

United States Department of the Interior

BUREAU OF LAND MANAGEMENT

Colorado State Office 2850 Youngfield Street Lakewood, Colorado 80215-7093 www.blm.gov/co

In Reply Refer To: 7250 (CO-932)

DEC 1 1 2009

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its instream flow recommendation for two stream reaches on Cebolla Creek. located in Water Division 4.

Location and Land Status. Cebolla Creek is tributary to Blue Mesa Reservoir approximately 15 miles southwest of Gunnison. The creek is located within the upper Gunnison River watershed. This recommendation covers two stream reaches. The upper reach begins at the confluence with Brush Creek and extends downstream to the confluence with Spring Creek. The lower reach begins at the confluence with Spring Creek and extends downstream to the historic Cebolla Creek stream gage at Powderhorn (USGS 09121800).

In the upper reach, approximately 60 percent of the 10.0-mile reach is located on federal lands, while the remaining 40 percent is located on private lands. Approximately 85 percent of the federal lands are managed by the U.S. Forest Service, and 15 percent are managed by the BLM.

In the lower reach, approximately 30 percent of the 10.0-mile reach is located on federal lands managed by the BLM, and 10 percent of the reach is located within a state wildlife area managed by Colorado Division of Wildlife. The remaining 60 percent of the reach is located on private lands.

Biological Summary. Upper Segment - This segment of Cebolla Creek is a moderate gradient stream, with moderate substrate size, punctuated by large boulders. The creek is sometimes confined by a narrow canyon, but in other locations the creek supports extensive wetland communities on a broad valley floor. The riparian community is in good condition and is composed primarily of willow-alder and spruce-fir communities. With a combination of large woody debris and occasionally large boulders in the creek channel, the creek provides good pool habitat, velocity cover and overwintering habitat. Sufficient riffle habitat for spawning does not appear to be a limiting factor for the fish population. Fishery surveys indicate that the creek

supports a self-sustaining population of brown trout. The survey revealed a variety of age classes and individual specimens up to 16 inches in length. The BLM has implemented trout habitat improvement projects within this reach.

Lower Segment – The segment of Cebolla Creek is a moderate to high gradient, with much larger substrate size. Boulders in the stream channel, ranging from one to three feet in diameter, and are common. Throughout much of the reach, the creek is confined to a narrow canyon. The riparian community is in good condition, but is occasionally impacted by the close proximity of the county road in the canyon. The riparian community is similar to the upper reach, but the willow component of the community is less prominent. The combination of large woody debris and frequent large boulders in the creek channel provide good pool habitat, velocity cover, and overwintering habitat. In this reach, riffle habitat appears to be more limited, but it does not appear to be affecting the success of the fish population. Fishery surveys indicate that the creek supports a self-sustaining population of brown trout. The survey revealed a variety of age classes and individual specimens up to 14 inches in length. The Colorado Division of Wildlife has implemented trout habitat improvement projects within this reach.

R2Cross Analysis. Upper Segment - BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	09/26/2006	42.23	16.9-105.6	36.02	Out of range
BLM	09/26/2006	42.56	17.0-106.4	17.29	Out of range
BLM	10/08/2008	32.10	12.8-80.2	21.65	Out of range
BLM	10/08/2008	30.78	12.3-77.0	25.46	14.28
BLM	10/08/2008	27.56	11.0-68.9	14.20	13.52

The BLM's analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

23.0 cubic feet per second is recommended during the high temperature period from May 1 through September 30. This recommendation was derived by averaging the results of the data sets and is driven by the depth criteria. Given the wide channel in riffle habitats, 23.0 cubic feet per second is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population.

12.5 cubic feet per second is recommended from October 1 through November 15, which is the brown trout spawning period. It is important to protect a constant flow rate throughout the brown trout spawning period so that once spawning occurs, eggs are not dessicated before the winter icing period. This flow rate recommendation is driven by water availability, and it comes very close to meeting two of the three instream flow criteria.

7.5 cubic feet per second is recommended for the period from November 16 to April 1. This recommendation is driven by water availability. This flow rate should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

16.5 cubic feet per second is recommended for the period from April 1 through April 30. This is the period when fish are starting to become active again after surviving the winter icing period. During this period, it is important to provide additional physical habitat for the fish population, so that it may begin active feeding and foraging. This flow rate recommendation is driven by water availability, and it meets two of the three instream flow criteria.

Lower Segment – the BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	10/08/2008	39.80	15.9-99.5	31.73	Out of range
BL,M	10/08/2008	41.85	16.7-104.6	28.72	Out of range
BLM	10/08/2008	35.10	14.0-87.8	17.10	14.13

The BLM's data analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

26.0 cubic feet per second is recommended during the high temperature period from April 1 through September 30. This recommendation was derived by averaging the results of the data sets, and is driven by the depth criteria. Given the wide creek channel in riffle habitats, 26.0 cubic feet per second is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population.

22.0 cubic feet per second is recommended from October 1 through November 15, which is the brown trout spawning period. It is important to protect a constant flow rate throughout the brown trout spawning period so that once spawning occurs, eggs are not dessicated before the winter icing period. This flow rate recommendation is driven by water availability, and it meets two of the three instream flow criteria.

13.5 cubic feet second is recommended for the period from November 16 to March 31. This recommendation is driven by water availability, but it comes very close to meeting two of the three instream flow criteria. This flow rate should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Water Availability. In 1980, the Colorado Water Conservation Board (CWCB) appropriated two instream flow water rights on Cebolla Creek, above and below the segments recommended in this letter:

- Confluence of East Fork and West Fork Cebolla Creek to confluence with Brush Creek –
 4.0 cubic feet per second, year round.
- Confluence with Powderhorn Creek to Blue Mesa Reservoir 26 cubic feet per second from May 1 to Septermber 30 and 14 cubic feet per second from October 1 to April 30.

The BLM has identified the following water rights within the upper reach:

Upper Cebolla Ditch – 22 cubic feet per second Maybell Ditch No. 1 – 5.7 cubic feet per second Hatcher Ditch – 6.0 cubic feet per second Stavely Ditch – 2.35 cubic feet per second Wrights Cathedral Ditch – 1.0 cubic feet per second

There are also numerous water rights located upstream of the proposed reach on tributaries to Cebolla Creek, including Mineral Creek and Pasture Creek.

The BLM has identified the following water rights within the lower reach:

Cebolla Creek Ditch – 1.57 cubic feet per second
Warrant Ditch – 9.0 cubic feet per second
Youmans Ditches No. 1 -4 – 34.25 cubic feet per second
WS Thompson Ditch – 3.5 cubic feet per second
Ferris Ditch – 1.8 cubic feet per second
Hopfer Ditch – 2.5 cubic feet per second
East Ditch – 4.0 cubic feet per second
West Ditch – 6.0 cubic feet per second
Johnson West Side Ditch – 2.5 cubic feet per second
East Dempsey Ditch – 2.5 cubic feet per second

There are two important facts concerning the water rights in these two reaches. First, all of the water rights appear to irrigate lands close to Cebolla Creek, so the creek accumulates return flows from those irrigation practices. Second, all the identified water rights within the two reaches are junior to a total of 36.67 cubic feet per second water right located downstream near the community of Powderhorn. It is highly likely that the calling rights near Powderhorn call for a flow rate that is equal to or greater to the proposed instream flow appropriation during times of low stream flows.

The BLM does not recommend using historic stream gages within this watershed for water

availability analysis. The historic Cebolla Creek Gage (USGS 09121800), which was operated for four years from 1960 through 1963, lacks a sufficient period of record to provide reliable data for a full range of water supply conditions. The BLM also recommends against using the Cebolla Creek at Powderhorn, CO gage (USGS gage 09122000) because this gage is heavily influenced by agricultural irrigation operations near Powderhorn. Instead, the BLM recommends using the historic gage Cochetopa Creek gage below Rock Creek near Parlin, CO. This gage has a long period of record, and measures the next watershed immediately to the east of Cebolla Creek. An adjustment to the Cochetopa Creek gage can be performed to reflect the different size of the Cebolla Creek watershed.

Relationship to Management Plans. Under the current resource management plan, Cebolla Creek is managed to maintain and improve the aquatic wildlife population. The BLM has made significant investment in fish habitat improvements in the creek. The creek is also managed for dispersed recreation and concentrated recreation, since it is adjacent to an easily accessible county road. For example, the BLM maintains a public campground within the lower reach. The BLM management plan specifically calls for instream flow recommendations on creeks within this management unit that support fisheries.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section were included with the BLM's draft recommendation in February 2009. We thank both the Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely,

Linda Anania

Deputy State Director, Resources and Fire

cc: Brian St. George, Gunnison Field Office Manager Andrew Breibart, Gunnison Field Office

DRAFT INSTREAM FLOW RECOMMENDATION

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its instream flow recommendation for two stream reaches on Cebolla Creek, located in Water Division 4.

Location and Land Status. Cebolla Creek is tributary to Blue Mesa Reservoir approximately 15 miles southwest of Gunnison. The creek is located within the upper Gunnison River watershed. This recommendation covers two stream reaches. The upper reach begins at the confluence with Brush Creek and extends downstream to the confluence with Spring Creek. The lower reach begins at the confluence with Spring Creek and extends downstream to the historic Cebolla Creek stream gage at Powderhorn (USGS 09121800).

In the upper reach, approximately 60 percent of the 10.0-mile reach is located on federal lands, while the remaining 40 percent is located on private lands. Approximately 85% of the federal lands are managed by the U.S. Forest Service, and 15% are managed by the BLM.

In the lower reach, approximately 30% of the 10.0-mile reach is located on federal lands managed by BLM, and 10% of the reach is located within a state wildlife area managed by Colorado Division of Wildlife. The remaining 60% of the reach is located on private lands.

Biological Summary.

