

United States Department of the Interior

BUREAU OF LAND MANAGEMENT

Colorado State Office 2850 Youngfield Street Lakewood, Colorado 80215-7093 www.blm.gov/co

In Reply Refer To: 7250 (CO-932)

DEC 1 1 2009

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its instream flow recommendation for two stream reaches on Cebolla Creek. located in Water Division 4.

Location and Land Status. Cebolla Creek is tributary to Blue Mesa Reservoir approximately 15 miles southwest of Gunnison. The creek is located within the upper Gunnison River watershed. This recommendation covers two stream reaches. The upper reach begins at the confluence with Brush Creek and extends downstream to the confluence with Spring Creek. The lower reach begins at the confluence with Spring Creek and extends downstream to the historic Cebolla Creek stream gage at Powderhorn (USGS 09121800).

In the upper reach, approximately 60 percent of the 10.0-mile reach is located on federal lands, while the remaining 40 percent is located on private lands. Approximately 85 percent of the federal lands are managed by the U.S. Forest Service, and 15 percent are managed by the BLM.

In the lower reach, approximately 30 percent of the 10.0-mile reach is located on federal lands managed by the BLM, and 10 percent of the reach is located within a state wildlife area managed by Colorado Division of Wildlife. The remaining 60 percent of the reach is located on private lands.

Biological Summary. Upper Segment - This segment of Cebolla Creek is a moderate gradient stream, with moderate substrate size, punctuated by large boulders. The creek is sometimes confined by a narrow canyon, but in other locations the creek supports extensive wetland communities on a broad valley floor. The riparian community is in good condition and is composed primarily of willow-alder and spruce-fir communities. With a combination of large woody debris and occasionally large boulders in the creek channel, the creek provides good pool habitat, velocity cover and overwintering habitat. Sufficient riffle habitat for spawning does not appear to be a limiting factor for the fish population. Fishery surveys indicate that the creek

supports a self-sustaining population of brown trout. The survey revealed a variety of age classes and individual specimens up to 16 inches in length. The BLM has implemented trout habitat improvement projects within this reach.

Lower Segment – The segment of Cebolla Creek is a moderate to high gradient, with much larger substrate size. Boulders in the stream channel, ranging from one to three feet in diameter, and are common. Throughout much of the reach, the creek is confined to a narrow canyon. The riparian community is in good condition, but is occasionally impacted by the close proximity of the county road in the canyon. The riparian community is similar to the upper reach, but the willow component of the community is less prominent. The combination of large woody debris and frequent large boulders in the creek channel provide good pool habitat, velocity cover, and overwintering habitat. In this reach, riffle habitat appears to be more limited, but it does not appear to be affecting the success of the fish population. Fishery surveys indicate that the creek supports a self-sustaining population of brown trout. The survey revealed a variety of age classes and individual specimens up to 14 inches in length. The Colorado Division of Wildlife has implemented trout habitat improvement projects within this reach.

R2Cross Analysis. Upper Segment - BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	09/26/2006	42.23	16.9-105.6	36.02	Out of range
BLM	09/26/2006	42.56	17.0-106.4	17.29	Out of range
BLM	10/08/2008	32.10	12.8-80.2	21.65	Out of range
BLM	10/08/2008	30.78	12.3-77.0	25.46	14.28
BLM	10/08/2008	27.56	11.0-68.9	14.20	13.52

The BLM's analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

23.0 cubic feet per second is recommended during the high temperature period from May 1 through September 30. This recommendation was derived by averaging the results of the data sets and is driven by the depth criteria. Given the wide channel in riffle habitats, 23.0 cubic feet per second is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population.

12.5 cubic feet per second is recommended from October 1 through November 15, which is the brown trout spawning period. It is important to protect a constant flow rate throughout the brown trout spawning period so that once spawning occurs, eggs are not dessicated before the winter icing period. This flow rate recommendation is driven by water availability, and it comes very close to meeting two of the three instream flow criteria.

7.5 cubic feet per second is recommended for the period from November 16 to April 1. This recommendation is driven by water availability. This flow rate should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

16.5 cubic feet per second is recommended for the period from April 1 through April 30. This is the period when fish are starting to become active again after surviving the winter icing period. During this period, it is important to provide additional physical habitat for the fish population, so that it may begin active feeding and foraging. This flow rate recommendation is driven by water availability, and it meets two of the three instream flow criteria.

Lower Segment – the BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	10/08/2008	39.80	15.9-99.5	31.73	Out of range
BL,M	10/08/2008	41.85	16.7-104.6	28.72	Out of range
BLM	10/08/2008	35.10	14.0-87.8	17.10	14.13

The BLM's data analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

26.0 cubic feet per second is recommended during the high temperature period from April 1 through September 30. This recommendation was derived by averaging the results of the data sets, and is driven by the depth criteria. Given the wide creek channel in riffle habitats, 26.0 cubic feet per second is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population.

22.0 cubic feet per second is recommended from October 1 through November 15, which is the brown trout spawning period. It is important to protect a constant flow rate throughout the brown trout spawning period so that once spawning occurs, eggs are not dessicated before the winter icing period. This flow rate recommendation is driven by water availability, and it meets two of the three instream flow criteria.

13.5 cubic feet second is recommended for the period from November 16 to March 31. This recommendation is driven by water availability, but it comes very close to meeting two of the three instream flow criteria. This flow rate should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Water Availability. In 1980, the Colorado Water Conservation Board (CWCB) appropriated two instream flow water rights on Cebolla Creek, above and below the segments recommended in this letter:

- Confluence of East Fork and West Fork Cebolla Creek to confluence with Brush Creek –
 4.0 cubic feet per second, year round.
- Confluence with Powderhorn Creek to Blue Mesa Reservoir 26 cubic feet per second from May 1 to Septermber 30 and 14 cubic feet per second from October 1 to April 30.

The BLM has identified the following water rights within the upper reach:

Upper Cebolla Ditch – 22 cubic feet per second Maybell Ditch No. 1 – 5.7 cubic feet per second Hatcher Ditch – 6.0 cubic feet per second Stavely Ditch – 2.35 cubic feet per second Wrights Cathedral Ditch – 1.0 cubic feet per second

There are also numerous water rights located upstream of the proposed reach on tributaries to Cebolla Creek, including Mineral Creek and Pasture Creek.

The BLM has identified the following water rights within the lower reach:

Cebolla Creek Ditch – 1.57 cubic feet per second
Warrant Ditch – 9.0 cubic feet per second
Youmans Ditches No. 1 -4 – 34.25 cubic feet per second
WS Thompson Ditch – 3.5 cubic feet per second
Ferris Ditch – 1.8 cubic feet per second
Hopfer Ditch – 2.5 cubic feet per second
East Ditch – 4.0 cubic feet per second
West Ditch – 6.0 cubic feet per second
Johnson West Side Ditch – 2.5 cubic feet per second
East Dempsey Ditch – 2.5 cubic feet per second

There are two important facts concerning the water rights in these two reaches. First, all of the water rights appear to irrigate lands close to Cebolla Creek, so the creek accumulates return flows from those irrigation practices. Second, all the identified water rights within the two reaches are junior to a total of 36.67 cubic feet per second water right located downstream near the community of Powderhorn. It is highly likely that the calling rights near Powderhorn call for a flow rate that is equal to or greater to the proposed instream flow appropriation during times of low stream flows.

The BLM does not recommend using historic stream gages within this watershed for water

availability analysis. The historic Cebolla Creek Gage (USGS 09121800), which was operated for four years from 1960 through 1963, lacks a sufficient period of record to provide reliable data for a full range of water supply conditions. The BLM also recommends against using the Cebolla Creek at Powderhorn, CO gage (USGS gage 09122000) because this gage is heavily influenced by agricultural irrigation operations near Powderhorn. Instead, the BLM recommends using the historic gage Cochetopa Creek gage below Rock Creek near Parlin, CO. This gage has a long period of record, and measures the next watershed immediately to the east of Cebolla Creek. An adjustment to the Cochetopa Creek gage can be performed to reflect the different size of the Cebolla Creek watershed.

Relationship to Management Plans. Under the current resource management plan, Cebolla Creek is managed to maintain and improve the aquatic wildlife population. The BLM has made significant investment in fish habitat improvements in the creek. The creek is also managed for dispersed recreation and concentrated recreation, since it is adjacent to an easily accessible county road. For example, the BLM maintains a public campground within the lower reach. The BLM management plan specifically calls for instream flow recommendations on creeks within this management unit that support fisheries.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section were included with the BLM's draft recommendation in February 2009. We thank both the Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely,

Linda Anania

Deputy State Director, Resources and Fire

cc: Brian St. George, Gunnison Field Office Manager Andrew Breibart, Gunnison Field Office

DRAFT INSTREAM FLOW RECOMMENDATION

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its instream flow recommendation for two stream reaches on Cebolla Creek, located in Water Division 4.

Location and Land Status. Cebolla Creek is tributary to Blue Mesa Reservoir approximately 15 miles southwest of Gunnison. The creek is located within the upper Gunnison River watershed. This recommendation covers two stream reaches. The upper reach begins at the confluence with Brush Creek and extends downstream to the confluence with Spring Creek. The lower reach begins at the confluence with Spring Creek and extends downstream to the historic Cebolla Creek stream gage at Powderhorn (USGS 09121800).

In the upper reach, approximately 60 percent of the 10.0-mile reach is located on federal lands, while the remaining 40 percent is located on private lands. Approximately 85% of the federal lands are managed by the U.S. Forest Service, and 15% are managed by the BLM.

In the lower reach, approximately 30% of the 10.0-mile reach is located on federal lands managed by BLM, and 10% of the reach is located within a state wildlife area managed by Colorado Division of Wildlife. The remaining 60% of the reach is located on private lands.

Biological Summary.

Upper Segment - This segment of Cebolla Creek is a moderate gradient stream, with moderate substrate size, punctuated by large boulders. The creek is sometimes confined by a narrow canyon, but in other locations the creek supports extensive wetland communities on a broad valley floor. The riparian community is in good condition and is composed primarily of willow-alder and spruce-fir communities. With a combination of large woody debris and occasionally large boulders in the creek channel, the creek provides good pool habitat for velocity cover and for overwintering. Sufficient riffle habitat for spawning does not appear to be a limiting factor for the fish population. Fishery surveys indicate that the creek supports a self-sustaining population of brown trout. The survey revealed a variety of age classes and individual specimens up to 16 inches in length. The BLM has implemented trout habitat improvement projects within this reach.

Lower Segment – The segment of Cebolla Creek is a moderate to high gradient, with much larger substrate size. Boulders ranging from one to three feet in diameter in the stream channel are common. Throughout much of the reach, the creek is confined to a narrow canyon. The riparian

community is in good condition, but is occasionally impacted by the close proximity of the county road in the canyon. The riparian community is similar to the upper reach, but the willow component of the community is less prominent. The combination of large woody debris and frequent large boulders in the creek channel provide good pool habitat for velocity cover and overwintering. In this reach, riffle habitat appears to be more limited, but it does not appear to be affecting the success of the fish population. Fishery surveys indicate that the creek supports a self-sustaining population of brown trout. The survey revealed a variety of age classes and individual specimens up to 14 inches in length. The Colorado Division of Wildlife has implemented trout habitat improvement projects within this reach.

R2Cross Analysis.

Upper Segment - BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	09/26/2006	42.23	16.9-105.6	36.02	Out of range
BLM	09/26/2006	42.56	17.0-106.4	17.29	Out of range
BLM	10/08/2008	32.10	12.8-80.2	21.65	Out of range
BLM	10/08/2008	30.78	12.3-77.0	25.46	14.28
BLM	10/08/2008	27.56	11.0-68.9	14.20	13.52

BLM's analysis of this data, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree.

