12.0 05/15	0	0	0	0	0	0	387	179	65.5	0	0	0	631
1978 05/25 07/15 52	12.0 05/25	0	0	0	0	0	0	167	714	357	0	0	0	1238
1979 06/01 07/20 50	12.0 06/01	0	0	0	0	0	0	0	714	317	0	0	0	1031
1980 06/01 07/21 51	12.0 06/01	0	0	0	0	0	0	0	714	236	0	0	0	950
1981 05/28 07/07 41	6.00 05/28	0	0	0	0	0	0	47.6	303	41.7	0	0	0	393
1982 06/01 07/18 48	8.00 06/11	0	0	0	0	0	0	0	397	286	0	0	0	682
1983 06/08 09/30 115	8.00 06/08	0	0	0	0	0	0	0	365	254	61.5	59.5	0	740
1984 06/08 09/30 115	8.00 06/08	0	0	0	0	0	0	0	365	131	61.5	59.5	0	617
1985 05/26 09/30 128	8.00 06/08	0	0	0	0	0	0	35.7	407	89.3	61.5	59.5	0	653
1986 06/08 09/30 115	8.00 06/08	0	0	0	0	0	0	0	365	236	61.5	59.5	0	722
1987 07/16 09/30 77	1.00 07/16	0	0	0	0	0	0	0	0	31.7	61.5	59.5	0	153
1988 06/08 08/31 85	3.00 06/08	0	0	0	0	0	0	0	137	151	61.5	0	0	349
1989 06/01 08/15 76	3.00 06/01	0	0	0	0	0	0	0	179	99.2	29.8	0	0	307
1990 06/01 08/31 92	6.00 06/11	0	0	0	0	0	0	0	268	153	61.5	0	0	482
1991 06/01 09/30 122	6.00 06/01	0	0	0	0	0	0	0	357	214	123	102	0	796
1992 04/21 08/31 66	4.00 04/21	0	0	0	0	0	79.3	159	0	19.8	123	0	0	381
1993 05/26 07/15 51	6.00 05/26	0	0	0	0	0	0	71.4	357	89.3	0	0	0	518
1994 05/22 07/12 52	6.00 06/01	0	0	0	0	0	0	59.5	357	64.5	0	0	0	481
1995 06/11 09/30 112	8.00 06/11	0	0	0	0	0	0	0	317	424	117	59.5	0	918
1996 06/11 09/30 112	8.00 06/11	0	0	0	0	0	0	0	317	365	89.3	59.5	0	831
1997 06/01 06/24 24	8.00 06/01	0	0	0	0	0	0	0	282	0	0	0	0	282
1998 06/11 08/31 82	6.00 07/01	0	0	0	0	0	0	0	119	292	123	0	0	534
1999 06/01 09/19 111	12.0 06/18	0	0	0	0	0	0	0	512	208	61.5	18.8	0	800
2000 04/16 06/25 71	4.00 05/22	0	0	0	0	0	59.5	204	149	0	0	0	0	413
2001 04/12 08/31 81	1.00 04/12	0	0	0	0	0	37.7	24.8	0	5.95	30.7	0	0	99.2
2002 05/01 05/21 21	5.00 05/01	0	0	0	0	0	0	208	0	0	0	0	0	208
2003 04/25 09/17 146	3.00 05/01	0	0	0	0	0	23.8	184	161	123	123	67.4	0	682
2004 05/01 07/31 92	4.50 05/17	0	0	0	0	0	0	229	228	127	0	0	0	584
AVE: 05/28 08/16 77	6.89 06/01	0	0	0	0	0	6.26	55.5	280	171	71.7	39.6	0	624
32 years with divers	ion records										Aver	age Flow =	4.	09 CFS

Notes: The average considers all years with diversion records, even if no water is diverted. The above summary lists total monthly diversions.

* = Infrequent data. All other values are derived from daily records.

Average values include infrequent data if infrequent data are the only data for the year.

DIVERSION COMMENTS

YEAR COMMENTS

2003 Structure is not usable

STRUCTURE SUMMARY FOR: SHAFER DITCH

WATER DISTRICT: 47 ID NUMBER: 871

WATER SOURCE: SHAFER CK AT STREAM MILE: 57.73 LOCATION: 10N 82W 1 SW SW IN JACKSON COUNTY

TOTAL IRRIGATED ACRES: See irrigated acres summary.