Upper Segment - This segment of Cebolla Creek is a moderate gradient stream, with moderate substrate size, punctuated by large boulders. The creek is sometimes confined by a narrow canyon, but in other locations the creek supports extensive wetland communities on a broad valley floor. The riparian community is in good condition and is composed primarily of willow-alder and spruce-fir communities. With a combination of large woody debris and occasionally large boulders in the creek channel, the creek provides good pool habitat for velocity cover and for overwintering. Sufficient riffle habitat for spawning does not appear to be a limiting factor for the fish population. Fishery surveys indicate that the creek supports a self-sustaining population of brown trout. The survey revealed a variety of age classes and individual specimens up to 16 inches in length. The BLM has implemented trout habitat improvement projects within this reach.

Lower Segment – The segment of Cebolla Creek is a moderate to high gradient, with much larger substrate size. Boulders ranging from one to three feet in diameter in the stream channel are common. Throughout much of the reach, the creek is confined to a narrow canyon. The riparian

community is in good condition, but is occasionally impacted by the close proximity of the county road in the canyon. The riparian community is similar to the upper reach, but the willow component of the community is less prominent. The combination of large woody debris and frequent large boulders in the creek channel provide good pool habitat for velocity cover and overwintering. In this reach, riffle habitat appears to be more limited, but it does not appear to be affecting the success of the fish population. Fishery surveys indicate that the creek supports a self-sustaining population of brown trout. The survey revealed a variety of age classes and individual specimens up to 14 inches in length. The Colorado Division of Wildlife has implemented trout habitat improvement projects within this reach.

R2Cross Analysis.

Upper Segment - BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	09/26/2006	42.23	16.9-105.6	36.02	Out of range
BLM	09/26/2006	42.56	17.0-106.4	17.29	Out of range
BLM	10/08/2008	32.10	12.8-80.2	21.65	Out of range
BLM	10/08/2008	30.78	12.3-77.0	25.46	14.28
BLM	10/08/2008	27.56	11.0-68.9	14.20	13.52

BLM's analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

23.0 cubic feet per second is recommended during the high temperature period from May 1 through November 15. This recommendation was derived by averaging the results of the data sets. The recommendation is driven by the depth criteria. Given the wide creek channel in riffle habitats, 23.0 cfs is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population. If possible, it is important to protect a constant flow rate for the brown trout spawning period, which can extend through November 15.

14.0 cubic feet second is recommended for the period from November 16 to April 30. This recommendation is driven by the average velocity criteria. This flow should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Lower Segment - BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	10/08/2008	39.80	15.9-99.5	31.73	Out of range
BLM	10/08/2008	41.85	16.7-104.6	28.72	Out of range
BLM	10/08/2008	35.10	14.0-87.8	17.10	14.13

BLM's data analysis of this data, coordinated with the Division of Wildlife, indicates that the

following flows are needed to protect the fishery and natural environment to a reasonable degree.

26.0 cubic feet per second is recommended during the high temperature period from May 1 through November 15. This recommendation was derived by averaging the results of the data sets. The recommendation is driven by the depth criteria. Given the wide creek channel in riffle habitats, 26.0 cfs is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population. If possible, it is important to protect a constant flow rate for the brown trout spawning period, which can extend through November 15.

14.0 cubic feet second is recommended for the period from November 16 to April 30. This recommendation is driven by the wetted perimeter criteria, and should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Water Availability. In 1980, the CWCB appropriated two instream flow water rights on Cebolla Creek, above and below the segments recommended in this letter:

- Confluence of East Fork and West Fork Cebolla Creek to confluence with Brush Creek –
 4.0 cfs, year round
- Confluence with Powderhorn Creek to Blue Mesa Reservoir 26 cfs from May 1 to September 30 and 14 cfs from October 1 to April 30

BLM has identified the following water rights within the upper reach:

Upper Cebolla Ditch – 22 cfs Maybell Ditch No. 1 – 5.7 cfs Hatcher Ditch – 6.0 cfs Stavely Ditch – 2.35 cfs Wrights Cathedral Ditch – 1.0 cfs

There are also numerous water rights located upstream of the proposed reach on tributaries to Cebolla Creek, including Mineral Creek and Pasture Creek.

BLM has identified the following water rights within the lower reach:

Cebolla Creek Ditch – 1.57 cfs
Warrant Ditch – 9.0
Youmans Ditches No. 1 -4 – 34.25 cfs
WS Thompson Ditch – 3.5 cfs
Ferris Ditch – 1.8 cfs
Hopfer Ditch – 2.5 cfs
East Ditch – 4.0 cfs
West Ditch – 6.0 cfs

Johnson West Side Ditch – 2.5 cfs East Dempsey Ditch – 2.5 cfs

There are two important facts concerning the water rights in these two reaches. First, all of the water rights appear to irrigate lands close to Cebolla Creek, so the creek accumulates return flows from those irrigation practices. Second, all the identified water rights within the two reaches are junior to a total of 36.67 cfs water right located downstream near the community of Powderhorn. It is highly likely that the calling rights near Powderhorn call for a flow rate that is equal to or greater to the proposed instream flow appropriation during times of low stream flows.

BLM recommends using the historic Cebolla Creek Gage (USGS 09121800), which was operated for four years from 1960 through 1963, to calculate water availability. A basin apportionment analytical approach would be required to apply this data to the upper reach. It is important to note that this gage record appears to incorporate hydrologic impacts from operations of all the significant ditches within the recommended reach, because all of those ditches were constructed well before 1960. Even though this gage was operated for only four years, it may the best available data on water availability. BLM recommends against using the Cebolla Creek at Powderhorn, CO gage (USGS gage 09122000) because this gage is heavily influenced by agricultural irrigation operations near Powderhorn.

Relationship to Management Plans. Under the current resource management plan, Cebolla Creek is managed to maintain and improve the aquatic wildlife population. BLM has made significant investment in fish habitat improvements in the creek. The creek is also managed for dispersed recreation and concentrated recreation, since it is adjacent to an easily accessible county road. For example, BLM maintains a public campground within the lower reach. The BLM management plan specifically calls for instream flow recommendations on creeks within this management unit that support fisheries.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section were included with BLM's draft recommendation in February 2009. We thank both the Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely,

Linda Anania Deputy State Director Resources and Fire

cc: Art Hayes, Gunnison Field Office Field Office Manager, Gunnison Field Office

Gunnison Field Office Stream Surveys October 2008

Cebolla Creek - Water Code #38895

Cebolla creek, located west of Lake City, CO on lands managed by the BLM's Gunnison Field Office, was sampled on October 7, 2008. Sampling was conducted to determine fishery status and species composition. Presence/absence sampling was done in support of the Colorado BLM in-stream flow program. A one-pass sampling effort was completed. Sampling was conducted via backpack electro-shocker and approximately 40 feet of stream was sampled at one lower site and approximately 150 feet at one upper site. Personnel present were Jay Thompson, Roy Smith, Art Hayes, Tom Fresques, and Gregor Dekleva. A population estimate was not conducted due to the width of the stream and lack of equipment. Cebolla creek is tributary to Blue Mesa Reservoir and then the Gunnison River.

Lower Site on Cebolla creek

Brown trout (Salmo trutta)

Upper site on Cebolla creek

Fish collected

STREAM SURVEY FISH SAMPLING FORM

WATER <u>Cebolla Creek</u>	H2O CODE <u>38895</u>	DATE <u>10/7/2008</u>
GEAR BPE EFFOR	T ~40 feet STATION #1	PASS#_1
CREW <u>Fresques</u> , <u>Dekleva</u> , <u>Tho</u>	ompson, DRAINAGE <u>Gunnison</u>	LOCATION GPS

Pass	species	length	weight	species	length	weight	Pass
1	LOC	83		LOC	136		1
1	LOC	80		LOC	144		1
1	LOC	87		LOC	93		1
1	LOC	367		LOC	122		1
1	LOC	210		LOC	126		1
1	LOC	153		LOC	27		1
1	LOC	77		LOC	77		1
1	LOC	69		LOC	73		1
1	LOC	522		LOC	88		1
1	LOC	83					

GPS Location: See Map

Notes: Stream Width <u>25</u> ft. Sample Reach <u>40</u> ft. Conductivity: Electroshocker settings

STREAM SURVEY FISH SAMPLING FORM

WATER <u>Cebolla Cree</u>	k H20 CODE <u>38895</u>		DATE <u>10/7/20</u>	<u>800</u>
GEAR BPE	EFFORT <u>~150 feet</u> STATION #	<u> 2</u>	PASS #	1
CREW <u>Dekleva</u> , Hayes	DRAINAGE <u>Gunnison</u>		LOCATION GPS	

Pass	species	length	weight	species	length	weight	Pass
1	LOC	400		LOC	61		1
1	LOC	285		LOC	85		1
1	LOC	263		LOC	98		1
1	LOC	134		LOC	77		1
1	LOC	69		LOC	87		1
1	LOC	73					

GPS Location: See Map

Notes: Stream Width <u>25</u> ft. Sample Reach <u>150</u> ft. Conductivity: Electroshocker settings

Discussion:

The lower sample site provided an excellent variety of riffles, runs, and pools. Macro-invertebrates were abundant including a variety of Mayfly nymphs, Caddis nymphs, and a large amount of snails. The riparian area was also in excellent condition. Plant species present were Blue spruce, Alder, Carrex species, Horsetail, Current, and Reed grass. The only fish species collected was Brown trout (Salmo trutta), and a variety of age and size classes were present.

The upper site sampled on Cebolla creek also provided an excellent variety of riffles, runs, and pools. Several rock structures constructed by Art Hayes contained the majority of the larger fish collected. Macro-invertebrates were abundant including a variety of Mayfly nymphs, Caddis nymphs, and a large amount of snails. The riparian area was also in excellent condition. Plant species present were Willows, Shrubby cinquefoil, Alder, including lots of young Alders, Spruce, Bull rush, and Reed grass. Brown trout also were the only species collected with a variety of age classes represented.