23.0 cubic feet per second is recommended during the high temperature period from May 1 through November 15. This recommendation was derived by averaging the results of the data sets. The recommendation is driven by the depth criteria. Given the wide creek channel in riffle habitats, 23.0 cfs is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population. If possible, it is important to protect a constant flow rate for the brown trout spawning period, which can extend through November 15.

14.0 cubic feet second is recommended for the period from November 16 to April 30. This recommendation is driven by the average velocity criteria. This flow should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Lower Segment - BLM collected the following R2Cross data from the creek:

Party	Date	Discharge	250%-40%	Summer (3/3)	Winter (2/3)
BLM	10/08/2008	39.80	15.9-99.5	31.73	Out of range
BLM	10/08/2008	41.85	16.7-104.6	28.72	Out of range
BLM	10/08/2008	35.10	14.0-87.8	17.10	14.13

BLM's data analysis of this data, coordinated with the Division of Wildlife, indicates that the

following flows are needed to protect the fishery and natural environment to a reasonable degree.

26.0 cubic feet per second is recommended during the high temperature period from May 1 through November 15. This recommendation was derived by averaging the results of the data sets. The recommendation is driven by the depth criteria. Given the wide creek channel in riffle habitats, 26.0 cfs is required to meet the depth criteria and provide sufficient physical habitat that is usable by the fish population. If possible, it is important to protect a constant flow rate for the brown trout spawning period, which can extend through November 15.

14.0 cubic feet second is recommended for the period from November 16 to April 30. This recommendation is driven by the wetted perimeter criteria, and should provide adequate flow through pools and prevent complete icing of riffles during winter to insure successful overwintering by the fish population.

Water Availability. In 1980, the CWCB appropriated two instream flow water rights on Cebolla Creek, above and below the segments recommended in this letter:

- Confluence of East Fork and West Fork Cebolla Creek to confluence with Brush Creek –
 4.0 cfs, year round
- Confluence with Powderhorn Creek to Blue Mesa Reservoir 26 cfs from May 1 to September 30 and 14 cfs from October 1 to April 30

BLM has identified the following water rights within the upper reach:

Upper Cebolla Ditch – 22 cfs Maybell Ditch No. 1 – 5.7 cfs Hatcher Ditch – 6.0 cfs Stavely Ditch – 2.35 cfs Wrights Cathedral Ditch – 1.0 cfs

There are also numerous water rights located upstream of the proposed reach on tributaries to Cebolla Creek, including Mineral Creek and Pasture Creek.

BLM has identified the following water rights within the lower reach:

Cebolla Creek Ditch – 1.57 cfs
Warrant Ditch – 9.0
Youmans Ditches No. 1 -4 – 34.25 cfs
WS Thompson Ditch – 3.5 cfs
Ferris Ditch – 1.8 cfs
Hopfer Ditch – 2.5 cfs
East Ditch – 4.0 cfs
West Ditch – 6.0 cfs

Johnson West Side Ditch – 2.5 cfs East Dempsey Ditch – 2.5 cfs

There are two important facts concerning the water rights in these two reaches. First, all of the water rights appear to irrigate lands close to Cebolla Creek, so the creek accumulates return flows from those irrigation practices. Second, all the identified water rights within the two reaches are junior to a total of 36.67 cfs water right located downstream near the community of Powderhorn. It is highly likely that the calling rights near Powderhorn call for a flow rate that is equal to or greater to the proposed instream flow appropriation during times of low stream flows.

BLM recommends using the historic Cebolla Creek Gage (USGS 09121800), which was operated for four years from 1960 through 1963, to calculate water availability. A basin apportionment analytical approach would be required to apply this data to the upper reach. It is important to note that this gage record appears to incorporate hydrologic impacts from operations of all the significant ditches within the recommended reach, because all of those ditches were constructed well before 1960. Even though this gage was operated for only four years, it may the best available data on water availability. BLM recommends against using the Cebolla Creek at Powderhorn, CO gage (USGS gage 09122000) because this gage is heavily influenced by agricultural irrigation operations near Powderhorn.

Relationship to Management Plans. Under the current resource management plan, Cebolla Creek is managed to maintain and improve the aquatic wildlife population. BLM has made significant investment in fish habitat improvements in the creek. The creek is also managed for dispersed recreation and concentrated recreation, since it is adjacent to an easily accessible county road. For example, BLM maintains a public campground within the lower reach. The BLM management plan specifically calls for instream flow recommendations on creeks within this management unit that support fisheries.

Data sheets, R2Cross output, fishery survey information, and photographs of the cross section were included with BLM's draft recommendation in February 2009. We thank both the Division of Wildlife and the Water Conservation Board for their cooperation in this effort.

If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely,

Linda Anania Deputy State Director Resources and Fire

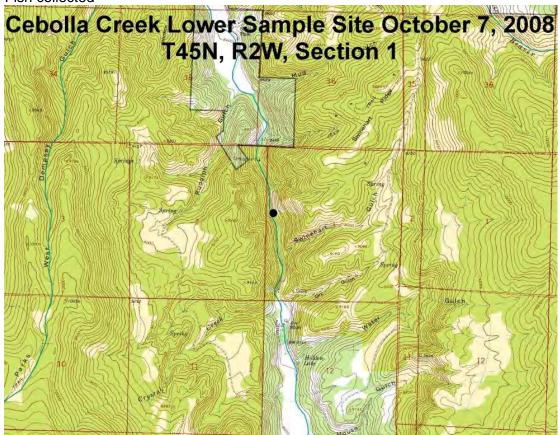
cc: Art Hayes, Gunnison Field Office Field Office Manager, Gunnison Field Office

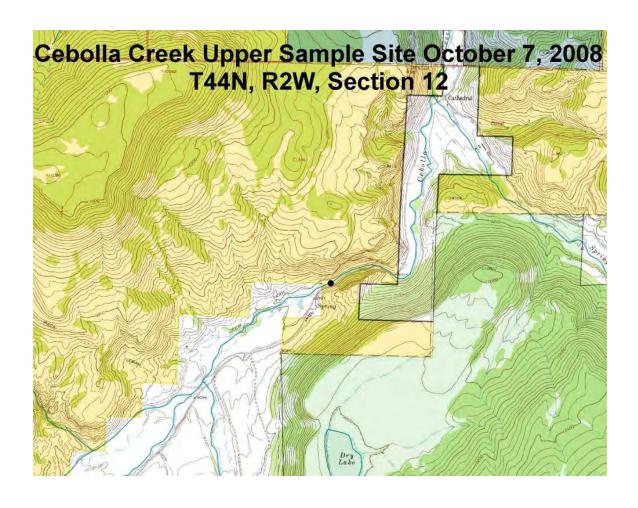
Gunnison Field Office Stream Surveys October 2008

Cebolla Creek - Water Code #38895

Cebolla creek, located west of Lake City, CO on lands managed by the BLM's Gunnison Field Office, was sampled on October 7, 2008. Sampling was conducted to determine fishery status and species composition. Presence/absence sampling was done in support of the Colorado BLM in-stream flow program. A one-pass sampling effort was completed. Sampling was conducted via backpack electro-shocker and approximately 40 feet of stream was sampled at one lower site and approximately 150 feet at one upper site. Personnel present were Jay Thompson, Roy Smith, Art Hayes, Tom Fresques, and Gregor Dekleva. A population estimate was not conducted due to the width of the stream and lack of equipment. Cebolla creek is tributary to Blue Mesa Reservoir and then the Gunnison River.

Lower Site on Cebolla creek


Brown trout (Salmo trutta)



Upper site on Cebolla creek

Fish collected

STREAM SURVEY FISH SAMPLING FORM

WATER <u>Cebolla Creek</u>	H2O CODE <u>38895</u>	DATE <u>10/7/2008</u>
GEAR BPE EFFOR	T ~40 feet STATION #1	PASS#_1
CREW Fresques, Dekleva, Tho	ompson, DRAINAGE <u>Gunnison</u>	LOCATION GPS

Pass	species	length	weight	species	length	weight	Pass
1	LOC	83		LOC	136		1
1	LOC	80		LOC	144		1
1	LOC	87		LOC	93		1
1	LOC	367		LOC	122		1
1	LOC	210		LOC	126		1
1	LOC	153		LOC	27		1
1	LOC	77		LOC	77		1
1	LOC	69		LOC	73		1
1	LOC	522		LOC	88		1
1	LOC	83					

GPS Location: See Map

Notes: Stream Width <u>25</u> ft. Sample Reach <u>40</u> ft. Conductivity: Electroshocker settings

STREAM SURVEY FISH SAMPLING FORM

WATER <u>Cebolla Cree</u>	k H20 CODE <u>38895</u>		DATE <u>10/7/20</u>	<u>800</u>
GEAR BPE	EFFORT <u>~150 feet</u> STATION #	<u> 2</u>	PASS #	1
CREW <u>Dekleva</u> , Hayes	DRAINAGE <u>Gunnison</u>		LOCATION GPS	

Pass	species	length	weight	species	length	weight	Pass
1	LOC	400		LOC	61		1
1	LOC	285		LOC	85		1
1	LOC	263		LOC	98		1
1	LOC	134		LOC	77		1
1	LOC	69		LOC	87		1
1	LOC	73					

GPS Location: See Map

Notes: Stream Width <u>25</u> ft. Sample Reach <u>150</u> ft. Conductivity: Electroshocker settings

Discussion:

The lower sample site provided an excellent variety of riffles, runs, and pools. Macro-invertebrates were abundant including a variety of Mayfly nymphs, Caddis nymphs, and a large amount of snails. The riparian area was also in excellent condition. Plant species present were Blue spruce, Alder, Carrex species, Horsetail, Current, and Reed grass. The only fish species collected was Brown trout (Salmo trutta), and a variety of age and size classes were present.

The upper site sampled on Cebolla creek also provided an excellent variety of riffles, runs, and pools. Several rock structures constructed by Art Hayes contained the majority of the larger fish collected. Macro-invertebrates were abundant including a variety of Mayfly nymphs, Caddis nymphs, and a large amount of snails. The riparian area was also in excellent condition. Plant species present were Willows, Shrubby cinquefoil, Alder, including lots of young Alders, Spruce, Bull rush, and Reed grass. Brown trout also were the only species collected with a variety of age classes represented.