STRUCTURE TYPE: Headgate

CIU (CURRENTLY IN USE): Active Structure with contemporary diversion records

IS TRANSBASIN:

ESTIMATED CAPACITY:

DECREED CAPACITY (SUM OF ABSOLUTE NET AMOUNT RIGHTS): 48.0000 C

MEASURING DEVICE/RECORDER: 2 FT PF METAL

CONTACT: PARK RANGE RANCH (OWNER)

ADDRESS 1: 1 RIVERFRONT PLZ S1404 40202

WATER RIGHTS TRANSACTION INFORMATION

		DECREED DECREED	ADJUDICATION	1	
ADMIN NO ADJ DAT	E APPRO DATE COURT NO	RATE (CFS) VOL. (AF)	TYPE	USES	COMMENT
15603.00000 1908-07	-01 1892-09-19 CA1784	8.00	0	IRR	
30280.14436 1939-06	-20 1889-07-10 CA0286	40.00	S	IRR	

WATER RIGHTS NET AMOUNT INFORMATION

				ORDEF	R PRIOR	ADJ	RATE	VOL		RATE	VOL		RATE		VOL		USE	
ADMIN NO	ADJ DATE	PADJ DATE	APRO DATE	NO	CASE NO	TYPE	ABS (CFS)	ABS	(AF)	COND (CFS)	COND	(AF)	APEX	(CFS)	APEX	(AF)	TYPE	
15603.00000	1908-07-0	1	1892-09-19	(129	0	8.0000		0.0000	0.0000		0.0000	0	.0000	0	.0000	IRR	
30280.14436	5 1939-06-2	0 1932-11-26	1889-07-10	(659	S	40.0000		0.0000	0.0000		0.0000	0	.0000	0	.0000	IRR	

IRRIGATED ACRES SUMMARY -- TOTALS FROM VARIOUS SOURCES

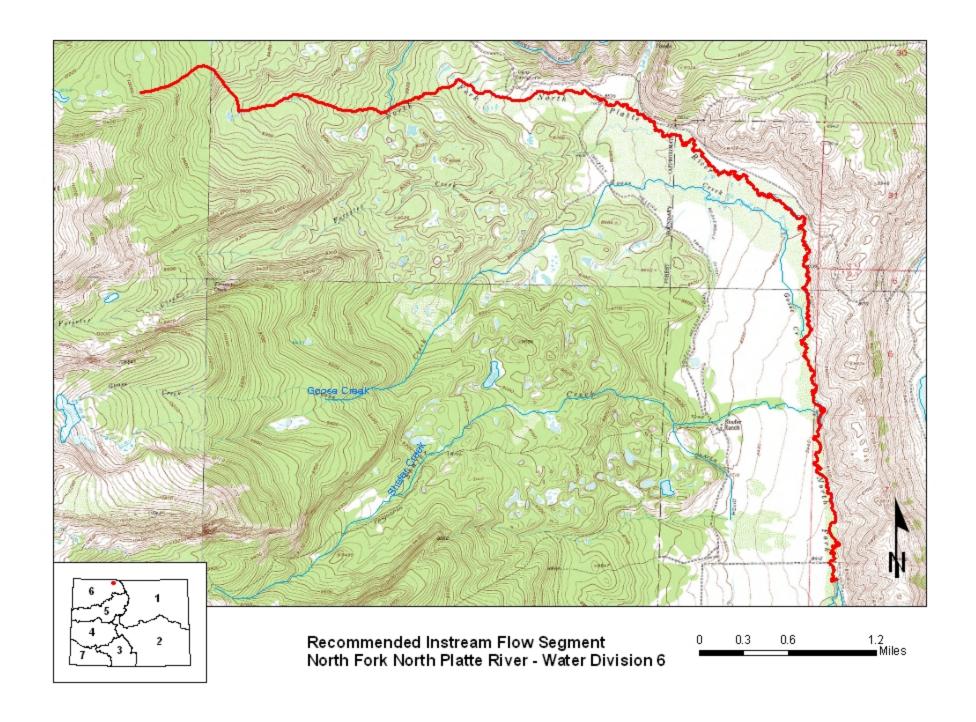
GIS Total (Acres): 379.4 Reported: 2001 Diversion Comments Total (Acres): 401.0 Reported: 2005 Structure Total (Acres): 401.0 Reported: 1987