Recommendations:

- Pursue instream-flow recommendations for each reach
- Continue periodic monitoring of stream habitats to ensure stream and riparian conditions remain healthy

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

CONSERVATION BOAR	D			LUC	AIIC) N 11	V F O	n IVI A	11101	ν								
STREAM NAME:	bolla.	'r७:स	ak:			- 	~ . s								C	CROSS-	SECTIO	N NO.: .
CROSS-SECTION LOCATION:	bolla (0.	5	wi	¹ C	UC	osh	4.5	1.5	m	olva.		r:-	· · · · ·	2/6	4 * ; *	d	
	* * * * * * * * * *					T								- (!			
;O+8-0 g	ERVERS:	105	, .	1			. 7					_			-			
DESCRIPTION	SW SWATERSHIP	ÉCTION	l: 	7	10	OWNSH			> (N	_	RANGE	:	$\overline{}$	∠ E	(W)	PM:	NA	1
COUNTY: HINSO			,) W	1751	:0	f ,	w	ATER D	IVISION	:	4			DOW V	VATER	CODE:	38°	395
MAP(S): USGS: USFS:															_			
SAG TAPE SECTION SAME AS METER TYPE:																		
SAG TAPE SECTION SAME AS YES / NO METER TYPE: M - M																		
METER NUMBER: DATE RATED: CALIB/SPIN: sec TAPE WEIGHT: lbs/foot TAPE TENSION: lbs																		
CHANNEL BED MATERIAL SIZE RANGE: PHOTOGRAPHS TAKEN YES/NO NUMBER OF PHOTOGRAPHS:																		
CHANNEL PROFILE DATA																		
STATION	DISTANCE FROM TAPE	t)		ROD	READ	ING (ft						()	3)					LEGEND:
Tape @ Stake LB	0.0													- st	ake 🕱			
Tape @ Stake RB	0.0			<u> </u>			- 11	S K E				w					Sta	ation (1)
1 WS @ Tape LB/RB	0.0	: O .		<i>3</i> , 5,				E T C	V. 7			TAPE					Pi	noto 🗘
2 WS Upstream	13.0		+				_	_			ワーグ	,		Armed .		,	- Dira	ction of Flow
3 WS Downstream	6,0		Щ.		5.7	d	\dashv		((3		~		Jone.	CHOIL OLL LOW
SLOPE O,	46/61.0	-		0 09														
	<u>'</u>		AC	UAT	ic s	AMF	LIN	G S	JMM	ARY			_				- Carlon	
STREAM ELECTROFISHED:	FESANO DISTANC	E ELECT	ROFIS	HED: _	ft		F	ISH CA	UGHT:	YES/NC)		WATE	RCHE	MISTRY	SAMPL	ED: YE	CON
SPECIES (FILL IN)	LENGTH	T		$\overline{}$							· ·			Τ	1	Ι	1	
SPECIES (FILL IN)	<u> </u>	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
	-																<u> </u>	_
AQUATIC INSECTS IN STREAM	M SECTION BY COMMON	OR SCIE	ENTIFIC	C ORDE	R NAM	IF.												
wa uffy	caddist	126	<u></u>	dal	in f	٠.		10 0	116									
mayfly, cardistly, stonetly, snalls comments																		
TOS = 10	0	_						_						_			_	
Dh = 9.9	<u> </u>																_	
Temp: 36°C																		
130																		

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Ceb	ollo	2 Cree	ok-lo	SIMON		CROS	S-SECTION	NO.: 2	DATE:	SHEE	T OF
BEGINNING OF M	EASUREMENT	EDGE OF V (0.0 AT STA	VATER LOOKING DO KE)	OWNSTREAM:	LEFT / RIG	HT G	age Re	ading:	ft	TIME:	; 500	
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolu	tions	Time (sec)	Veloci At Point	ty (ft/sec) Mean in Vertical	Area (ft ²)	Discharge (cfs)
LS	20		3.00									
	34		3.55									
-	37											
W	4.0	_	5.35 5.70				-					
	5	_		,35					149			
	7		6.05	.70					1.59			
	9		6.35	1.00					1.3	4		
	11		5,85	,5					220			
	13		5,85	,9					1.9			
	15		6.15	, 8					1,91			
	17		6,35	1.0					1.8			
	19		6.25	,9					1.8	2		
	71		6.30	, 95					1.62	2		
	23		5.85	.70		_			1.77			
	75		5.85	, \$0 ,70					1.88	5		
	27		6.05	,70					1.59	7		
	39		5.95	,60 ,50		_			1.95	<u> </u>		-
	31		5,85	130						/		
	33		5.70	135								
	35		5.55	120					2.0			
	37		5.55	.20					0.9	I .		
	39		5.55	120					مهارا	<u> </u>	-	
	41		5.55	172					1.31	<u>earn</u>		
	43		5.95	,45					1.0		_	_
	45		6.00	165					0,1			
	77		0,00	183		_			~ / i			
W	48,8		5,35 4,36 4,52 3,82									
مع	48.5		4.36									
	1197		4.52									
125	5L7		3-82								***	
TOTALS:									<u> </u>			
End of Measu	rement Ti	me:	Gage Reading	g:1	CALCULA	TIONS PE	RFORM	ED BY:		CALCULATION	S CHECKED B	Υ.

FIELD DATA **FOR INSTREAM FLOW DETERMINATIONS**

CONSERVATION BOARD					LOC	ATIO	יו אי	IFOF	(MA	HON	١								
STREAM NAME: Ceb	olla	Cr	ec	*-	10	w	01	-								С	ROSS-S	SECTION	1 NO:
CROSS-SECTION LOCATION:	1/4	mile		050			•	YOU	۳.										
			•			34	4	_		091	bu	nd							
DATE: 10 - 8-08 OBSER			nid		A	1-1		<i>es</i>	'	U									
LEGAL ¼ SECTI DESCRIPTION	ION:	2M	ECTION	l:	-	7	теимс			50	/S	RANGE	:		ZE	\mathbf{w}_{1}	P M :	<u>N. 1</u>	Ч
COUNTY: HINSO	le	WATERSHE	D: (5	UH	ni S i	on		WA.	rer Di	VISION:	4				DOW W	ATER C	CODE:	388	375
USGS:														32	20	6	1		
USFS:														42	2	18	97	<u>/</u>	
					SUF	PPLE	ME	NTAI	DA	TΑ									
SAG TAPE SECTION SAME AS YES/NO METER TYPE: MAN DISCHARGE SECTION: METER NUMBER: DATE RATER: MAN DESCRIPTION: MATERIAL MAN DATE RATER: MAN DESCRIPTION: MATERIAL MATERIAL MAN DESCRIPTION: MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL M																			
METER NUMBER: DATE RATED: CALIB/SPIN:sec TAPE WEIGHT:ibs/toot TAPE TENSION: ibs																			
CHANNEL BED MATERIAL SIZE RANGE: 11 boulders PHOTOGRAPHS TAKEN: (YES)/NO NUMBER OF PHOTOGRAPHS: 3																			
CHANNEL PROFILE DATA																			
STATION DISTANCE (ft) ROD READING (ft) LEGEND:														EGEND:					
Tape @ Stake LB		0.0		5	ันท	reyo	24	1									ake 🕱		
X Tape @ Stake RB		0.0		5	un	سخا	100							Station (1)					
1 WS @ Tape LB/RB		0.0		5	, BE	/	5,	75 E	1	,	/m_		TAPE		4	3>			noto (1)
2 WS Upstream		18.0	,		~	5 5	4			<	\$\frac{1}{2}	7		义		\checkmark		_	
3 WS Downstream		6,0				0,0	0		-	1				S				Direc	ction of Flow
SLOPE 0,4	6/3	4.0	٤	.01							. !		•	9				(The sale of the sa
				AC	TAU	IC S	AMF	PLIN	G SI	MM	ARY								
STREAM ELECTROFISHED: YE	s)NO	DISTANCE	ELEC.	TROFIS	HED:_	ft		F	SHCA	UGHT:	YES/NC)		WATER	RCHEM	HSTRY	SAMPL	ED YES	S)NO
		LENGTH	- FREQ	UENC	DISTR	HBUTIC	ON BY	ONE-IN	CH S 12	E GRO	UPS (1.	0-1.9, 2	.0-2.9	ETC.)					
SPECIES (FILL IN)			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
see oftach	rd	_																	
AQUATIC INSECTS IN STREAM		<u> </u>					C 3												
maybly, c	ade	dist	41	5	to	MO:	Lly	, ;	S A	011	The same								
COMMENTS																			
TDS = 100																			
Ph = 8.9	<u> </u>																		
Temp = 36	OF																		

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Cob	olla	CK,	DISCHA				S-SECTION		PAI	5-8-1	OS SHE	ET OF
BEGINNING OF M		EDGE OF W	ATER LOOKING D	OWNSTREAM:	LEFT / RIC	энт	Gage Re	ading:	11	TIME:		00	aw
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revo	lutions	Time (sec)	Velo At Point			Area (ft²)	Discharge (cfs)
Waterline (W) Rock (R)	Point (tt) 20 3.35 11.5 17 19 21 23 27 29 31 35 37 36 37 38 39 40 41 42 43		Tape/Inst	.85 .70 .60 .50 .50 .70 .30 .70 .70 .45 .70 .85 .70 .85 .70 .90	vation				Point 1.3 1.9 2.1 2.1 1.7 1.4. 0.9 2.1 1.9	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Area (II.2)	
Control State of Measure End of Measure	46 48 50 52 54.1 56.0 56.5		5.40 6.00 6.70 5.90 5.80 5.22 3.74	,60 ,20 ,40	CALCULA				0.1 0.4 0.4	8 10 14		CHECKED 8	