Recommendations:

- Pursue instream-flow recommendations for each reach
- Continue periodic monitoring of stream habitats to ensure stream and riparian conditions remain healthy

FIELD DATA **FOR INSTREAM FLOW DETERMINATIONS**

CONSERVATION BOARD	LOCATION INFORMATION		
stream NAME: Cebolla	Creek-upper	CROSS-S	SECTION NO.:
CROSS-SECTION LOCATION:	ELM-private boundary		
	- V		
DATE: O-8-08 OBSERVERS:	Hayes, R. Smith		
LEGAL MASECTION: SI	1		NM
Hinsdale "	TERSHED: CUNNISON WATER DIVISION: 4	ATER CODE;	58875
MAP(S):			
USFS:			
	SUPPLEMENTAL DATA		
SAG TAPE SECTION SAME AS DISCHARGE SECTION: YES / NO	METER TYPE: M - M		
	CALIB/SPIN: sec TAPE WEIGHT: lbs/fool	TAPE TENSI	
CHANNEL BED MATERIAL SIZE RANGE:	bbles PHOTOGRAPHS TAKEN (YES/NO NUMBER OF PH	HOTOGRAPHS	3
	CHANNEL PROFILE DATA		
STATION DISTA	TAPE (ft) ROD READING (ft)		LEGEND:
Tape @ Stake LB O.	· • • • • • • • • • • • • • • • • • • •		Stake 🕱
Tape @ Stake RB 0.	S LI NO VED S KE		Station (1)
1 WS @ Tape LB/RB 0.0	2 53.3+6.7 / 6.7 H7.7 AS A	<u>^</u>	Photo (1)
2 WS Upstream	4.0 664	Marine Server of	
	4.0 6.81		Direction of Flow
SLOPE 0.17/7	28.0 = 1006		
	AQUATIC SAMPLING SUMMARY		
STREAM ELECTROFISHED: YES NO	DISTANCE ELECTROFISHED:ft FISH CAUGHT: YES/NO WATER CHEMIS	STRY SAMPLE	:D: (ES7N)
	LENGTH - FREQUENCY DISTRIBUTION BY ONE-INCH SIZE GROUPS (1.0-1.9, 2.0-2.9, ETC.)		
SPECIES (FILL IN)	1 2 3 4 5 6 7 8 9 10 11 12 13	14 15	>15 TOTAL
ACUATIO INICEGTO IN OTOLINI OFOTION DVO			
Mantly, Cades			
harda id the sections	COMMENTS		
TOS = 80			
126 2 8.2			
Temp = 490 1			

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Ceb	olla	Creek	- UE	YOU T		CROS	S-SECTION	NO.: 2	D	ATE: - 3-	OS SHEE	T OF
EGINNING OF M		FROFOE	WATER LOOKING DO	OWNSTREAM:	LEFT / RIC	ЭН ^Т G	age Re	ading:	ft	TIM		2:4	Osm
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revolu	tions	Time (sec)	Velo At Point	city (f	Mean in Vertical	Area (ft ²)	Discharge (cfs)
25	2.0		4,90										
<u> </u>	6.0		5.30										
W	7.6		5.30										
	11		7,00	.3					,40				
٠	13		7.20	.5					2.2				
	17		7.50	, 3					1,8	2			
	19		7.60	18					1.6	7 Z		_	
	23		7,35	.65					1.9				
	25 01		7.35	,60					1.4	5			
	31		7.55	185					1.5	7			
	33	_	7,20	,50					1.5	4			
	35 37		7.00	, 55 , 30					1.6	4			
	39 4/		7.10	, 40					1.1	0			
	43		6.90	,20					0.7	23			
	45		7.20 7.45	,50					<u>ව.</u> ර	9Pc			
	49 51		7.20	.50					0,1	7			
	53		7.10	,70					0,l				
									7				
											4-14-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
				_									
W	53.3		6:70					-	_				
W G L\$	54,1 55,6		5,45 4,90										
TOTALS:					I con com-	TIONS PE	250211	D 84	L _	0	CHIATIONS	CHECKED BY	,

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

CONSERVATION BOARD												_						
STREAM NAME: Cebo	ila G	·ee	k	-4	PP	01									C	ROSS-	SECTIO	N NO.:
CROSS-SECTION LOCATION:	50 FJ.	de	7 (A)	MS	re	- C 2	n	me	NO	13	1	- 1	217	va	do	6	DIV	dan
																		<u> </u>
DATE: 10 S OBSERVER	16. DY	1. gh		4. 1	da	ve -	1	_										
LEGAL % SECTION: DESCRIPTION	S W	ECTION	i:	17	Z T	OWNSH	IIP:	4	40	ØS_	RANGE	:		<u> </u>	$\langle W \rangle$	PM:	NM	\
COUNTY: MASCIALE	WATERSHI		301	1111	Sec.	Jan.	w	ATER DI	VISION	L	ł			DOW V	WATER (CODE:	388	395
USGS:														32	03	47	<u> </u>	
USFS:													1	2/	ঠিত	26	,	
				SUF	PPLE	EME	NTA	L DA	ATA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	ES/NO M	ETER TY	PE:	7	1 -	M												
METER NUMBER:	DATE RAT	ED:			CALI	B/SPIN:			sec	TAPE W	/EIGHT		160	, bs/foot		S U F	ION:	/ <i>Ed</i> ibs
CHANNEL BED MATERIAL SIZE RAN	8 ° CO	bbl	स्ट 5				рнот	OGRAP	HS TAKI	EN: YES	ON		иимві	ER OF F	²ното(GRAPHS	s: 3	+
0				СНА	NN	EL P	ROF	ILE	DAT	A								
STATION	DISTANCE FROM TAPE	ft)		ROE	READ	ING (ft)					(3)				1	LEGEND:
X Tape @ Stake LB	0.0		_ ≾	suv	vez	100		-									_ St	ake 🕱
X Tape @ Stake RB	0.0		_5	iu1	ve	186	3	S K E									Šta	ation (1)
1 WS @ Tape LB/RB	0.0		5	Í	; / E	5, 3	<u> </u>	T C	7.	7		TAPE			2		PI	noto (1)
2 WS Upstream	14.0		_		5.7	22		" _			\$7	,	2	1 many	~·`		_	
3 WS Downstream	14,0		<u>_</u>		5.4	<u> </u>	4		r."			(3	E)				Dire:	ction of Flow
SLOPE 0.19	128.0	2	, 0	06	,				` <u>`</u>	1 -							(
			AC	TAU	IC S	MA	PLIN	G SI	JMM	ARY								
STREAM ELECTROFISHED: (FES/N	DISTANC	E ELECT	rofis	HED: _	ft	t	f	ISH CA	UGHT:	YES/NO)		WATE	RCHE	MISTRY	SAMPL	.ED(YE	s)no
	LENGTH	FREQ	UENC	Y DISTE	RIBUTIO	ON BY	ONE-IN	ICH SIZ	E GRO	UPS (1.	0-1.9,	2.0-2.9,	ETC.)	$\overline{}$				
SPECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
				_			<u> </u>							-	-		 	
AQUATIC INSECTS IN STREAM SEC		OR SCII				,		1	i		1							
May 14, 5	a. Idis	7		001	NQ.t	V		LIM	rid	୧୯)							
					CC	MMC	IENT	rs 										
TO5 = 80																		
Ph. 8.2																		
Temp: 499	J. Jan. de																	
																		1

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Cel	olla	Creek	- Upig	X		CROS	S-SECTION	NO.:	DATE: S	08 SHEE	T OF
BEGINNING OF M	EASUREMEN'	EDGE OF W	VATER LOOKING D KE)	OWNSTREAM:	LEFT / RIGH	нт Ga	ge Re	ading:	ft	TIME:	1;25 p	m
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point (ft)	Width (ft)	Total Vertical Depth From Tape/Inst (ft)	Water Depth (ft)	Depth of Obser- vation (ft)	Revoluti	ons	Time (sec)	Veloc At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
125	2,0		4.27									
G	5.8		4,34			_						
	10.4		4.96									
W	10.8		5.35									
	12		5,55	, 2					Ø			
	14		5,65	, 3					.34			
	16		5.70	, 35					1,89	F		
	(5		5.85	. 50					1,24			
	2 o		5.75	140					2.05			
-	- 1 - 2 		5.95	, 60 , 85					1,9			
	- 2 4		6.20 5.85	, 85 C					1,91	rivet .		
	26		6.05	,50					238			
	7.0		6.35	1.0					220	2		
	32		6.05	1.0					2.10			
	34		5.95 6.0 5	0.6					1,40	,		
	36		6.05	0,7					1.04			
	38		5,75	0,4	•				0.60	4		
	40		6,00	0,70								_
	44		C 75						0.7			
			575	0,40					0,3			
	48		5.75 5.75 5.45	0.10					Ø			

										_		
$-\mathcal{W}_{-}$	48.8		5.35 4,54									
<u></u>	49.7		4,54									
<u>G</u>	50. 5		4.30 3.55									
TOTALS:												
End of Measur	rement Ti	me:	Gage Reas	11	CALCULAT	IONS PERF	ORME	D BY:	T	CALCULATIO	NS CHECKED BY	

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER CONSERVATION BOARI)			ı	-oc	OITA	N IN	FOF	MA	ΓΙΟΝ								ON	OF WILL
STREAM NAME:		·		_		e, 55, 1	,	27.0	. ; <i>j</i>		. 45					CI	ROSS-S	ECTION	NO.:
CROSS-SECTION LOCATION:	- N	: (1)	i 1						٠,,	ŧ	,		,	• •					- ` · · ·
				-						• -									
DATE: 1-26-06 OBSI	ERVERS: /2	, S 11	ハナト	, ,	. 1	477	TO/	10	A	1-1	C7 1/1	C.S.		, (-)	No	>1111	<u> </u>	1	
LEGAL % SEC DESCRIPTION	TIOLI		SECTION		Zu	TC	WNSH	IP:	41	1 (N)	s	RANGE:			Z. E,	W	M:		
COUNTY: HIN sda		WATERSH	IED:	; ;		٠.		WA.	TER DIV	ISION:	٠,			(oow w	ATER C	ODE:	388	375
usgs: M	neral	Mt	n. 7								·								
MAP(S): USFS:			•																
					SUF	PLE	MEI	IAT	DA	TA		,							
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YES/NO	,	AETER TY	PE:		,				<i>;</i> ,		_							
METER NUMBER:		DATE RA	TED:			CALIB	/SPIN:			ec .		EIGHT:	77	/(;;;;	s/foot		TENSI		lbs
CHANNEL BED MATERIAL SIZ	E RANGE:	;	1, 1,	;		JOALID		——— РНОТО		IS TAKE	, سر		T	NUMBE					
* · · · · · · ·		, ,	*						_	•	`				_			·. '	_
					СНА	NNE	EL P	ROF	ILE	DATA	\								
STATION		STANCE OM TAPE	(ft)		ROD	READI	NG (ft)	_					(*					<u> </u>	.EGEND:
Tape @ Stake LB		0.0		-	<u>, 17</u>	(1	100		–				\dashv					- Sta	ike 🕱
Tape @ Stake RB	:	0.0		+			70		(·						Sta	tion (1)
WS @ Tape LB/RB		0.0			,12		6.1i		1/	, , ,		· //	TAPE					Ph	oto 🗘
2 WS Upstream	. '			_		ξ,	7	ᆀ	` <u>_</u>), Ç,	<i>i</i>							- Di	tion of Flow
3 WS Downstream	<u> </u>	<u> </u>					!	4					(X)		-		-	tion of Flow
SLOPE (1), 1	12/	900	: ,(JO.	رز														
				AC	TAU	IC S	AMF	LIN	G Sl	MM	ARY								
STREAM ELECTROFISHED:	YES(NO)	DISTAN	CE ELECI	rofis	HED: _	ft		F	ISH CA	UGHT:	YES/NC	o)		WATER	CHEM	IISTRY	SAMPL	ED: (YES	ONO
		LENGT	H - FREQ	UENC	Y DISTE	RIBUTIO	ON BY (ONE-IN	CH SIZ	E GRO	JPS (1.	0-1.9, 2	.0-2.9,	ETC.)					
SPECIES (FILL IN)			1	2	3	4_	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
			+																
		_					_												
AQUATIC INSECTS IN STREA						R NAM	E:												
Sept. Sept.	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~ <i>f</i>	10	1	5 .	·													
						CC	ММ	ENT	S										
e Propi	S. [0]	-																	
									_										
<u> </u>																	_		