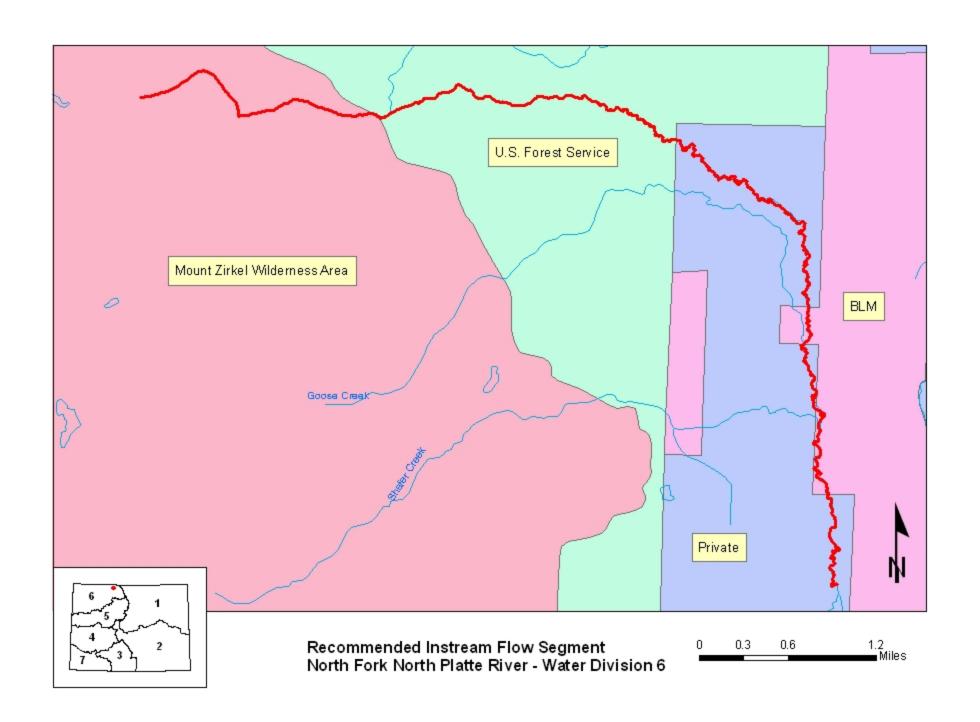
IRRIGATED ACRES FROM GIS DATA -- BY CROP, YEAR, AND IRRIGATION METHOD

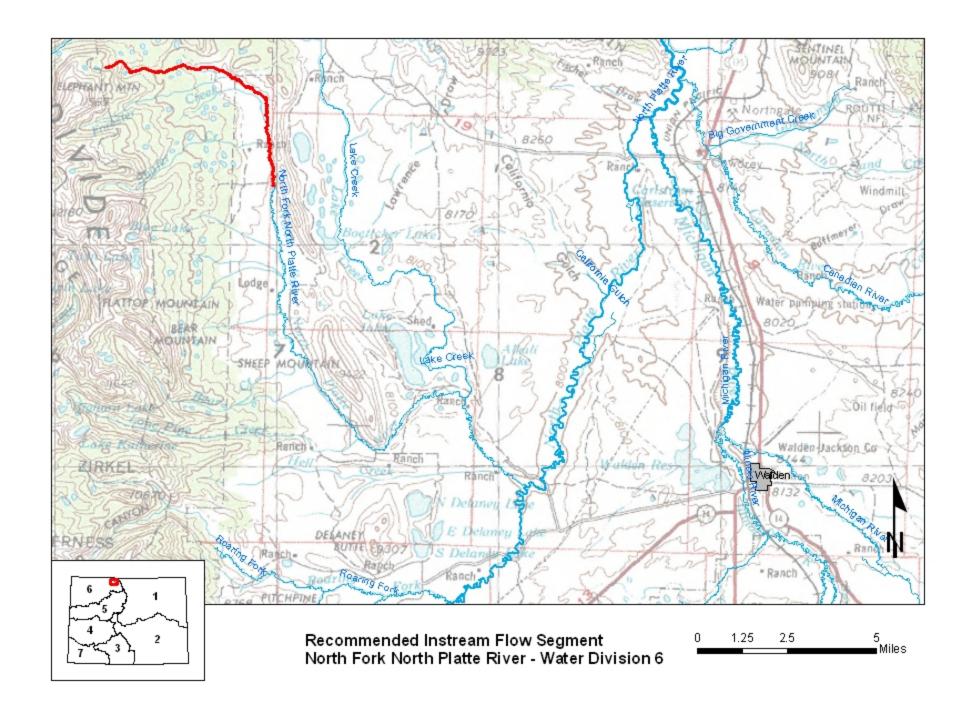
							ACRES	ACRES TOTAL
		ACRES	ACRES	ACRES	ACRES	ACRES	TOTAL	ALL CROPS
YEAR	CROP	FLOOD	FURROW	SPRINKLER	DRIP	UNKNOWN	(FOR CROP)	(FOR YEAR)
2001	GRASS_PASTURE	379.355	0.000	0.000	0.000	0.000	379.355	379.355