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

- CONTROL TO A CONTROL																		
STREAM NAME: Cebolia	Creek	* [0	we.	N. A										C	ROSS-	SECTIO	N NO.: 3
CROSS-SECTION LOCATION:	Mason	F	711	will	v -	5k	a de	ہا ر	vild	1)1	~	Ar	90					
					/													
DATE: 0-8-09 OBSERVERS:	A. Hay	es,	Y	2.		161				. ,								
LEGAL % SECTION: DESCRIPTION	NE SEC	TION:		3 b	TO	NONS	HP:	4	5 (D)	/S	RANGE	i:		7 E	Ŵ	PM:	NF	1
COUNTY: HINSdale	WATERSHED:	G	אג	nis	on	<i>-</i>	W	ATER DI	VISION:	1	l.			DOW V	VATER (CODE:	38	895
MAP(S):													32	215	52		V E C C C C C C C C C C	<u>. ,</u>
USFS:				•								L	12					
		_		SUF	PPLE	EME	NTA	L DA	ATA					_				
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	IO METE	R TYPE	:	_	1-	M												
METER NUMBER:	DATE RATED:				CALIE	B/SPIN:			sec	S U	/EIGHT	2ye	d	os/foot	TAP	U V	VEY	ed
CHANNEL BED MATERIAL SIZE RANGE	- 600H	bo	(de		., ., ., .,	РНОТ		HS TAKE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ī	NUMBE					
0						ELP	ROF	ILE	DAT	A								
D	ISTANCE			505			. 1	T -					_					LEGEND:
STATION FF	O.O	+				ING (III	-					(2	\$)				<u> </u>	
Tape @ Stake RB	0.0		_			460	j	s –										ake 🕱
1 WS @ Tape LB/RB	0.0	tel-		7 4 H	, ,	7,4		K E I	- 4Z	7		TAPE						ation ()
2 WS Upstream	22.0	171		7.	70			Н	14.	2	> 7	-	3_	5	')		noto (1)
WS Downstream	16.0		_	7,	_		-	-			•		≤ 3				- Dire	ction of Flow
SLOPE 0, 79/		. , (00				ヿ					()	S)		0)		
				-	IC S	AMF	PLIN	G SI	JMM	ARY						<u>.</u>		
STREAM ELECTROFISHED: YES NO	DISTANCE E	LECTRO	OFISH	RED:	ft		F	ISH CA	UGHT:	YES/NO)		WATE	RCHEN	MISTRY	SAMPL	.ED:/YES	onve
- Constitution of the Cons	LENGTH - F	REQUE	NCY	DISTR	IBUTIO	ON BY	ONE-IN	CH SIZ	E GRO	UPS (1.	0-1.9,2	2.0-2.9	ETC.)					/
SPECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
			_			-									ļ		 	
		-	+												_		\vdash	_
AQUATIC INSECTS IN STREAM SECTION I	BY COMMON OF	SCIEN	TIFIC	ORDE	R NAM	IE:				,							<u> </u>	
mayfly, and	disti	<u>U</u>																
0 /	•	0			CC	ММ	IENT	S										
Temp= 420					:			·		•				-				
Temp= 420 TDS=100 Ph= 8.7																		
Ph= 0.7					_													

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Ceb	olla	Creek	- 1.	ower		CROSS	-SECTION	1 NO.: 3	DATE:	SHEE	r OF
BEGINNING OF M	IEASUREMEN1	EDGE OF W	ATER LOOKING D KE)	OWNSTREA	AM: LEFT / RIGI	HT G	age Rea	ding:	ft	TIME: 2	35 pl	~
Rock (B) Stake (S) Grassline (G) Waterline (M)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolut	ions	Time (sec)	Velocit At Point	y (ft/sec) Mean in Vertical	Area (ft ²)	Discharge (cfs)
Waterline (W) Rock (R) LSIG W 35)	Initial Point	7,7	Depth From Tape/Inst		Observation (ft)					Vertical	Area (ft²)	_
W G YLS TOTALS: End of Measu	47.7 484 48,6	me:	7.45 (o < 3 5.98 Gage Read.		CALCULAT	IONS PER	RFORME	D BY:		CALCULATIONS	CHECKED BY	

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

Cebolla Creek - lower

in Mason Family State Wildlife Area

LOCATION INFORMATION

STREAM NAME:

XS LOCATION:

XS NUMBER:	3	
DATE: OBSERVERS:	8-Oct-08 A. Hayes, R.	Smith
1/4 SEC: SECTION: TWP: RANGE: PM:	NE 36 45N 2W N.M.	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Gunnison 4 38895	
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA	=	*** NOTE ***
		Leave TAPE WT and TENSION
TAPE WT: TENSION:	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod
	99999	at defaults for data collected
TENSION:	99999	at defaults for data collected
TENSION: CHANNEL PROFILE DATA SLOPE:	0.008	at defaults for data collected
TENSION: CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	99999 0.008	at defaults for data collected with a survey level and rod
TENSION: CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	99999 0.008	at defaults for data collected with a survey level and rod

STREAM NAME:

Cebolla Creek - lower

XS LOCATION:

in Mason Family State Wildlife Area

XS NUMBER:

1

DATA POINTS=

23

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
-	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
1 LS & G	2.80	6.56			0.00		0.00	0.00	0.0%
W	11.10	7.45			0.00		0.00	0.00	0.0%
	12.00	7.65	0.20	0.96	0.92	0.20	0.29	0.28	0.8%
	14.00	8.15	0.70	0.82	2.06	0.70	1.40	1.15	3.3%
	16.00	8.40	0.95	0.94	2.02	0.95	1.90	1.79	5.1%
	18.00	8.55	1.10	1.78	2.01	1.10	2.20	3.92	11.2%
	20.00	8.35	0.90	2.14	2.01	0.90	1.80	3.85	11.0%
	22.00	8.50	1.05	2.25	2.01	1.05	2.10	4.73	13.5%
	24.00	8.25	0.80	2.19	2.02	0.80	1.60	3.50	10.0%
	26.00	8.25	0.80	1.84	2.00	0.80	1.60	2.94	8.4%
	28.00	8.05	0.60	2.13	2.01	0.60	1.20	2.56	7.3%
	30.00	8.15	0.70	1.96	2.00	0.70	1.40	2.74	7.8%
	32.00	8.10	0.65	2.29	2.00	0.65	1.30	2.98	8.5%
	34.00	7.95	0.50	0.92	2.01	0.50	0.75	0.69	2.0%
	35.00	7.90	0.45	1.43	1.00	0.45	0.45	0.64	1.8%
	36.00	7.95	0.50	0.87	1.00	0.50	0.50	0.44	1.2%
	37.00	7.95	0.50	1.53	1.00	0.50	0.50	0.77	2.2%
	38.00	7.85	0.40	2.23	1.00	0.40	0.60	1.34	3.8%
	40.00	7.75	0.30	1.78	2.00	0.30	0.45	0.80	2.3%
	41.00	7.55	0.10	0.00	1.02	0.10	0.11	0.00	0.0%
W	42.20	7.45			1.20		0.00	0.00	0.0%
G	48.40	6.53			0.00		0.00	0.00	0.0%
RS	48.60	5.98			0.00		0.00	0.00	0.0%
TC	TALS				31.29	1.1	20.15	35.10	100.0%
						(Max.)			

Manning's n = Hydraulic Radius=

0.0569 0.6440064 STREAM NAME: XS LOCATION: Cebolla Creek - lower

in Mason Family State Wildlife Area

XS NUMBER:

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	20.15	20.15	0.0%
7.20	20.15	28.43	41.1%
7.22	20.15	27.73	37.6%
7.24	20.15	27.04	34.2%
7.26	20.15	26.35	30.8%
7.28	20.15	25.67	27.4%
7.30	20.15	25.00	24.0%
7.32	20.15	24.33	20.7%
7.34	20.15	23.67	17.5%
7.36	20.15	23.01	14.2%
7.38	20.15	22.37	11.0%
7.40	20.15	21.73	7.8%
7.41	20.15	21.41	6.2%
7.42	20.15	21.09	4.7%
7.43	20.15	20.78	3.1%
7.44	20.15	20.46	1.5%
7.45	20.15	20.15	0.0%
7.46	20.15	19.84	-1.5%
7.47	20.15	19.53	-3.1%
7.48	20.15	19.22	-4.6%
7.49	20.15	18.92	-6.1%
7.50	20.15	18.62	-7.6%
7.52	20.15	18.01	-10.6%
7.54	20.15	17.42	-13.6%
7.56	20.15	16.83	-16.5%
7.58	20.15	16.24	-19.4%
7.60	20.15	15.66	-22.3%
7.62	20.15	15.08	-25.1%
7.64	20.15	14.51	-28.0%
7.66	20.15	13.94	-30.8%
7.68	20.15	13.37	-33.6%
7.70	20.15	12.81	-36.4%

WATERLINE AT ZERO AREA ERROR =

7.450

STREAM NAME: Cebolla Creek - lower

XS LOCATION: in Mason Family State Wildlife Area

XS NUMBER:

Constant Manning's n

 $^*GL^*$ = lowest Grassline elevation corrected for sag $^*WL^*$ = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