DISCHARGE/CROSS SECTION NOTES

S	TREAM NAME:	() 4 h	12000	A	in the second	, e		CROS	S-SECTION	INO.: 2	DATE: 9,26	- 06 SHEE	TOF
BE	GINNING OF M	EASUREME	NT EDGE OF V (0.0 AT STA	VATER LOOKING (OWNSTREAM:	LEFT / RIG		age Re	ading:	ft	TIME: 2.		
Features	Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial Point	Width (ft)	Total Vertical Depth From Tape/Inst	Water Depth (ft)	Depth of Obser- vation	Revolut	ions	Time	At	Mean in	Area (ft ²)	Discharge (cfs)
_		(ft)		(ft)		(ft)			(sec)	Point	Vertical		
H	5	0,0		3,15									
H	3	4.7 ∴0		6	#				<u> </u>	į į			
⊢	\sim	0 0	+	<u> </u>	0.40				_		-		
Н		9.0		5.34	0.75					1.08			
Г		2.5	<u> </u>	2.	08.2					1,0%	.		
					0,15					1.07			
Г		. **		is, 79	0,10					1,. 30			
		17 6		6.70	0.80					2.03	2		
				6,90	03.0					2.17			
				1.52	0,70					1.73			
		50.3		6.36	0.75					200			
L		í.		6,85	0.75					1,93			
L				4.89	0.80					2,00			
L		37.		6,94	0,85					210			
L		33.0	ļ	6.83	0.75					1,93	<u>'</u>		
L		<u> 18.0</u>	-	6.71	0,60					50.			
H		\$7,6		6,65	<u>. n.55</u>					1-15			
L		370		6.61	0.50					1.5			
H			 	6,38	0.30					1.20)		
H		1,5.0	-	6.77	0.10					4			
H													
H	 	<u> </u>	+										
Н			 						_	<u> </u>			
_													
Г			 			_							
				,									
L											•		
L									`				
L				_									
L	_												
_									_				
┝													
Г			· ·										
		_											_
		13.9							_				
		15.1		Silvi									
	6.5	51.7		17.10									
L								***************************************					
L	TOTALS:												
Ε	nd of Measur	ement 1	īme:	Gage Reading	j:ft	CALCULATE	ONS PERF	ORME	D BY:		CALCULATIONS	CHECKED BY:	

FIELD DATA FOR **INSTREAM FLOW DETERMINATIONS**

CONSERVATION BOAR	D		L		AIIO	או אי	IFUI	K IVI A	TION	4							_	
STREAM NAME:	bolla ic	Cic		7 /	2000	٢			• *!		5 °C ° F	*			C	ROSS-S	SECTIO	NO.:
CROSS-SECTION LOCATION:	137	4, 1 3	. %	1 .) -	,		ì	, ,	1 .	!	÷			•			
								•										
			-				*		,		•		1 .		C . :			
LEGAL % SEC DESCRIPTION	3M	CTION:		17	, TC	OWNSH			400	<u>/S</u>	RANGE	:	,	:/_ E	W	PM: 		
COUNTY: Hipsada	WATERSHED); ,	t i -		5- <u>-</u> 1	,	WA	TER D	IVISION:		;			DOW W	VATER (CODE:	388	95
Ţ-'		y. 7	7,5	-/											_			
<u> </u>				SUF	PLE	ME	NTA	L DA	ATA		,					_		
SAG TAPE SECTION SAME AS	YES/NO MET	TER TYPE	: r	1 2		}, ,	(-1 <u>^</u>		173					_				-
DISCHARGE SECTION: METER NUMBER:	DATE RATE	D:		, 5	l		•			*! =	N/V		10-1				V ()	
CHANNEL BED MATERIAL SIZ	/ ' '- '	12/05			TCALIE	3/SPIN:	PHOTO	_	SEC HS TAKI	TAPE W			NUMBE	R OF F		RAPH:		lbs
gravel to	<u> </u>								•		S/NO						-	
			C	НА	NNI	EL P	ROF	ILE	DAT	Α								
STATION	DISTANCE FROM TAPE (ft)			ROD	READ	ING (ft)						() <u>"</u>					EGEND:
Tape @ Stake LB	0.0		_5	541	vei	yed	, _	-	_			-		`			- St	ake 🕱
Tape @ Stake RB	0.0		•	<u>5 U</u>	NN	eyec	7	S K E		٠,٠				,	,		Sta	ition (1)
WS @ Tape LB/RB	0.0		(s. ?	34,	/ G,	53	·	T C H		. 2	\ · '	TAPE			, · · ·		PH	oto 🗘
WS Upstream	1			/ 	ζ, Σ			" _									_	
3 WS Downstream				,					,	· (•	3				Direc	tion of Flow
SLOPE		,00) 5												_			الخسر
			AQI	JAT	IC S	AMF	LIN	G S	UMM	ARY								
STREAM ELECTROFISHED:	YES/NO DISTANCE	ELECTRO	OFISH	E.D:	ft		F	ISH CA	AUGHT:	YESUN			WATER	CHEN	/ISTRY	SAMPL	ED: YE	SINO
	LENGTH -	FREQUE	NCY E	DISTR	IBUTIO	ON BY	ONE-IN	CH SI	ZE GRO	UPS (1.	0-1.9,2	2.0-2.9,	ETC.)	1				
SPECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
		-				 												
_																		
AQUATIC INSECTS IN STREA	1					ĘE:				-								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	500000	· _	t	7 }	5. ;	+												
					CC	MMC	ENT	rs										
CI	42 528 F																	
PL	= 7.1																	
	17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18																	

DISCHARGE/CROSS SECTION NOTES

STREAM NAME	<u> </u>	volla C	rcek				CROSS	S-SECTION	I NO.:	DATE:	Ub SHEE	T OF
BEGINNING OF	MEASUREM	ENT EDGE OF	WATER LOOKING (AKE)	OOWNSTREAM:	LEFT / RIG	iHT Gag	je Rea	ading:	/_ft	тіме:	2	
g Stake (S)	Distance		Total Vertical	Water Depth	Depth of	Revolutio	ons		Velocit	y (ft/sec)		
Stake (S) Grassline (W) Rock (R)	Initial	(ft)	Depth From Tape/Inst (ft)	(ft)	Obser- vation (ft)			Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
1,5	0.0		-130									
G	25		5.79			_						
W	3.4		G 32.									
	15.0		\$1.00	0.25					<u> </u>			
	11.0			0.50				-				
	1,0		1 2 3 3			_			2.33			
	1 2		• • • •	170					2.11		_	ļ
	13,0		, 1	0,55					2014			
	5.0			0 55					1.89			
	17,0			0.55					1.48			
	110			0,50			ĺ		ે. 🖫 💍			
	21.0								51			
	23 (1) 11.					202			
	200			0 45					1 -72			
	67.00		1. 17) 4					1 41 -			
	7,0		,	0.50					1.88			
<u> </u>		1		0.50					1/13		_	
	1,55	•,				,			1,85	_		-
	1,40		<u> </u>	7. (a)					2.73	₹		ļ
	F.70 , 3	<i>y</i>		೦. ಌ೦		1			2.12			ļ
	7,,			a,70		_			1 63			
	- 1		1 × 1	0.50					- 7		3	
		1	f !	0.60					1,72	_		
	. 15.,0	,	.):	0,50					1.10			
	-17.0)		D 740					3 .55			
	_		_									
			 								<u> </u>	
_	+	_										
				_		_						
					<u> </u>							
												•
			-	_							-	
- <u>, , ,)</u>	. 1	_	(~).)			_				-		
$-\mathcal{W}$	47,0	7	6.33 6.05	_						_	_	
		-	6,05								+	
25	50.	7	5.10								-	
TOTALS:	1 2 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
End of Meas	uremont.	Time: *		/ 1 •	CALCULAT	IONS PERFO	DRMED	BY:	<u> </u>	CALCULATIONS	CHECKED BY	<u> </u>
End of Meas	urement	Time: ,	Gage Read.	<u> </u>					`		0,,_0	

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

STREAM NAME:	Cebo	lla Cret	-upper			CROSS-SECTION NO.: 3
CROSS-SECTION LO	CATION: 40	C fd. up	shear f	•	S- priv	ab boundary
					- , .	4
DATE:) 0 - 8 - 09	OBSERVERS:	C. Smith,	A. Haves	•		
LEGAL DESCRIPTION	1/4 SECTION:	NW SECTION:	22 TOWNSHIP	34 W/S	RANGE:	ZEW MM
COUNTY:	scale	WATERSHED:	unison	WATER DIVISION:	4	DOW WATER CODE: 38895
MAP(S):		<u> </u>				316718
USFS:					•	4213699

SUPPLEMENTAL DATA

SAG TAPE SECTION SAME AS DISCHARGE SECTION:	METER TYPE:	M-M			
METER NUMBER:	DATE RATED:	CALIB/SPIN:	sec TAPE WEIGHT:	yeo Ibs/foot	TAPE TENSION: ibs
CHANNEL BED MATERIAL SIZE RANGE:	61-doot	boulders	PHOTOGRAPHS TAKEN: YES/NO	NUMBER OF PH	OTOGRAPHS: 5

CHANNEL PROFILE DATA

STATION	DISTANCE FROM TAPE (ft)	ROD READING (ft)		€	LEGEND:
Tape @ Stake LB	0.0	surreyed			Stake 🕱
Tape @ Stake RB	0.0	surveyed	s ĸ		Station (1)
1 WS @ Tape LB/RB	0.0	6.55 6.55	E T C	W Y	Photo (i)
2 WS Upstream	14.0	6,47	н	(2)	·
3 WS Downstream	14,0	6.60			Direction of Flow
SLOPE	13/28,0 =	005		8 (1)	

AQUATIC SAMPLING SUMMARY

	LENGTH	- FREC	UENC	DISTR	IBUTIO	ON BY C	ONE-IN	CH SIZ	E GRO	UP S (1.	0.1.9, 2	.0-2.9,	ETC.)					
PECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTA
				<u> </u>													<u> </u>	
		_															 	

COMMENTS

	The state of the s			
Ph= 8.1		 		
Temp: 450	7		_	
705=70				

DISCHARGE/CROSS SECTION NOTES

Grassline (G) Waterline (W) Rock (R)	SUREMENT Distance From Initial Point (tt) L.O L.I L.O L.I L.O INITIAL S IO INITIAL INITIAL	EDGE OF WA (0.0 AT STAK Width (ft)	Total Vertical Depth From Tape/Inst (ft) 5.22 5.96 6,55 7.28 7.35 7.25 7.25	Water Depth (ft)	Depth of Observation (ft)	Revolutions	Time (sec)	Velocity At Point		45 pu	Discharge (cfs)
LS 7	From Initial Point (ft) 2.0 4.1 4.9 8 10 12 14 15 70	(ft)	Vertical Depth From Tape/Inst (ft) 5.22 5.96 6,55 7,28 7.35 7.35 7.25 7.25	Depth (ft)	of Obser- vation (ft)	Revolutions	1 1	At Point	(ft/sec) Mean in Vertical	Area	Discharge
ر می الا	H.1 H.9 10 12 14 15 20	1.2	5.96 6,55 7,20 7,35 7,35 7,25 7,25	.80 .80	₹.65			0.10	41.76		
W	49 10 12 14 18 20	1.2)	6,55 7,20 7,35 7,35 7,25	.80 .80	(.65			0.16	41.76		
7>	10 12 14 16 18 20	1.2)	7.35 7.35 7.25 7.25	.80 .80	₹.64			1 2 2	1.16		1
	12 14 16 18		7.25	,70							
	18			-				1.69			
	20			.70				1,73			
			7.10	,55				1,59			
			7.30	.75				1.82			
	24		7.25	,00				1.20			
317	78 30	6,30	7,1 5	,50	√.25			1,12	1216		
J 7	3Z 34	\$, \$ Y	7.10	,30 ,55	1,23			0.32			
	36 38		7.15	,60				0.52			
	40		6.83	,30				0,53			
	42		6,75	.20				0.01			
					_						
											1
				-			-				
125/G- 1	46.3		6.55								
TOTALS: End of Measurer	ment Tim	20:	Gage Reading		CALCULA	TIONS PERFORM	ED BY:	<u> </u>	ALCULATIONS	CHECKED BY.	