DIVERSION SUMMARY IN ACRE FEET - TOTAL THROUGH STRUCTURE

					דע	NEKSION	SUMMAKI	IN ACKE	LEEI	- IOIAL	IHKOU	JI SIKU	CIUKE					
YEAR	FDU	LDU	DWC	MAXQ	& DAY	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	TOTAL
1970	06/25	08/03	40	48.0	06/25	0	0	0	0	0	0	0	571	2951	286	0	0	3808
1971	05/01	07/20	81	5.00	05/01	0	0	0	0	0	0	307	298	198	0	0	0	803
1972	06/15	07/09	25	8.00	06/15	0	0	0	0	0	0	0	230	89.3	0	0	0	319
1973	06/15	07/17	33	35.0	06/15	0	0	0	0	0	0	0	1111	1141	0	0	0	2251
1974	06/18	07/10	23	10.0	06/18	0	0	0	0	0	0	0	258	189	0	0	0	447
1975	06/23	07/16	24	8.00	07/16	0	0	0	0	0	0	0	79.3	165	0	0	0	244
1976	05/15	07/11	58	24.0	05/15	0	0	0	0	0	0	781	595	218	0	0	0	1595
1977	05/08	06/25	44	4.50	05/17	0	0	0	0	0	0	166	223	0	0	0	0	389
1978	05/25	07/15	52	20.0	05/25	0	0	0	0	0	0	278	1190	595	0	0	0	2063
1979	06/01	07/20	50	20.0	06/01	0	0	0	0	0	0	0	1190	793	0	0	0	1984
1980	06/01	07/21	51	20.0	06/01	0	0	0	0	0	0	0	1190	500	0	0	0	1690
1981	05/28	07/14	48	8.00	05/28	0	0	0	0	0	0	63.5	476	111	0	0	0	651
1982	06/01	07/18	48	15.0	06/11	0	0	0	0	0	0	0	754	536	0	0	0	1289
1983	06/08	07/18	41	20.0	06/08	0	0	0	0	0	0	0	912	536	0	0	0	1448
1984	06/05	07/16	42	20.0	06/05	0	0	0	0	0	0	0	1031	545	0	0	0	1577
1985	06/01	07/10	40	20.0	06/08	0	0	0	0	0	0	0	1023	298	0	0	0	1321
1986	06/06	07/12	37	20.0	06/06	0	0	0	0	0	0	0	992	476	0	0	0	1468
1987	05/25	07/12	46	8.00	05/25	0	0	0	0	0	0	111	428	151	0	0	0	690
1988	05/26	07/10	46	12.0	06/06	0	0	0	0	0	0	71.4	655	198	0	0	0	924
1989	05/11	07/13	64	12.0	06/08	0	0	0	0	0	0	182	639	218	0	0	0	1039
1990	05/15	07/14	61	12.0	06/01	0	0	0	0	0	0	202	714	278	0	0	0	1194
1991	05/16	07/14	60	15.0	06/08	0	0	0	0	0	0	274	821	278	0	0	0	1373
1992	04/01	07/02	93	7.00	06/23	0	0	0	0	0	357	369	373	25.8	0	0	0	1125
1993	05/22	07/15	55	8.00	05/22	0	0	0	0	0	0	159	476	238	0	0	0	873
1994	05/22	07/12	52	15.0	05/22	0	0	0	0	0	0	298	839	161	0	0	0	1297
1995	06/08	07/19	42	15.0	06/08	0	0	0	0	0	0	0	684	565	0	0	0	1250
1996	06/06	07/19	44	15.0	06/06	0	0	0	0	0	0	0	744	565	0	0	0	1309
1997	05/22	06/25	35	5.00	05/22	0	0	0	0	0	0	99.2	248	0	0	0	0	347
1998	05/10	07/05	57	12.0	06/09	0	0	0	0	0	0	286	651	79.3	0	0	0	1016
1999	05/19	06/30	43	15.0	06/14	0	0	0	0	0	0	175	764	0	0	0	0	938
2000	04/17	06/30	75	15.0	06/01	0	0	0	0	0	73.4	452	708	0	0	0	0	1234
2001	04/17	06/30	75	8.00	05/11	0	0	0	0	0	79.3	452	317	0	0	0	0	849
2002	05/01	06/14	36	15.0	06/07	0	0	0	0	0	0	432	278	0	0	0	0	710
2003	05/11	08/14	96	22.0	06/24	0	0	0	0	0	0	159	870	799	95.2	0	0	1923
2004	05/07	07/22	77	15.0	06/12	0	0	0	0	0	0	223	724	290	0	0	0	1237
2005	05/07	07/22	77	15.0	05/18	0	0	0	0	0	0	591	603	218	0	0	0	1412
AVE:	05/22	07/13	51	15.2	06/04	0	0	0	0	0	14.2	170	657	372	10.6	0	0	1225
36 2	/ears	with d	ivers	sion re	ecords										Avera	ge Flow	= 12	.11 CFS


Notes: The average considers all years with diversion records, even if no water is diverted. The above summary lists total monthly diversions.


Average values include infrequent data if infrequent data are the only data for the year.


^{* =} Infrequent data. All other values are derived from daily records.

DIVERSION COMMENTS

KW (ACRES IRRIG = 401.000)