•	DIST TO WATER	TOP WIDTH	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG. VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	6.56	45.40	1.19	1.99	54.19	45.70	100.0%	1.19	141.83	2.62
OL	6.60	44.75	1.17	1.95	52.39	45.05	98.6%	1.16	135.33	2.58
	6.65	43.95	1.14	1.90	50.17	44.24	96.8%	1.13	127.45	2.54
	6.70	43.15	1.11	1.85	47.99	43.43	95.0%	1.11	119.83	2.50
	6.75	42.35	1.08	1.80	45.86	42.62	93.3%	1.08	112.47	2.45
	6.80	41.54	1.05	1.75	43.76	41.81	91.5%	1.05	105.37	2.43
	6.85	40.74	1.02	1.70	41.70	41.00	89.7%	1.02	98.52	2.36
	6.90	39.94	0.99	1.65	39.68	40.19	88.0%	0.99	91.92	2.30
	6.95	39.94	0.96	1.60	37.71	39.38	86.2%	0.99	85.57	2.32
			0.93	1.55	35.77				79.46	
	7.00	38.33				38.57	84.4%	0.93		2.22
	7.05	37.53	0.90	1.50	33.88	37.77	82.6%	0.90	73.60	2.17
	7.10	36.72	0.87	1.45	32.02	36.96	80.9%	0.87	67.98	2.12
	7.15	35.92	0.84	1.40	30.20	36.15	79.1%	0.84	62.59	2.07
	7.20	35.12	0.81	1.35	28.43	35.34	77.3%	0.80	57.44	2.02
	7.25	34.31	0.78	1.30	26.69	34.53	75.6%	0.77	52.52	1.97
	7.30	33.51	0.75	1.25	25.00	33.72	73.8%	0.74	47.83	1.91
	7.35	32.71	0.71	1.20	23.34	32.91	72.0%	0.71	43.36	1.86
	7.40	31.90	0.68	1.15	21.73	32.10	70.2%	0.68	39.12	1.80
WL	7.45	31.10	0.65	1.10	20.15	31.29	68.5%	0.64	35.10	1.74
	7.50	30.27	0.61	1.05	18.62	30.46	66.6%	0.61	31.32	1.68
	7.55	29.45	0.58	1.00	17.12	29.62	64.8%	0.58	27.75	1.62
	7.60	28.97	0.54	0.95	15.66	29.14	63.8%	0.54	24.19	1.54
	7.65	28.50	0.50	0.90	14.23	28.65	62.7%	0.50	20.83	1.46
	7.70	28.05	0.46	0.85	12.81	28.19	61.7%	0.45	17.69	1.38
	7.75	27.60	0.41	0.80	11.42	27.73	60.7%	0.41	14.77	1.29
	7.80	26.40	0.38	0.75	10.07	26.52	58.0%	0.38	12.33	1.22
	7.85	25.20	0.35	0.70	8.78	25.32	55.4%	0.35	10.12	1.15
	7.90	24.50	0.31	0.65	7.54	24.61	53.8%	0.31	8.00	1.06
	7.95	20.80	0.31	0.60	6.38	20.90	45.7%	0.31	6.76	1.06
	8.00	19.93	0.27	0.55	5.36	20.02	43.8%	0.27	5.20	0.97
	8.05	19.07	0.23	0.50	4.39	19.15	41.9%	0.23	3.84	0.87
	8.10	16.70	0.21	0.45	3.49	16.77	36.7%	0.21	2.87	0.82
	8.15	13.00	0.21	0.40	2.75	13.06	28.6%	0.21	2.27	0.83
	8.20	12.10	0.18	0.35	2.12	12.15	26.6%	0.17	1.55	0.73
	8.25	9.20	0.17	0.30	1.54	9.25	20.2%	0.17	1.09	0.71
	8.30	8.40	0.17	0.25	1.10	8.44	18.5%	0.17	0.66	0.60
	8.35	7.60	0.09	0.20	0.70	7.63	16.7%	0.13	0.33	0.47
	8.40	5.63	0.09	0.20	0.70	5.66	12.4%	0.09	0.33	0.47
	8.45	3.40	0.04	0.15	0.37	3.41	7.5%	0.07	0.14	0.36
	8.45 8.50	3.40 1.17	0.04	0.10	0.14	1.17	7.5% 2.6%	0.04	0.04	0.28
	8.55	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!

STREAM NAME: Cebolla Creek - lower

XS LOCATION: in Mason Family State Wildlife Area

XS NUMBER:

SUMMARY SHEET

MEASURED FLOW (Qm)=	35.10 cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	35.10 cfs	===========	========
(Qm-Qc)/Qm * 100 =	0.0 %		
MEACHDED WATERLINE (M/L)	7.45.4	FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	7.45 ft	=======	======
CALCULATED WATERLINE (WLc)=	7.45 ft		
(WLm-WLc)/WLm * 100 =	0.0 %		
MAX MEASURED DEPTH (Dm)=	1.10 ft		
MAX CALCULATED DEPTH (Dc)=	1.10 ft		
(Dm-Dc)/Dm * 100	0.0 %		
MEAN VELOCITY=	1.74 ft/sec		
MANNING'S N=	0.057		
SLOPE=	0.007 0.008 ft/ft		
SLOF L=	0.008 1711		
.4 * Qm =	14.0 cfs		
2.5 * Qm=	87.8 cfs		
RECOMMENDATION BY:	AGENCY		DATE:

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

1/4 mile upstream from BLM campground

Cebolla Creek - lower

LOCATION INFORMATION

STREAM NAME:

XS LOCATION:

XS NUMBER:	1	
DATE: OBSERVERS:	8-Oct-08 R. Smith, A.	Hayes
1/4 SEC: SECTION: TWP: RANGE: PM:	SW 1 45N 2W N.M.	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Gunnison 4 38895	
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA	_	*** NOTE ***
	_	Leave TADE WT and TENCION
TAPE WT: TENSION:	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod
	99999	at defaults for data collected
TENSION:	99999	at defaults for data collected
TENSION: CHANNEL PROFILE DATA SLOPE:	99999 0.014	at defaults for data collected
TENSION: CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	99999 0.014 Y:	at defaults for data collected with a survey level and rod
TENSION: CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	99999 0.014 Y:	at defaults for data collected with a survey level and rod

STREAM NAME: XS LOCATION: Cebolla Creek - lower

1/4 mile upstream from BLM campground

XS NUMBER:

1

DATA POINTS=

31

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
RS	2.00	2.30			0.00		0.00	0.00	0.0%
1 G	8.30	5.20			0.00		0.00	0.00	0.0%
W	11.50	5.80			0.00		0.00	0.00	0.0%
	13.00	5.90	0.10	1.30	1.50	0.10	0.18	0.23	0.6%
	15.00	6.70	0.85	1.91	2.15	0.85	1.70	3.25	8.2%
	17.00	6.50	0.70	2.18	2.01	0.70	1.40	3.05	7.7%
	19.00	6.40	0.60	2.44	2.00	0.60	1.20	2.93	7.4%
	21.00	6.40	0.60	2.11	2.00	0.60	1.20	2.53	6.4%
	23.00	6.50	0.80	1.77	2.00	0.80	1.60	2.83	7.1%
	25.00	6.30	0.50	1.43	2.01	0.50	1.00	1.43	3.6%
	27.00	6.30	0.50	0.91	2.00	0.50	1.00	0.91	2.3%
	29.00	6.50	0.70	2.16	2.01	0.70	1.40	3.02	7.6%
	31.00	6.10	0.30	1.96	2.04	0.30	0.60	1.18	3.0%
	33.00	6.05	0.25	1.09	2.00	0.25	0.50	0.55	1.4%
	35.00	6.20	0.40	2.58	2.01	0.40	0.60	1.55	3.9%
	36.00	6.50	0.70	1.79	1.04	0.70	0.70	1.25	3.1%
	37.00	6.25	0.45	3.11	1.03	0.45	0.45	1.40	3.5%
	38.00	6.45	0.65	1.09	1.02	0.65	0.65	0.71	1.8%
	39.00	6.50	0.70	2.67	1.00	0.70	0.70	1.87	4.7%
	40.00	6.65	0.85	3.03	1.01	0.85	0.85	2.58	6.5%
	41.00	6.80	1.00	2.62	1.01	1.00	1.00	2.62	6.6%
	42.00	6.70	0.90	3.38	1.00	0.90	0.90	3.04	7.6%
	43.00	6.85	1.05	1.59	1.01	1.05	1.05	1.67	4.2%
	44.00	6.70	0.90	0.27	1.01	0.90	1.35	0.36	0.9%
	46.00	6.40	0.60	0.18	2.02	0.60	1.20	0.22	0.5%
	48.00	6.00	0.20	0.70	2.04	0.20	0.40	0.28	0.7%
	50.00	6.20	0.40	0.44	2.01	0.40	0.80	0.35	0.9%
	52.00	5.90	0.10	0.00	2.02	0.10	0.21	0.00	0.0%
W	54.10	5.80			2.10		0.00	0.00	0.0%
G	56.00	5.22			0.00		0.00	0.00	0.0%
LS	56.50	3.74			0.00		0.00	0.00	0.0%
TC	TALS				43.08	1.05	22.63	39.80	100.0%
						(Max.)			

Manning's n = Hydraulic Radius= 0.0651 0.52529594 STREAM NAME: Cebolla Creek - lower
XS LOCATION: 1/4 mile upstream from
XS NUMBER: 1

1/4 mile upstream from BLM campground

XS NUMBER:

WATER LINE COMPARISON TABLE

WATER			
· · · · · · - · ·	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	22.63	22.53	-0.4%
5.55	22.63	33.45	47.8%
5.57	22.63	32.56	43.9%
5.59	22.63	31.67	39.9%
5.61	22.63	30.78	36.0%
5.63	22.63	29.90	32.1%
5.65	22.63	29.02	28.2%
5.67	22.63	28.14	24.4%
5.69	22.63	27.27	20.5%
5.71	22.63	26.40	16.7%
5.73	22.63	25.53	12.8%
5.75	22.63	24.67	9.0%
5.76	22.63	24.24	7.1%
5.77	22.63	23.81	5.2%
5.78	22.63	23.38	3.3%
5.79	22.63	22.96	1.4%
5.80	22.63	22.53	-0.4%
5.81	22.63	22.11	-2.3%
5.82	22.63	21.69	-4.2%
5.83	22.63	21.27	-6.0%
5.84	22.63	20.86	-7.8%
5.85	22.63	20.45	-9.7%
5.87	22.63	19.64	-13.2%
5.89	22.63	18.84	-16.7%
5.91	22.63	18.06	-20.2%
5.93	22.63	17.28	-23.6%
5.95	22.63	16.51	-27.0%
5.97	22.63	15.74	-30.4%
5.99	22.63	14.98	-33.8%
6.01	22.63	14.22	-37.2%
6.03	22.63	13.46	-40.5%
6.05	22.63	12.72	-43.8%