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:	Cebolla Cree At BLM-Priva 2	
DATE: OBSERVERS:	8-Oct-08 R. Smith, A. I	Hayes
1/4 SEC: SECTION: TWP: RANGE: PM:	SW 12 44N 2W N.M.	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Gunnison 4 38895	
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA	=	*** NOTE *** Leave TAPE WT and TENSION
TAPE WT: TENSION:	0.0106 99999	at defaults for data collected with a survey level and rod
CHANNEL PROFILE DATA	<u>\</u>	
SLOPE:	0.006	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:		DATE

STREAM NAME: XS LOCATION: Cebolla Creek - upper At BLM-Private boundary

XS NUMBER:

2

DATA POINTS=

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
RS	2.00	4.90			0.00		0.00	0.00	0.0%
1 G	6.00	5.30			0.00		0.00	0.00	0.0%
. •	7.80	6.05			0.00		0.00	0.00	0.0%
W	9.70	6.70			0.00		0.00	0.00	0.0%
••	11.00	7.00	0.30	0.40	1.33	0.30	0.50	0.20	0.6%
	13.00	7.20	0.50	2.20	2.01	0.50	1.00	2.20	7.1%
	15.00	7.50	0.80	1.52	2.02	0.80	1.60	2.43	7.9%
	17.00	7.50	0.80	1.82	2.00	0.80	1.60	2.91	9.5%
	19.00	7.60	0.90	1.69	2.00	0.90	1.80	3.04	9.9%
	21.00	7.50	0.80	1.92	2.00	0.80	1.60	3.07	10.0%
	23.00	7.35	0.65	1.91	2.01	0.65	1.30	2.48	8.1%
	25.00	7.35	0.65	1.43	2.00	0.65	1.30	1.86	6.0%
	27.00	7.30	0.60	1.37	2.00	0.60	1.20	1.64	5.3%
	29.00	7.55	0.85	1.57	2.02	0.85	1.70	2.67	8.7%
	31.00	7.20	0.50	2.17	2.03	0.50	1.00	2.17	7.0%
	33.00	7.20	0.50	1.57	2.00	0.50	1.00	1.57	5.1%
	35.00	7.25	0.55	1.64	2.00	0.55	1.10	1.80	5.9%
	37.00	7.00	0.30	1.26	2.02	0.30	0.60	0.76	2.5%
	39.00	7.10	0.40	1.16	2.00	0.40	0.80	0.93	3.0%
	41.00	6.90	0.20	1.23	2.01	0.20	0.40	0.49	1.6%
	43.00	6.90	0.20	0.23	2.00	0.20	0.40	0.09	0.3%
	45.00	7.20	0.50	0.09	2.02	0.50	1.00	0.09	0.3%
	47.00	7.45	0.75	0.08	2.02	0.75	1.50	0.12	0.4%
	49.00	7.20	0.50	0.17	2.02	0.50	1.00	0.17	0.6%
	51.00	7.10	0.40	0.10	2.00	0.40	0.80	0.08	0.3%
	53.00	6.90	0.20	0.00	2.01	0.20	0.23	0.00	0.0%
W	53.30	6.70			0.36		0.00	0.00	0.0%
G	54.10	5.45			0.00		0.00	0.00	0.0%
LS	55.60	4.90			0.00		0.00	0.00	0.0%
TC)TALS				43.88	0.9	23 43	30.78	100.0%
TC	OTALS				43.88	0.9 (Max.)	23.43	30.78	1

29

Manning's n = Hydraulic Radius= 0.0576 0.53385557 STREAM NAME: XS LOCATION: Cebolla Creek - upper At BLM-Private boundary 2

XS NUMBER:

WATER LINE COMPARISON TABLE

WATER MIEAS COMP AREA LINE AREA AREA ERROR 23.43 23.43 0.0% 6.45 23.43 34.44 47.0% 6.47 23.43 33.55 43.2% 6.49 23.43 32.66 39.4% 6.51 23.43 30.89 31.9% 6.53 23.43 30.01 28.1% 6.57 23.43 29.12 24.3% 6.59 23.43 29.12 24.3% 6.61 23.43 27.36 16.8% 6.63 23.43 25.61 9.3% 6.65 23.43 25.61 9.3% 6.65 23.43 25.61 9.3% 6.66 23.43 24.74 5.6% 6.67 23.43 24.74 5.6% 6.68 23.43 24.74 5.6% 6.69 23.43 22.99 -1.9% 6.71 23.43 22.99 -1.9% </th <th>WATER</th> <th>MEAS</th> <th>COMP</th> <th>AREA</th>	WATER	MEAS	COMP	AREA
23.43 23.43 0.0% 6.45 23.43 34.44 47.0% 6.47 23.43 33.55 43.2% 6.49 23.43 32.66 39.4% 6.51 23.43 31.77 35.6% 6.53 23.43 30.89 31.9% 6.55 23.43 30.01 28.1% 6.57 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 25.61 9.3% 6.66 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.74 5.6% 6.69 23.43 23.86 1.9% 6.70 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.25 -9.3% 6.75 23.43 21.25 -9.3% 6.77 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 14.42 -38.4% 6.91 23.43 14.42 -38.4% 6.93 23.43 14.42 -38.4%		_		
6.45 23.43 34.44 47.0% 6.47 23.43 33.55 43.2% 6.49 23.43 32.66 39.4% 6.51 23.43 31.77 35.6% 6.53 23.43 30.89 31.9% 6.55 23.43 30.01 28.1% 6.57 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 25.61 9.3% 6.65 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 22.99 -1.9% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.12 -5.6% 6.74 23.43 22.12 -5.6% 6.74 23.43 22.12 -5.6% 6.74 23.43 21.25 -9.3%	LINL	ANLA	ANLA	LIXIXOIX
6.45 23.43 34.44 47.0% 6.47 23.43 33.55 43.2% 6.49 23.43 32.66 39.4% 6.51 23.43 31.77 35.6% 6.53 23.43 30.89 31.9% 6.55 23.43 30.01 28.1% 6.57 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 25.61 9.3% 6.65 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 22.99 -1.9% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.12 -5.6% 6.74 23.43 22.12 -5.6% 6.74 23.43 22.12 -5.6% 6.74 23.43 21.25 -9.3%		23 43	23 43	0.0%
6.47 23.43 33.55 43.2% 6.49 23.43 32.66 39.4% 6.51 23.43 31.77 35.6% 6.53 23.43 30.89 31.9% 6.55 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 25.61 9.3% 6.65 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 22.99 -1.9% 6.71 23.43 22.55 -3.7% 6.72 23.43 22.12 -5.6% 6.74 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 22.12 -5.6% 6.74 23.43 21.25 -9.3% 6.72 23.43 21.25 -9.3%	6.45			
6.49 23.43 32.66 39.4% 6.51 23.43 31.77 35.6% 6.53 23.43 30.89 31.9% 6.55 23.43 30.01 28.1% 6.57 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 26.49 13.1% 6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 22.99 -1.9% 6.71 23.43 22.55 -3.7% 6.72 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.74 23.43 21.25 -9.3% 6.77 23.43 21.25 -9.3%				
6.51 23.43 31.77 35.6% 6.53 23.43 30.89 31.9% 6.55 23.43 30.01 28.1% 6.57 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 26.49 13.1% 6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 22.99 -1.9% 6.71 23.43 22.55 -3.7% 6.72 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.74 23.43 21.25 -9.3% 6.77 23.43 21.25 -9.3% 6.77 23.43 19.53 -16.6% <td></td> <td></td> <td></td> <td></td>				
6.53 23.43 30.89 31.9% 6.55 23.43 30.01 28.1% 6.57 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 26.49 13.1% 6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 22.99 -1.9% 6.71 23.43 22.55 -3.7% 6.72 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.81 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% </td <td></td> <td></td> <td></td> <td></td>				
6.55 23.43 30.01 28.1% 6.57 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 26.49 13.1% 6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 21.29 -7.4% 6.75 23.43 21.29 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 21.25 -9.3% 6.79 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% <td></td> <td></td> <td></td> <td></td>				
6.57 23.43 29.12 24.3% 6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 26.49 13.1% 6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.81 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% <				
6.59 23.43 28.24 20.6% 6.61 23.43 27.36 16.8% 6.63 23.43 26.49 13.1% 6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.81 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9%				
6.61 23.43 27.36 16.8% 6.63 23.43 26.49 13.1% 6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 22.99 -1.9% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 21.29 -7.4% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.81 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4%				
6.63 23.43 26.49 13.1% 6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.81 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%			_	
6.65 23.43 25.61 9.3% 6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.81 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.66 23.43 25.17 7.5% 6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.81 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.67 23.43 24.74 5.6% 6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.81 23.43 19.53 -16.6% 6.81 23.43 17.81 -24.0% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.68 23.43 24.30 3.7% 6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.69 23.43 23.86 1.9% 6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.70 23.43 23.43 0.0% 6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.71 23.43 22.99 -1.9% 6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.72 23.43 22.55 -3.7% 6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.73 23.43 22.12 -5.6% 6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.74 23.43 21.69 -7.4% 6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.75 23.43 21.25 -9.3% 6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.77 23.43 20.39 -13.0% 6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%	6.74			-7.4%
6.79 23.43 19.53 -16.6% 6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%				
6.81 23.43 18.67 -20.3% 6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%	6.77	23.43	20.39	-13.0%
6.83 23.43 17.81 -24.0% 6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%	6.79		19.53	-16.6%
6.85 23.43 16.95 -27.6% 6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%	6.81	23.43	18.67	-20.3%
6.87 23.43 16.10 -31.3% 6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%	6.83	23.43	17.81	-24.0%
6.89 23.43 15.25 -34.9% 6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%	6.85	23.43	16.95	-27.6%
6.91 23.43 14.42 -38.4% 6.93 23.43 13.62 -41.8%	6.87	23.43	16.10	-31.3%
6.93 23.43 13.62 -41.8%	6.89	23.43	15.25	-34.9%
	6.91	23.43	14.42	-38.4%
6.95 23.43 12.84 -45.2%	6.93	23.43	13.62	-41.8%
	6.95	23.43	12.84	-45.2%

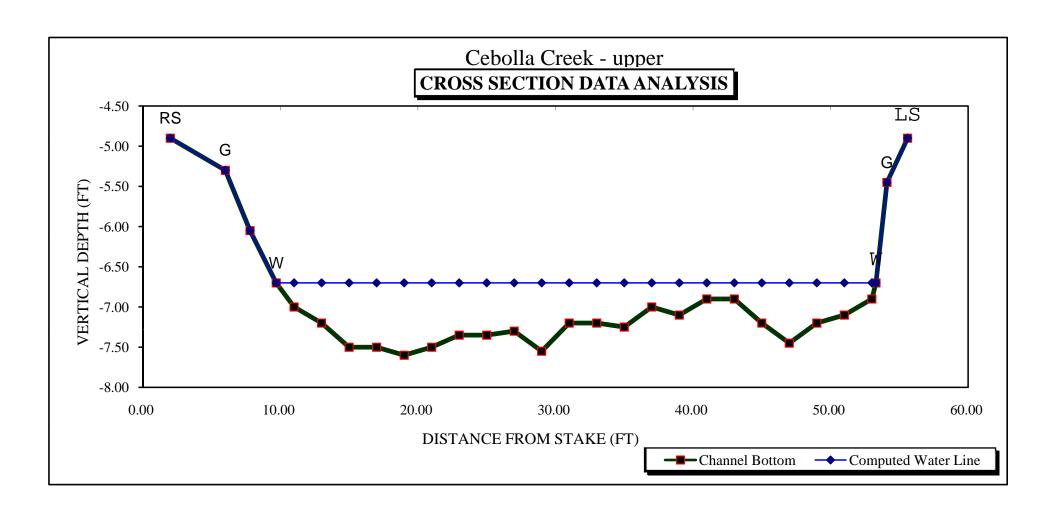
WATERLINE AT ZERO AREA ERROR =

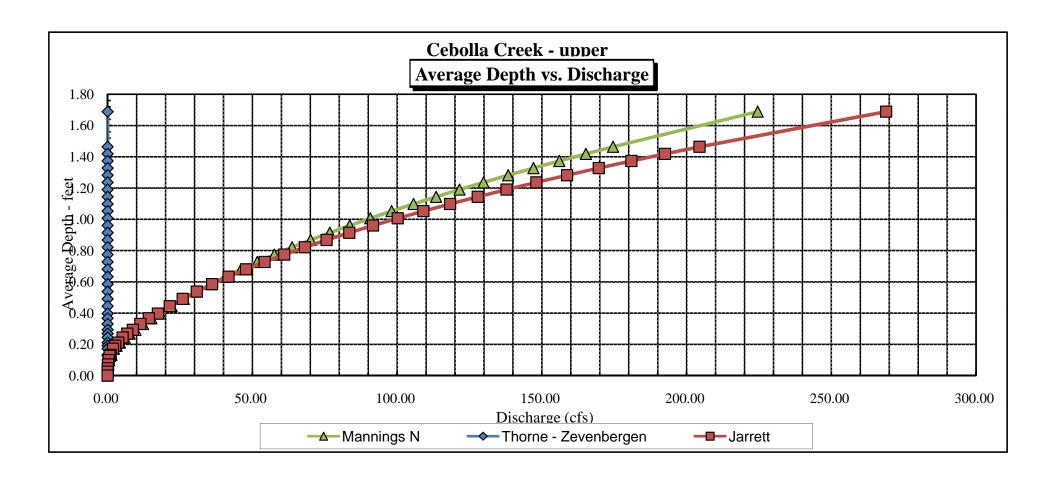
6.700

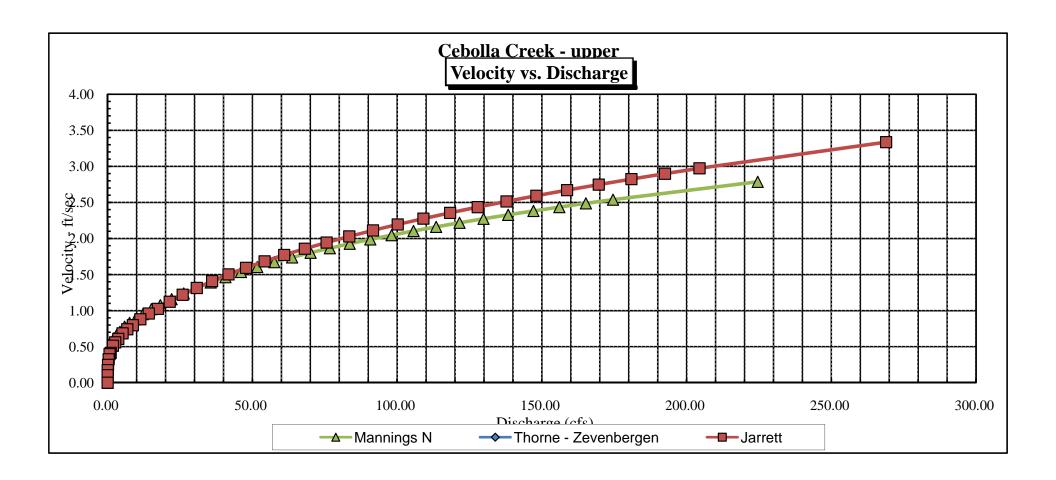
STREAM NAME: Cebolla Creek - upper XS LOCATION: At BLM-Private boundary

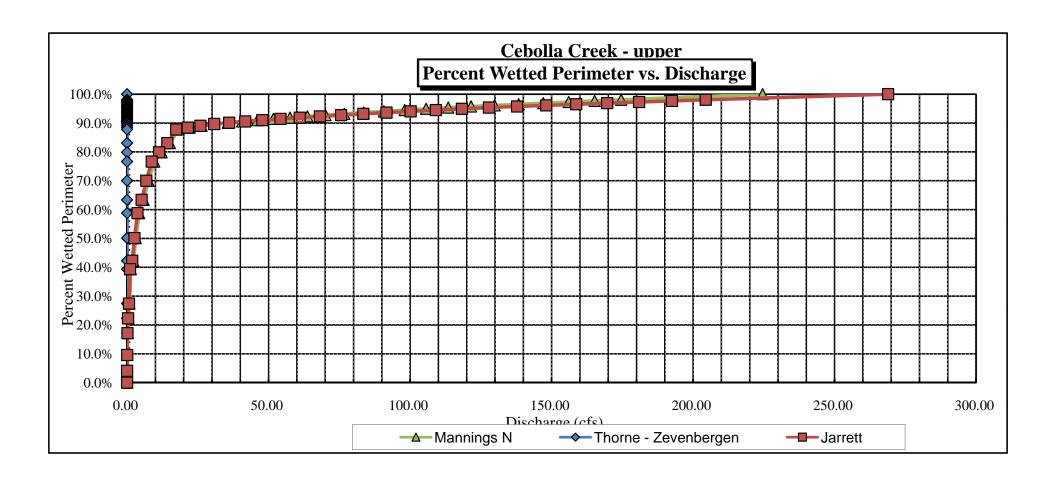
XS NUMBER:

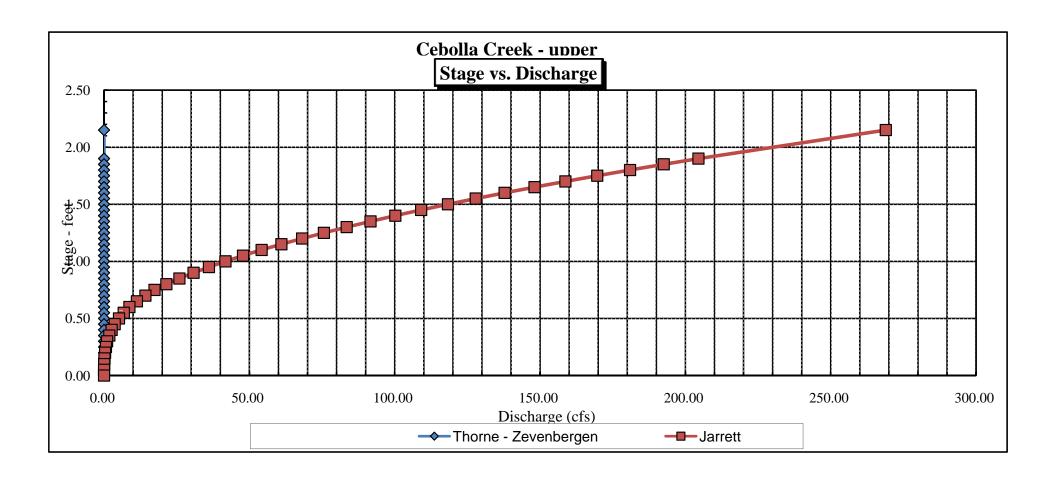
Constant Manning's n


 $^*GL^*$ = lowest Grassline elevation corrected for sag $^*WL^*$ = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE


_	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	5.45	47.74	1.69	2.15	80.62	48.93	100.0%	1.65	224.56	2.79
	5.70	46.98	1.46	1.90	68.77	47.98	98.1%	1.43	174.59	2.54
	5.75	46.83	1.42	1.85	66.43	47.79	97.7%	1.39	165.21	2.49
	5.80	46.68	1.37	1.80	64.09	47.61	97.3%	1.35	156.05	2.43
	5.85	46.52	1.33	1.75	61.76	47.42	96.9%	1.30	147.10	2.38
	5.90	46.37	1.28	1.70	59.44	47.23	96.5%	1.26	138.36	2.33
	5.95	46.22	1.24	1.65	57.12	47.04	96.1%	1.21	129.85	2.27
	6.00	46.07	1.19	1.60	54.82	46.85	95.7%	1.17	121.55	2.22
	6.05	45.92	1.14	1.55	52.52	46.66	95.4%	1.13	113.48	2.16
	6.10	45.74	1.10	1.50	50.23	46.44	94.9%	1.08	105.67	2.10
	6.15	45.56	1.05	1.45	47.94	46.23	94.5%	1.04	98.09	2.05
	6.20	45.38	1.01	1.40	45.67	46.02	94.0%	0.99	90.74	1.99
	6.25	45.20	0.96	1.35	43.41	45.80	93.6%	0.95	83.63	1.93
	6.30	45.03	0.91	1.30	41.15	45.59	93.2%	0.90	76.75	1.87
	6.35	44.85	0.87	1.25	38.90	45.38	92.7%	0.86	70.11	1.80
	6.40	44.67	0.82	1.20	36.67	45.16	92.3%	0.81	63.72	1.74
	6.45	44.49	0.77	1.15	34.44	44.95	91.9%	0.77	57.58	1.67
	6.50	44.31	0.73	1.10	32.22	44.73	91.4%	0.72	51.69	1.60
	6.55	44.13	0.68	1.05	30.01	44.52	91.0%	0.67	46.06	1.54
	6.60	43.96	0.63	1.00	27.80	44.31	90.5%	0.63	40.69	1.46
	6.65	43.78	0.58	0.95	25.61	44.09	90.1%	0.58	35.60	1.39
WL	6.70	43.60	0.54	0.90	23.42	43.88	89.7%	0.53	30.78	1.31
	6.75	43.31	0.49	0.85	21.25	43.57	89.0%	0.49	26.30	1.24
	6.80	43.02	0.44	0.80	19.09	43.25	88.4%	0.44	22.11	1.16
	6.85	42.72	0.40	0.75	16.95	42.94	87.8%	0.39	18.21	1.07
	6.90	40.43	0.37	0.70	14.82	40.63	83.0%	0.36	15.11	1.02
	6.95	38.88	0.33	0.65	12.84	39.06	79.8%	0.33	12.21	0.95
	7.00	37.33	0.29	0.60	10.93	37.50	76.6%	0.29	9.60	0.88
	7.05	34.10	0.27	0.55	9.15	34.25	70.0%	0.27	7.58	0.83
	7.10	30.87	0.24	0.50	7.52	31.00	63.4%	0.24	5.84	0.78
	7.15	28.63	0.21	0.45	6.04	28.76	58.8%	0.21	4.26	0.71
	7.20	24.40	0.19	0.40	4.66	24.51	50.1%	0.19	3.08	0.66
	7.25	20.58	0.17	0.35	3.54	20.68	42.3%	0.17	2.17	0.62
	7.30	19.16	0.13	0.30	2.54	19.24	39.3%	0.13	1.32	0.52
	7.35	13.34	0.13	0.25	1.68	13.41	27.4%	0.13	0.84	0.50
	7.40	10.86	0.10	0.20	1.07	10.90	22.3%	0.10	0.46	0.43
	7.45	8.37	0.07	0.15	0.59	8.40	17.2%	0.07	0.20	0.34
	7.50	4.69	0.05	0.10	0.22	4.70	9.6%	0.05	0.06	0.26
	7.55	2.00	0.03	0.05	0.05	2.00	4.1%	0.02	0.01	0.17
	7.60	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!