WATERLINE AT ZERO AREA ERROR =

5.798

STREAM NAME: Cebolla Creek - lower

XS LOCATION: 1/4 mile upstream from BLM campground

XS NUMBER:

Constant Manning's n

 $^*GL^*$ = lowest Grassline elevation corrected for sag $^*WL^*$ = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
=	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	5.22	47.59	1.02	1.63	48.69	48.21	100.0%	1.01	132.39	2.72
	5.25	47.36	1.00	1.60	47.37	47.97	99.5%	0.99	126.92	2.68
	5.30	46.92	0.96	1.55	45.02	47.53	98.6%	0.95	117.29	2.61
	5.35	46.49	0.92	1.50	42.68	47.08	97.7%	0.91	108.00	2.53
	5.40	46.06	0.88	1.45	40.37	46.64	96.7%	0.87	99.04	2.45
	5.45	45.63	0.83	1.40	38.07	46.20	95.8%	0.82	90.42	2.37
	5.50	45.20	0.79	1.35	35.80	45.76	94.9%	0.78	82.13	2.29
	5.55	44.77	0.75	1.30	33.55	45.31	94.0%	0.74	74.19	2.21
	5.60	44.34	0.71	1.25	31.33	44.87	93.1%	0.70	66.60	2.13
	5.65	43.91	0.66	1.20	29.12	44.43	92.1%	0.66	59.36	2.04
	5.70	43.48	0.62	1.15	26.93	43.99	91.2%	0.61	52.47	1.95
	5.75	43.05	0.58	1.10	24.77	43.54	90.3%	0.57	45.95	1.85
WL	5.80	42.62	0.53	1.05	22.63	43.10	89.4%	0.53	39.79	1.76
	5.85	40.88	0.50	1.00	20.54	41.36	85.8%	0.50	34.80	1.69
	5.90	39.08	0.47	0.95	18.54	39.56	82.0%	0.47	30.22	1.63
	5.95	38.56	0.43	0.90	16.60	39.03	80.9%	0.43	25.37	1.53
	6.00	38.10	0.39	0.85	14.69	38.55	80.0%	0.38	20.85	1.42
	6.05	36.93	0.35	0.80	12.81	37.36	77.5%	0.34	16.95	1.32
	6.10	33.18	0.33	0.75	11.05	33.59	69.7%	0.33	14.23	1.29
	6.15	30.97	0.31	0.70	9.45	31.35	65.0%	0.30	11.48	1.21
	6.20	28.85	0.28	0.65	7.96	29.20	60.6%	0.27	9.03	1.14
	6.25	28.00	0.23	0.60	6.54	28.32	58.7%	0.23	6.64	1.02
	6.30	26.77	0.19	0.55	5.17	27.06	56.1%	0.19	4.63	0.90
	6.35	22.58	0.18	0.50	3.98	22.82	47.3%	0.17	3.35	0.84
	6.40	20.34	0.14	0.45	2.90	20.54	42.6%	0.14	2.13	0.73
	6.45	14.11	0.15	0.40	2.08	14.27	29.6%	0.15	1.56	0.75
	6.50	9.07	0.17	0.35	1.50	9.19	19.1%	0.16	1.22	0.81
	6.55	7.60	0.14	0.30	1.09	7.70	16.0%	0.14	0.80	0.73
	6.60	6.31	0.12	0.25	0.74	6.39	13.2%	0.12	0.48	0.64
	6.65	5.02	0.09	0.20	0.46	5.07	10.5%	0.09	0.25	0.55
	6.70	3.73	0.06	0.15	0.24	3.76	7.8%	0.06	0.10	0.43
	6.75	2.24	0.04	0.10	0.09	2.26	4.7%	0.04	0.03	0.32
	6.80	0.74	0.02	0.05	0.02	0.75	1.5%	0.02	0.00	0.23
	6.85	0.03	0.00	0.00	0.00	0.03	0.1%	0.00	0.00	0.03

STREAM NAME:

Cebolla Creek - lower

XS LOCATION: XS NUMBER: 1/4 mile upstream from BLM campground

.

SUMMARY SHEET

MEASURED FLOW (Qm)=	39.80		RECOMMENDED INSTREAM FLOW:		
CALCULATED FLOW (Qc)=	39.79	cfs	============	========	
(Qm-Qc)/Qm * 100 =	0.0	%			
MEAGURER WATER INE (MIL.)	5.00	•	FLOW (CFS)	PERIOD	
MEASURED WATERLINE (WLm)=	5.80		========	======	
CALCULATED WATERLINE (WLc)=	5.80				
(WLm-WLc)/WLm * 100 =	0.0	%			
MAX MEASURED DEPTH (Dm)=	1.05	ft			
MAX CALCULATED DEPTH (Dc)=	1.05	ft			
(Dm-Dc)/Dm * 100	-0.2	%			
MEAN VELOCITY=	1.76	ft/sec			
MANNING'S N=	0.065				
SLOPE=	0.014	ft/ft			
.4 * Qm =	15.9	cfs			
2.5 * Qm=	99.5				
RECOMMENDATION BY:		AGENCY		DATE:	
CWCD DEVIEW DV.				DATE.	

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

Cebolla Creek - lower

LOCATION INFORMATION

STREAM NAME:

XS LOCATION: XS NUMBER:	0.5 mile upstream from BLM campground 2				
DATE: OBSERVERS:	8-Oct-08 R. Smith, A.	Hayes			
1/4 SEC: SECTION: TWP: RANGE: PM:	SW 1 45N 2W N.M.				
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Gunnison 4 38895				
USGS MAP: USFS MAP:	0 0				
SUPPLEMENTAL DATA	=	*** NOTE *** Leave TAPE WT and TENSION at defaults for data collected			
TAPE WT: TENSION:	0.0106 99999	with a survey level and rod			
CHANNEL PROFILE DATA	<u> </u>				
SLOPE:	0.008				
INPUT DATA CHECKED B	Y:	DATE			
ASSIGNED TO:		DATE			

STREAM NAME: XS LOCATION: Cebolla Creek - lower

XS LOCATION: XS NUMBER: 0.5 mile upstream from BLM campground

DATA POINTS=

30

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
LS	2.00	3.00			0.00		0.00	0.00	0.0%
	3.40	3.55			0.00		0.00	0.00	0.0%
1 G	3.80	4.36			0.00		0.00	0.00	0.0%
W	4.00	5.35			0.00		0.00	0.00	0.0%
	5.00	5.70	0.35	1.49	1.06	0.35	0.53	0.78	1.9%
	7.00	6.05	0.70	1.59	2.03	0.70	1.40	2.23	5.3%
	9.00	6.35	1.00	1.34	2.02	1.00	2.00	2.68	6.4%
	11.00	5.85	0.50	2.20	2.06	0.50	1.00	2.20	5.3%
	13.00	6.25	0.90	1.97	2.04	0.90	1.80	3.55	8.5%
	15.00	6.15	0.80	1.90	2.00	0.80	1.60	3.04	7.3%
	17.00	6.35	1.00	1.85	2.01	1.00	2.00	3.70	8.8%
	19.00	6.25	0.90	1.82	2.00	0.90	1.80	3.28	7.8%
	21.00	6.30	0.95	1.62	2.00	0.95	1.90	3.08	7.4%
	23.00	6.05	0.70	1.77	2.02	0.70	1.40	2.48	5.9%
	25.00	5.85	0.50	1.88	2.01	0.50	1.00	1.88	4.5%
	27.00	6.05	0.70	1.59	2.01	0.70	1.40	2.23	5.3%
	29.00	5.95	0.60	1.95	2.00	0.60	1.20	2.34	5.6%
	31.00	5.85	0.50	1.89	2.00	0.50	1.00	1.89	4.5%
	33.00	5.70	0.35	1.74	2.01	0.35	0.70	1.22	2.9%
	35.00	5.55	0.20	2.03	2.01	0.20	0.40	0.81	1.9%
	37.00	5.55	0.20	0.97	2.00	0.20	0.40	0.39	0.9%
	39.00	5.55	0.20	1.67	2.00	0.20	0.40	0.67	1.6%
	41.00	5.55	0.20	1.31	2.00	0.20	0.40	0.52	1.3%
	43.00	5.80	0.45	1.05	2.02	0.45	0.90	0.95	2.3%
	45.00	5.95	0.60	1.51	2.01	0.60	1.20	1.81	4.3%
	47.00	6.00	0.65	0.11	2.00	0.65	1.24	0.14	0.3%
W	48.80	5.35			1.91		0.00	0.00	0.0%
1 G	49.50	4.36			0.00		0.00	0.00	0.0%
	49.70	4.52			0.00		0.00	0.00	0.0%
RS	51.90	3.82			0.00		0.00	0.00	0.0%
TO	TALS				45.22	1	25.66	41.85	100.0%
						(Max.)			

Manning's n = Hydraulic Radius=

0.0559 0.56749414 STREAM NAME: XS LOCATION: Cebolla Creek - lower

0.5 mile upstream from BLM campground

XS NUMBER:

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	25.66	25.66	0.0%
5.10	25.66	36.89	43.8%
5.12	25.66	35.99	40.3%
5.14	25.66	35.09	36.7%
5.16	25.66	34.19	33.2%
5.18	25.66	33.29	29.7%
5.20	25.66	32.39	26.2%
5.22	25.66	31.49	22.7%
5.24	25.66	30.59	19.2%
5.26	25.66	29.70	15.7%
5.28	25.66	28.80	12.2%
5.30	25.66	27.90	8.7%
5.31	25.66	27.45	7.0%
5.32	25.66	27.01	5.2%
5.33	25.66	26.56	3.5%
5.34	25.66	26.11	1.7%
5.35	25.66	25.66	0.0%
5.36	25.66	25.21	-1.7%
5.37	25.66	24.77	-3.5%
5.38	25.66	24.32	-5.2%
5.39	25.66	23.87	-7.0%
5.40	25.66	23.43	-8.7%
5.42	25.66	22.54	-12.2%
5.44	25.66	21.65	-15.6%
5.46	25.66	20.77	-19.1%
5.48	25.66	19.88	-22.5%
5.50	25.66	19.00	-25.9%
5.52	25.66	18.13	-29.4%
5.54	25.66	17.25	-32.8%
5.56	25.66	16.44	-35.9%
5.58	25.66	15.70	-38.8%
5.60	25.66	14.96	-41.7%

WATERLINE AT ZERO AREA ERROR =

5.350

STREAM NAME: Cebolla Creek - lower

XS LOCATION: 0.5 mile upstream from BLM campground

XS NUMBER:

Constant Manning's n

 $^*GL^*$ = lowest Grassline elevation corrected for sag $^*WL^*$ = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

***CFT**	•	DIST TO WATER	TOP WIDTH	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG. VELOCITY
"GL"											
4.40	=	(1.1)	(/	(1.1)	(1.1)	(0011)	(1.1)	(70)	(1.1)	(0.0)	(1.17020)
4.45	*GL*	4.36	46.40	1.52	1.99	70.51	48.22	100.0%	1.46	216.13	3.07
4.50		4.40	46.19	1.49	1.95	68.66	47.94	99.4%	1.43	207.57	3.02
4.55 45.63 1.36 1.80 61.79 47.01 97.5% 1.31 176.40 2.85 4.60 45.48 1.31 1.76 59.52 46.90 97.3% 1.27 165.97 2.79 4.65 45.44 1.26 1.70 57.24 46.79 97.0% 1.22 155.79 2.72 4.70 45.39 1.21 1.65 54.97 46.68 96.8% 1.18 145.86 2.65 4.75 45.35 1.16 1.60 52.70 46.56 96.6% 1.13 136.18 2.58 4.80 45.30 1.11 1.55 50.44 46.45 96.3% 1.09 126.77 2.51 4.85 45.25 1.06 1.50 48.17 46.34 96.1% 1.04 117.62 2.44 4.80 45.25 1.06 1.50 48.17 46.34 96.1% 1.04 117.62 2.44 4.80 45.21 1.02 1.45 45.91 46.23 99.9% 0.99 108.74 2.37 4.95 45.16 0.97 1.40 43.65 46.11 95.6% 0.95 100.13 2.29 5.00 45.12 0.92 1.35 41.40 46.00 95.4% 0.90 91.80 2.22 5.05 45.07 0.87 1.30 39.14 45.89 95.2% 0.85 83.75 2.14 5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.98 0.77 1.20 34.64 45.67 94.7% 0.76 68.54 1.98 5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 46.25 44.89 0.67 1.10 30.14 45.44 92.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 3.09 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 44.80 0.57 0.45 0.80 16.81 30.09 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 44.94 0.78 0.55 0.95 23.43 44.92 92.5% 0.48 30.73 1.45 5.50 36.33 0.41 0.75 14.96 36.55 76.0% 0.41 19.59 1.31 5.50 36.89 0.23 3.63 0.41 0.75 14.96 36.55 76.0% 0.41 19.59 1.31 5.50 36.33 0.41 0.75 14.96 36.55 76.0% 0.41 19.59 1.31 5.50 30.65 0.27 0.45 0.80 16.81 33.02 78.8% 0.44 23.22 1.38 5.50 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.86 2.889 0.23 0.50 6.76 2.91 60.4% 0.23 6.08 0.90 5.50 5.50 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 2.889 0.23 0.50 6.76 2.91 60.4% 0.23 6.08 0.90 5.50 6.06 16.81 30.02 78.8% 0.44 23.22 1.38 5.60 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 2.889 0.23 0.50 6.76 2.91 60.4% 0.23 6.08 0.90 5.50 6.00 16.94 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 2.27 60.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 1.97 4.56 6.00 0.14 1.44 0.63 6.15 11.80 0.11 1.07 5.14 0.09 6.05 11.40 0.19 0.35 3.26 17.07 35.4% 0.19 2.		4.45	45.93	1.44	1.90	66.36	47.58	98.7%	1.39	197.08	2.97
4.60		4.50	45.66	1.40	1.85	64.07	47.22	97.9%	1.36	186.81	2.92
4,65 45,44 1,26 1,70 57,24 46,79 97,0% 1,22 155,79 2,27 4,70 45,39 1,21 1,65 54,97 46,68 96,8% 1,18 145,86 2,65 4,75 45,35 1,16 1,60 52,70 46,66 96,6% 1,13 136,18 2,58 4,80 45,30 1,11 1,55 50,44 46,45 96,3% 1,09 126,77 2,51 4,80 45,25 1,06 1,50 48,17 46,34 96,3% 1,09 126,77 2,51 4,90 45,21 1,02 1,45 45,91 46,23 95,9% 0,99 108,74 2,37 4,95 45,16 0,97 1,40 43,65 46,11 95,6% 0,95 100,13 2,29 5,05 45,07 0,87 1,30 39,14 45,89 95,2% 0,85 83,75 2,14 5,10 45,03 0,82 <		4.55	45.53	1.36	1.80	61.79	47.01	97.5%	1.31	176.40	2.85
4,70 45,39 1,21 1,65 54,97 46,68 96,8% 1,18 145,86 2,65 4,75 45,35 1,16 1,60 52,70 46,56 96,6% 1,13 136,18 2,58 4,80 45,30 1,111 1,55 50,44 46,45 96,3% 1,09 126,77 2,51 4,85 45,25 1,06 1,50 48,17 46,34 96,1% 1,04 117,62 2,44 4,90 45,21 1,02 1,45 45,91 46,23 95,9% 0,99 108,74 2,37 4,95 45,16 0,97 1,40 43,65 46,11 95,6% 0,95 100,13 2,29 5,00 45,12 0,92 1,35 41,40 46,00 95,4% 0,90 91,80 2,22 5,05 45,07		4.60	45.48	1.31	1.75	59.52	46.90	97.3%	1.27	165.97	2.79
4.75		4.65	45.44	1.26	1.70	57.24	46.79	97.0%	1.22	155.79	2.72
4.80 45.30 1.11 1.55 50.44 46.45 96.3% 1.09 126.77 2.51 4.85 45.25 1.06 1.50 48.17 46.34 96.1% 1.04 117.62 2.44 4.90 45.21 1.02 1.45 45.91 46.23 95.9% 0.99 108.74 2.37 4.95 45.16 0.97 1.40 43.65 46.11 95.6% 0.95 100.13 2.29 5.05 45.17 0.92 1.35 41.40 46.00 95.4% 0.90 91.80 2.22 5.05 45.07 0.87 1.30 39.14 45.89 95.2% 0.85 83.75 2.14 5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.98 0.77 1.20 34.64 45.57 94.7% 0.76 68.54 1.98 5.20 44.94 0.72		4.70	45.39	1.21	1.65	54.97	46.68	96.8%	1.18	145.86	2.65
4.85 45.25 1.06 1.50 48.17 46.34 96.1% 1.04 117.62 2.44 4.90 45.21 1.02 1.45 45.91 46.23 95.9% 0.99 100.13 2.29 5.00 45.12 0.92 1.35 41.40 46.00 95.4% 0.90 91.80 2.22 5.05 45.07 0.87 1.30 39.14 45.89 95.2% 0.85 83.75 2.14 5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.98 0.77 1.20 34.64 45.67 94.7% 0.76 68.54 1.98 5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 7.80 43.52 0.53 0.		4.75	45.35	1.16	1.60	52.70	46.56	96.6%	1.13	136.18	2.58
4.85 45.25 1.06 1.50 48.17 46.34 96.1% 1.04 117.62 2.44 4.90 45.21 1.02 1.45 45.91 46.23 95.9% 0.99 100.13 2.29 5.00 45.12 0.92 1.35 41.40 46.00 95.4% 0.90 91.80 2.22 5.05 45.07 0.87 1.30 39.14 45.89 95.2% 0.85 83.75 2.14 5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.98 0.77 1.20 34.64 45.67 94.7% 0.76 68.54 1.98 5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 **WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 <		4.80	45.30	1.11	1.55	50.44	46.45	96.3%	1.09	126.77	2.51
4.90 45.21 1.02 1.45 45.91 46.23 95.9% 0.99 108.74 2.37 4.95 45.16 0.97 1.40 43.65 46.11 95.6% 0.90 91.80 2.22 5.00 45.12 0.92 1.35 41.40 46.00 95.4% 0.90 91.80 2.22 5.05 45.07 0.87 1.30 39.14 45.89 95.2% 0.85 83.75 2.14 5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.5		4.85	45.25			48.17	46.34	96.1%		117.62	
5.00 45.12 0.92 1.35 41.40 46.00 95.4% 0.90 91.80 2.22 5.05 45.07 0.87 1.30 39.14 45.89 95.2% 0.85 83.75 2.14 5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.98 0.77 1.20 34.64 45.67 94.7% 0.76 68.54 1.98 5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.45 44.24 0.48			45.21			45.91	46.23	95.9%	0.99	108.74	2.37
5.00 45.12 0.92 1.35 41.40 46.00 95.4% 0.90 91.80 2.22 5.05 45.07 0.87 1.30 39.14 45.89 95.2% 0.85 83.75 2.14 5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.98 0.77 1.20 34.64 45.67 94.7% 0.76 68.54 1.98 5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.45 44.24 0.48		4.95	45.16	0.97	1.40	43.65	46.11	95.6%	0.95	100.13	2.29
5.05 45.07 0.87 1.30 39.14 45.89 95.2% 0.85 83.75 2.14 5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.98 0.77 1.20 34.64 45.67 94.7% 0.76 68.54 1.98 5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.40 44.52 0.53 0.95 23.43 44.92 93.1% 0.52 36.11 1.54 5.45 44.24 0.48											
5.10 45.03 0.82 1.25 36.89 45.78 94.9% 0.81 76.00 2.06 5.15 44.98 0.77 1.20 34.64 45.67 94.7% 0.76 68.54 1.98 5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.40 44.52 0.53 0.95 23.43 44.92 93.1% 0.52 36.11 1.54 5.45 44.24 0.48 0.90 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 43.96 0.43											
5.15 44.98 0.77 1.20 34.64 45.67 94.7% 0.76 68.54 1.98 5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.40 44.52 0.53 0.95 23.43 44.92 93.1% 0.52 36.11 1.54 5.50 43.96 0.43 0.85 19.00 44.32 91.9% 0.43 25.71 1.35 5.55 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.33 0.41			45.03								2.06
5.20 44.94 0.72 1.15 32.39 45.55 94.5% 0.71 61.39 1.90 5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.40 44.52 0.53 0.95 23.43 44.92 93.1% 0.52 36.11 1.54 5.45 44.24 0.48 0.90 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 43.96 0.43 0.85 19.00 44.32 91.9% 0.43 25.71 1.35 5.50 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.33 0.41											
5.25 44.89 0.67 1.10 30.14 45.44 94.2% 0.66 54.55 1.81 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.40 44.52 0.53 0.95 23.43 44.92 93.1% 0.52 36.11 1.54 5.45 44.24 0.48 0.90 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 43.96 0.43 0.85 19.00 44.32 91.9% 0.43 25.71 1.35 5.55 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.70 33.63 0.34											
WL 5.30 44.85 0.62 1.05 27.90 45.33 94.0% 0.62 48.03 1.72 *WL* 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.40 44.52 0.53 0.95 23.43 44.92 93.1% 0.52 36.11 1.54 5.45 44.24 0.48 0.90 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 43.96 0.43 0.85 19.00 44.32 91.9% 0.43 25.71 1.35 5.55 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.33 0.41 0.75 14.96 36.65 76.0% 0.41 19.59 1.31 5.65 34.98 0.38 0.70 13.18 35.28 73.2% 0.37 16.26 1.23 5.75 32.14											
WL 5.35 44.80 0.57 1.00 25.66 45.22 93.8% 0.57 41.85 1.63 5.40 44.52 0.53 0.95 23.43 44.92 93.1% 0.52 36.11 1.54 5.45 44.24 0.48 0.90 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 43.96 0.43 0.85 19.00 44.32 91.9% 0.43 25.71 1.35 5.55 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.33 0.41 0.75 14.96 36.65 76.0% 0.41 19.59 1.31 5.65 34.98 0.38 0.70 13.18 35.28 73.2% 0.37 16.26 1.23 5.70 33.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.90 5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.40 4.23 21.97 45.6% 0.19 3.35 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.27 0.28 6.30 2.03 0.03 0.05 0.05 0.05 0.05 2.05 4.2% 0.00 0.01 0.02 0.01											
5.40 44.52 0.53 0.95 23.43 44.92 93.1% 0.52 36.11 1.54 5.45 44.24 0.48 0.90 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 43.96 0.43 0.85 19.00 44.32 91.9% 0.43 25.71 1.35 5.55 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.33 0.41 0.75 14.96 36.65 76.0% 0.41 19.59 1.31 5.65 34.98 0.38 0.70 13.18 35.28 73.2% 0.37 16.26 1.23 5.70 33.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55<	*WL*										
5.45 44.24 0.48 0.90 21.21 44.62 92.5% 0.48 30.73 1.45 5.50 43.96 0.43 0.85 19.00 44.32 91.9% 0.43 25.71 1.35 5.55 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.33 0.41 0.75 14.96 36.65 76.0% 0.41 19.59 1.31 5.65 34.98 0.38 0.70 13.18 35.28 73.2% 0.37 16.26 1.23 5.70 33.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 <td></td>											
5.50 43.96 0.43 0.85 19.00 44.32 91.9% 0.43 25.71 1.35 5.55 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.33 0.41 0.75 14.96 36.65 76.0% 0.41 19.59 1.31 5.65 34.98 0.38 0.70 13.18 35.28 73.2% 0.37 16.26 1.23 5.70 33.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.99 5.95 21.81 0.19 0.45											
5.55 37.67 0.45 0.80 16.81 38.02 78.8% 0.44 23.22 1.38 5.60 36.33 0.41 0.75 14.96 36.65 76.0% 0.41 19.59 1.31 5.65 34.98 0.38 0.70 13.18 35.28 73.2% 0.37 16.26 1.23 5.70 33.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.90 5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.35											
5.60 36.33 0.41 0.75 14.96 36.65 76.0% 0.41 19.59 1.31 5.65 34.98 0.38 0.70 13.18 35.28 73.2% 0.37 16.26 1.23 5.70 33.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.90 5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30											
5.65 34.98 0.38 0.70 13.18 35.28 73.2% 0.37 16.26 1.23 5.70 33.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.90 5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.40 4.23 21.97 45.6% 0.19 3.35 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.15 11.83 0.10 0.20											
5.70 33.63 0.34 0.65 11.46 33.91 70.3% 0.34 13.24 1.15 5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.90 5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.40 4.23 21.97 45.6% 0.19 3.35 0.79 6.00 16.94 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.15 11.83 0.10 0.20											
5.75 32.14 0.31 0.60 9.82 32.40 67.2% 0.30 10.54 1.07 5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.90 5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.40 4.23 21.97 45.6% 0.19 3.35 0.79 6.00 16.94 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 <											
5.80 30.65 0.27 0.55 8.25 30.89 64.1% 0.27 8.14 0.99 5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.90 5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.40 4.23 21.97 45.6% 0.19 3.35 0.79 6.00 16.94 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 <td< td=""><td></td><td></td><td>32.14</td><td></td><td>0.60</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			32.14		0.60						
5.85 28.89 0.23 0.50 6.76 29.12 60.4% 0.23 6.08 0.90 5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.40 4.23 21.97 45.6% 0.19 3.35 0.79 6.00 16.94 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.41 6.25 6.47 0.04 0.10 0											
5.90 25.35 0.21 0.45 5.41 25.55 53.0% 0.21 4.57 0.84 5.95 21.81 0.19 0.40 4.23 21.97 45.6% 0.19 3.35 0.79 6.00 16.94 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.41 6.25 6.47 0.04 0.10 0.26 6.50 13.5% 0.04 0.07 0.28 6.30 2.03 0.03 0.05 0.0											
5.95 21.81 0.19 0.40 4.23 21.97 45.6% 0.19 3.35 0.79 6.00 16.94 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.41 6.25 6.47 0.04 0.10 0.26 6.50 13.5% 0.04 0.07 0.28 6.30 2.03 0.03 0.05 0.05 2.05 4.2% 0.02 0.01 0.20											
6.00 16.94 0.19 0.35 3.26 17.07 35.4% 0.19 2.57 0.79 6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.41 6.25 6.47 0.04 0.10 0.26 6.50 13.5% 0.04 0.07 0.28 6.30 2.03 0.03 0.05 0.05 2.05 4.2% 0.02 0.01 0.20											
6.05 14.20 0.17 0.30 2.48 14.31 29.7% 0.17 1.83 0.74 6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.41 6.25 6.47 0.04 0.10 0.26 6.50 13.5% 0.04 0.07 0.28 6.30 2.03 0.03 0.05 0.05 2.05 4.2% 0.02 0.01 0.20											
6.10 13.02 0.14 0.25 1.80 13.11 27.2% 0.14 1.14 0.63 6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.41 6.25 6.47 0.04 0.10 0.26 6.50 13.5% 0.04 0.07 0.28 6.30 2.03 0.03 0.05 0.05 2.05 4.2% 0.02 0.01 0.20											
6.15 11.83 0.10 0.20 1.18 11.91 24.7% 0.10 0.60 0.51 6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.41 6.25 6.47 0.04 0.10 0.26 6.50 13.5% 0.04 0.07 0.28 6.30 2.03 0.03 0.05 0.05 2.05 4.2% 0.02 0.01 0.20											
6.20 9.15 0.07 0.15 0.65 9.20 19.1% 0.07 0.27 0.41 6.25 6.47 0.04 0.10 0.26 6.50 13.5% 0.04 0.07 0.28 6.30 2.03 0.03 0.05 0.05 2.05 4.2% 0.02 0.01 0.20											
6.25 6.47 0.04 0.10 0.26 6.50 13.5% 0.04 0.07 0.28 6.30 2.03 0.03 0.05 0.05 2.05 4.2% 0.02 0.01 0.20											
6.30 2.03 0.03 0.05 0.05 2.05 4.2% 0.02 0.01 0.20											
6.35 0.00 #DIV/O! ().00 ().00 ().00 ().0% #DIV/O! #DIV/O! #DIV/O!		6.35	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!

STREAM NAME: Cebolla Creek - lower

XS LOCATION: 0.5 mile upstream from BLM campground

XS NUMBER:

SUMMARY SHEET

MEASURED FLOW (Qm)=	41.85 cfs	RECOMMENDED INSTREAM FLOW:		
CALCULATED FLOW (Qc)=	41.85 cfs	===========	=========	
(Qm-Qc)/Qm * 100 =	0.0 %			
		FLOW (CFS)	PERIOD	
MEASURED WATERLINE (WLm)=	5.35 ft	========	======	
CALCULATED WATERLINE (WLc)=	5.35 ft			
(WLm-WLc)/WLm * 100 =	0.0 %			
MAX MEASURED DEPTH (Dm)=	1.00 ft			
MAX CALCULATED DEPTH (Dc)=	1.00 ft			
(Dm-Dc)/Dm * 100	0.0 %			
MEAN VELOCITY=	1.63 ft/sec			
MANNING'S N=	0.056			
SLOPE=	0.008 ft/ft			
.4 * Qm =	16.7 cfs			
2.5 * Qm=	104.6 cfs			
RECOMMENDATION BY:	AGENCY		DATE:	
CWCB REVIEW BY:			DATE:	