STREAM NAME: Cebolla Creek - upper
XS LOCATION: At BLM-Private boundary
XS NUMBER: 2


SUMMARY SHEET


MEASURED FLOW (Qm)=	30.78		RECOMMENDED INST	REAM FLOW:
CALCULATED FLOW (Qc)=	30.78		============	========
(Qm-Qc)/Qm * 100 =	0.0	%	FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	6.70	ft	========	======
CALCULATED WATERLINE (WLc)=	6.70	ft		
(WLm-WLc)/WLm * 100 =	0.0	%		
MAX MEASURED DEPTH (Dm)=	0.90	ft		
MAX CALCULATED DEPTH (Dc)=	0.90			
(Dm-Dc)/Dm * 100	0.90			
(biii-bc)/biii 100	0.0	70		
MEAN VELOCITY=	1.31	ft/sec		
MANNING'S N=	0.058			
SLOPE=	0.006	ft/ft		
.4 * Qm =	12.3	cfs		
2.5 * Qm=	77.0			
RECOMMENDATION BY:		AGENCY		DATE:
CWCB REVIEW BY:				DATE:

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

Cebolla Creek - upper

250' ds fr BLM-private boundary

LOCATION INFORMATION

STREAM NAME:

XS LOCATION:

XS NUMBER:	1	
DATE:	8-Oct-08	
OBSERVERS:	R. Smith, A.	Hayes
4/4.050:	CVA	
1/4 SEC: SECTION:	SW 12	
TWP:	12 44N	
RANGE:	2W	
PM:	N.M.	
I IVI.	IN.IVI.	
COUNTY:	Hinsdale	
WATERSHED:	Gunnison	
DIVISION:	4	
DOW CODE:	38895	
USGS MAP:	0	
USFS MAP:	0	
SUPPLEMENTAL DATA	_	*** NOTE ***
	=	Leave TAPE WT and TENSION
		at defaults for data collected
TAPE WT:	0.0106	with a survey level and rod
TENCION:		
TENSION:	99999	
CHANNEL PROFILE DATA		
CHANNEL PROFILE DATA	<u> </u>	
CHANNEL PROFILE DATA	<u> </u>	
CHANNEL PROFILE DATA SLOPE:	0.006	
CHANNEL PROFILE DATA SLOPE:	0.006	DATE
CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	0.006 Y:	DATE
CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	0.006 Y:	
CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	0.006 Y:	

STREAM NAME: Cebolla Creek - upper

XS LOCATION: 250' ds fr BLM-private boundary

XS NUMBER:

 $^*GL^*$ = lowest Grassline elevation corrected for sag $^*WL^*$ = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

Constant Manning's n

-	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
=	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	4.34	44.48	1.37	2.01	61.04	45.45	100.0%	1.34	175.47	2.87
	4.35	44.35	1.37	2.00	60.60	45.32	99.7%	1.34	173.68	2.87
	4.40	43.71	1.34	1.95	58.40	44.67	98.3%	1.31	164.87	2.82
	4.45	43.07	1.31	1.90	56.23	44.02	96.9%	1.28	156.30	2.78
	4.50	42.43	1.27	1.85	54.09	43.37	95.4%	1.25	147.99	2.74
	4.55	41.84	1.24	1.80	51.98	42.77	94.1%	1.22	139.81	2.69
	4.60	41.44	1.20	1.75	49.90	42.34	93.1%	1.18	131.49	2.63
	4.65	41.05	1.17	1.70	47.84	41.91	92.2%	1.14	123.40	2.58
	4.70	40.65	1.13	1.65	45.80	41.48	91.3%	1.10	115.53	2.52
	4.75	40.25	1.09	1.60	43.77	41.05	90.3%	1.07	107.90	2.46
	4.80	39.86	1.05	1.55	41.77	40.62	89.4%	1.03	100.50	2.41
	4.85	39.46	1.01	1.50	39.79	40.19	88.4%	0.99	93.34	2.35
	4.90	39.07	0.97	1.45	37.83	39.76	87.5%	0.95	86.41	2.28
	4.95	38.67	0.93	1.40	35.88	39.33	86.5%	0.91	79.71	2.22
	5.00	38.53	0.88	1.35	33.95	39.14	86.1%	0.87	72.93	2.15
	5.05	38.46	0.83	1.30	32.03	39.01	85.8%	0.82	66.31	2.07
	5.10	38.38	0.78	1.25	30.11	38.88	85.5%	0.77	59.95	1.99
	5.15	38.30	0.74	1.20	28.19	38.76	85.3%	0.73	53.84	1.91
	5.20	38.23	0.69	1.15	26.28	38.63	85.0%	0.68	47.99	1.83
	5.25	38.15	0.64	1.10	24.37	38.50	84.7%	0.63	42.42	1.74
	5.30	38.08	0.59	1.05	22.46	38.38	84.4%	0.59	37.12	1.65
WL	5.35	38.00	0.54	1.00	20.56	38.25	84.1%	0.54	32.10	1.56
	5.40	37.30	0.50	0.95	18.68	37.54	82.6%	0.50	27.69	1.48
	5.45	36.60	0.46	0.90	16.83	36.83	81.0%	0.46	23.58	1.40
	5.50	35.97	0.42	0.85	15.02	36.19	79.6%	0.41	19.72	1.31
	5.55	35.33	0.37	0.80	13.23	35.55	78.2%	0.37	16.17	1.22
	5.60	34.00	0.34	0.75	11.50	34.21	75.3%	0.34	13.13	1.14
	5.65	32.67	0.30	0.70	9.83	32.87	72.3%	0.30	10.39	1.06
	5.70	30.33	0.27	0.65	8.26	30.54	67.2%	0.27	8.16	0.99
	5.75	27.33	0.25	0.60	6.77	27.53	60.6%	0.25	6.27	0.93
	5.80	24.10	0.23	0.55	5.48	24.28	53.4%	0.23	4.80	0.88
	5.85	20.87	0.21	0.50	4.36	21.03	46.3%	0.21	3.60	0.83
	5.90	18.51	0.18	0.45	3.37	18.66	41.1%	0.18	2.55	0.75
	5.95	16.16	0.16	0.40	2.51	16.29	35.8%	0.15	1.70	0.68
	6.00	12.66	0.14	0.35	1.78	12.76	28.1%	0.14	1.14	0.64
	6.05	7.56	0.17	0.30	1.28	7.63	16.8%	0.17	0.92	0.72
	6.10	6.29	0.15	0.25	0.93	6.35	14.0%	0.15	0.61	0.66
	6.15	5.02	0.13	0.20	0.65	5.06	11.1%	0.13	0.39	0.60
	6.20	3.75	0.12	0.15	0.43	3.78	8.3%	0.11	0.24	0.56
	6.25	3.17	0.08	0.10	0.26	3.18	7.0%	0.08	0.11	0.44
	6.30	2.58	0.04	0.05	0.11	2.59	5.7%	0.04	0.03	0.30
	6.35	0.00	#DIV/0!	0.00	0.00	0.00	0.0%	#DIV/0!	#DIV/0!	#DIV/0!

STREAM NAME: XS LOCATION: Cebolla Creek - upper

250' ds fr BLM-private boundary 1

XS NUMBER:

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
LINE	ANEA	ANEA	EKKOK
	20.56	20.56	0.0%
5.10	20.56	30.11	46.4%
5.12	20.56	29.34	42.7%
5.14	20.56	28.57	39.0%
5.14	20.56	27.81	35.3%
		_	
5.18	20.56	27.04	31.5%
5.20	20.56	26.28	27.8%
5.22	20.56	25.51	24.1%
5.24	20.56	24.75	20.4%
5.26	20.56	23.99	16.7%
5.28	20.56	23.22	13.0%
5.30	20.56	22.46	9.3%
5.31	20.56	22.08	7.4%
5.32	20.56	21.70	5.6%
5.33	20.56	21.32	3.7%
5.34	20.56	20.94	1.9%
5.35	20.56	20.56	0.0%
5.36	20.56	20.18	-1.8%
5.37	20.56	19.80	-3.7%
5.38	20.56	19.43	-5.5%
5.39	20.56	19.05	-7.3%
5.40	20.56	18.68	-9.2%
5.42	20.56	17.93	-12.8%
5.44	20.56	17.20	-16.4%
5.46	20.56	16.47	-19.9%
5.48	20.56	15.74	-23.5%
5.50	20.56	15.02	-27.0%
5.52	20.56	14.30	-30.4%
5.54	20.56	13.59	-33.9%
5.56	20.56	12.88	-37.3%
5.58	20.56	12.19	-40.7%
5.60	20.56	11.50	-44.1%

WATERLINE AT ZERO AREA ERROR =

XS NUMBER:

Cebolla Creek - upper 250' ds fr BLM-private boundary

DATA POINTS=

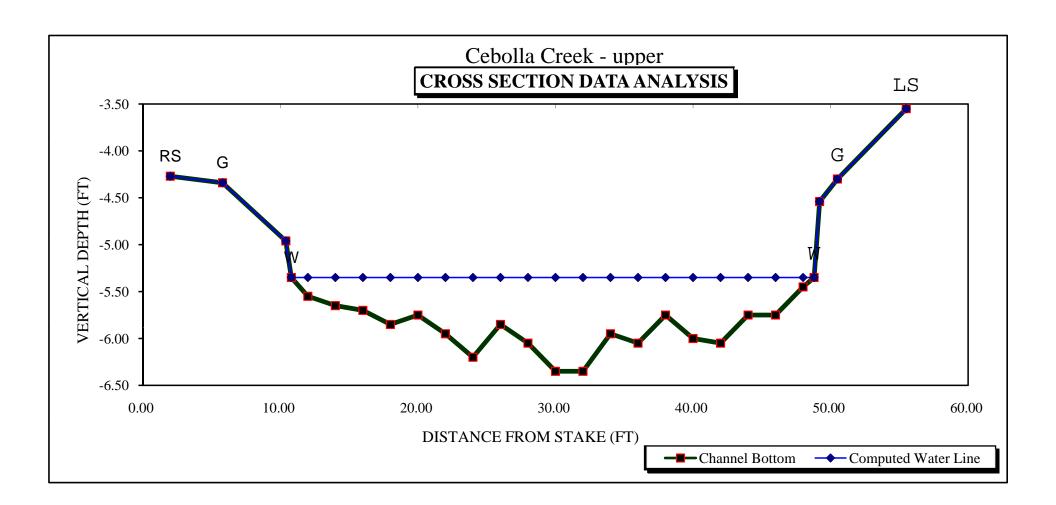
27

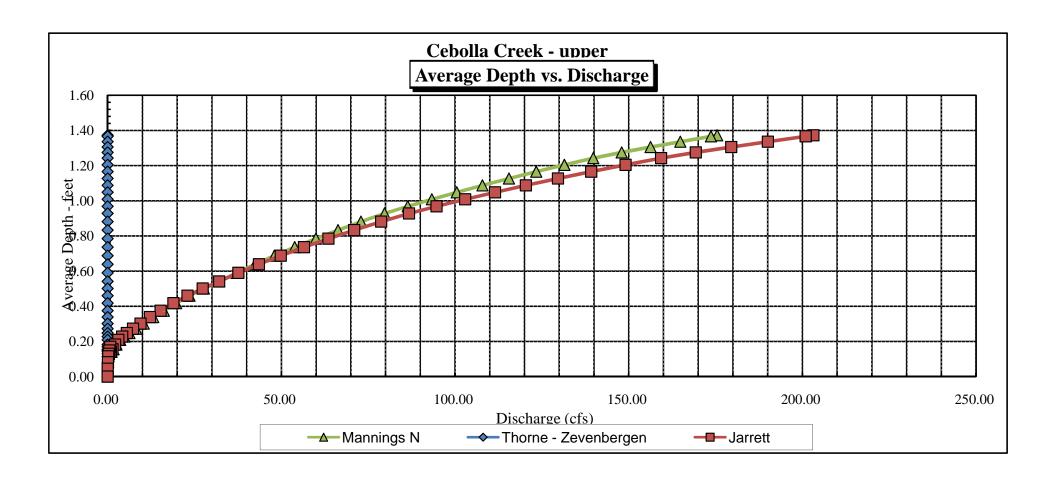
VALUES COMPUTED FROM RAW FIELD DATA

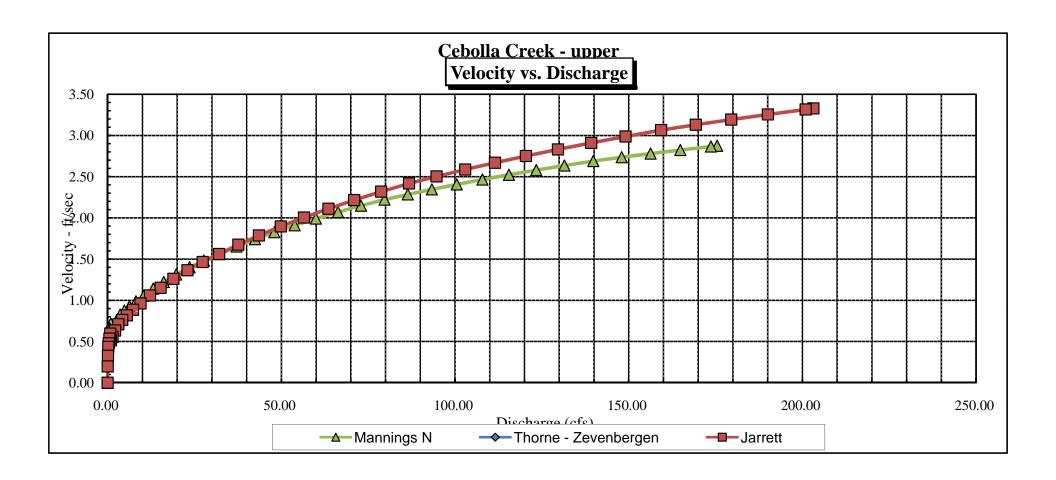
FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% (
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CEL
RS	2.00	4.27			0.00		0.00	0.00	0.0%
G	5.80	4.34			0.00		0.00	0.00	0.09
	10.40	4.96			0.00		0.00	0.00	0.09
W	10.80	5.35			0.00		0.00	0.00	0.09
	12.00	5.55	0.20	0.00	1.22	0.20	0.32	0.00	0.09
	14.00	5.65	0.30	0.34	2.00	0.30	0.60	0.20	0.69
	16.00	5.70	0.35	1.89	2.00	0.35	0.70	1.32	4.19
	18.00	5.85	0.50	1.24	2.01	0.50	1.00	1.24	3.9%
	20.00	5.75	0.40	2.05	2.00	0.40	0.80	1.64	5.19
	22.00	5.95	0.60	1.91	2.01	0.60	1.20	2.29	7.19
	24.00	6.20	0.85	1.91	2.02	0.85	1.70	3.25	10.19
	26.00	5.85	0.50	2.35	2.03	0.50	1.00	2.35	7.39
	28.00	6.05	0.70	2.36	2.01	0.70	1.40	3.30	10.39
	30.00	6.35	1.00	2.20	2.02	1.00	2.00	4.40	13.79
	32.00	6.35	1.00	2.19	2.00	1.00	2.00	4.38	13.69
	34.00	5.95	0.60	1.40	2.04	0.60	1.20	1.68	5.29
	36.00	6.05	0.70	1.04	2.00	0.70	1.40	1.46	4.5%
	38.00	5.75	0.40	0.64	2.02	0.40	0.80	0.51	1.69
	40.00	6.00	0.65	1.20	2.02	0.65	1.30	1.56	4.9%
	42.00	6.05	0.70	1.13	2.00	0.70	1.40	1.58	4.9%
	44.00	5.75	0.40	0.77	2.02	0.40	0.80	0.62	1.99
	46.00	5.75	0.40	0.39	2.00	0.40	0.80	0.31	1.09
	48.00	5.45	0.10	0.00	2.02	0.10	0.14	0.00	0.09
W	48.80	5.35			0.81		0.00	0.00	0.09
	49.20	4.54			0.00		0.00	0.00	0.09
G	50.50	4.30			0.00		0.00	0.00	0.09
LS	55.50	3.55			0.00		0.00	0.00	0.0%
T0	TALS				38.25	1	20.56	32.10	100.0%

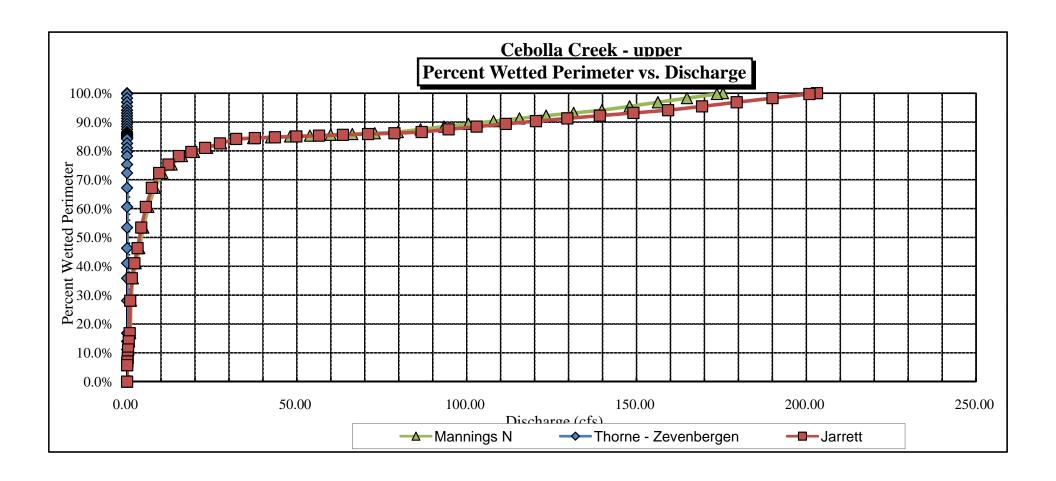
Manning's n = Hydraulic Radius=

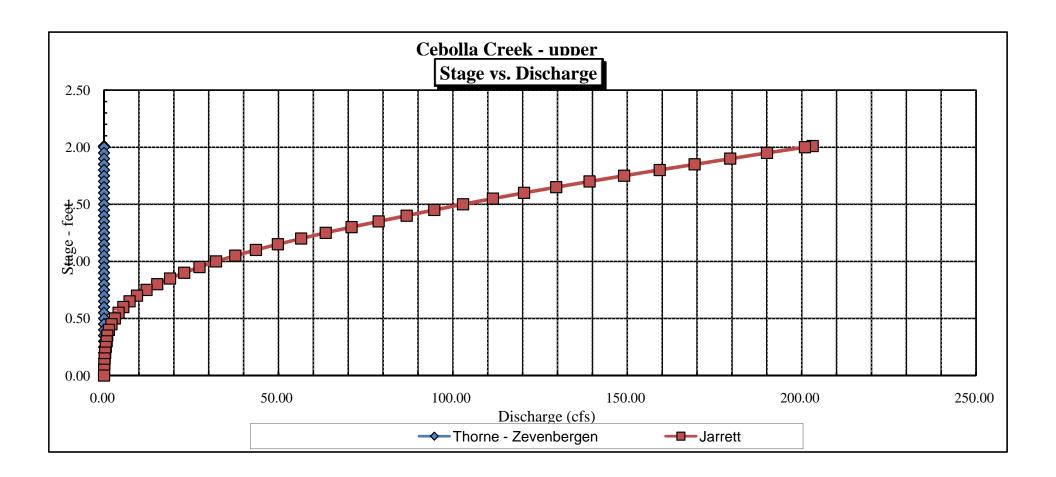
(Max.)


0.0487 0.53754837


Cebolla Creek - upper


ON: 250' ds fr BLM-private boundary


XS NUMBER:


MEASURED FLOW (Qm)=	32.10	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	32.10	cfs	==============	
(Qm-Qc)/Qm * 100 =	0.0	%	EL OW (0E0)	DEDIOD
MEASURED WATERLINE (WLm)=	5.35	ft	FLOW (CFS)	PERIOD ======
CALCULATED WATERLINE (WLc)=	5.35			
(WLm-WLc)/WLm * 100 =	0.0			
(172111 1720), 172111 100 =	0.0	70		
MAX MEASURED DEPTH (Dm)=	1.00	ft		
MAX CALCULATED DEPTH (Dc)=	1.00	ft		
(Dm-Dc)/Dm * 100	0.0	%		
MEAN VELOCITY=	1 56	ft/sec		
MANNING'S N=	0.049	10000		
SLOPE=	0.006	ft/ft		
4 * 0 ***	40.0			
.4 * Qm = 2.5 * Qm=	12.8 80.2			
2.5 QIII=	00.2	CIS		
RECOMMENDATION BY:		AGENCY		DATE:
CWCR REVIEW RV				DATE:

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME: XS LOCATION: XS NUMBER:		k - above Spring Creek ate boundary at cabin
DATE: OBSERVERS:	26-Sep-06 R. Smith, A.	Hayes, T. Fresques, J. Thompson
1/4 SEC: SECTION: TWP: RANGE: PM:	SW 12 44N 2W N.M.	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Gunnison 4 38895	
USGS MAP: USFS MAP:	Mineral Mtn. 0	7.5'
SUPPLEMENTAL DATA	=	*** NOTE *** Leave TAPE WT and TENSION
TAPE WT: TENSION:	0.0106 99999	at defaults for data collected with a survey level and rod
CHANNEL PROFILE DATA	<u>\</u>	
SLOPE:	0.00466667	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:		DATE

Cebolla Creek - above Spring Creek at BLM - private boundary at cabin

XS NUMBER:

DATA POINTS=

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% C
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELI
S	0.00	3.16			0.00		0.00	0.00	0.0%
G	4.70	5.72			0.00		0.00	0.00	0.0%
W	7.00	6.11	0.00	0.00	0.00		0.00	0.00	0.0%
	9.00	6.70	0.60	1.08	2.09	0.60	1.20	1.30	3.0%
	11.00	6.84	0.75	1.51	2.00	0.75	1.50	2.27	5.3%
	13.00	6.92	0.80	1.06	2.00	0.80	1.60	1.70	4.0%
	15.00	6.87	0.75	1.67	2.00	0.75	1.50	2.51	5.9%
	17.00	6.79	0.70	1.96	2.00	0.70	1.40	2.74	6.4%
	19.00	6.90	0.80	2.03	2.00	0.80	1.60	3.25	7.6%
	21.00	6.90	0.80	2.17	2.00	0.80	1.60	3.47	8.2%
	23.00	6.82	0.70	1.73	2.00	0.70	1.40	2.42	5.7%
	25.00	6.86	0.75	2.55	2.00	0.75	1.50	3.83	9.0%
	27.00	6.85	0.75	1.93	2.00	0.75	1.50	2.90	6.8%
	29.00	6.89	0.80	2.02	2.00	0.80	1.60	3.23	7.6%
	31.00	6.94	0.85	2.12	2.00	0.85	1.70	3.60	8.5%
	33.00	6.83	0.75	1.93	2.00	0.75	1.50	2.90	6.8%
	35.00	6.71	0.60	1.91	2.00	0.60	1.20	2.29	5.4%
	37.00	6.65	0.55	1.75	2.00	0.55	1.10	1.93	4.5%
	39.00	6.61	0.50	1.52	2.00	0.50	1.00	1.52	3.6%
	41.00	6.38	0.30	1.20	2.01	0.30	0.60	0.72	1.7%
	43.00	6.22	0.10	0.00	2.01	0.10	0.15	0.00	0.0%
W	43.90	6.11			0.91		0.00	0.00	0.0%
G	45.10	5.64			0.00		0.00	0.00	0.0%
S	52.20	4.20			0.00		0.00	0.00	0.0%
то	TALS				37.03	0.85	23.65	42.56	100.0%

24

 $\begin{tabular}{lll} Manning's n = & 0.0418 \\ Hydraulic Radius = & 0.63846413 \\ \end{tabular}$

STREAM NAME: Cebolla Creek - above Spring Creek at BLM - private boundary at cabin 2

XS NUMBER:

WATER LINE COMPARISON TABLE

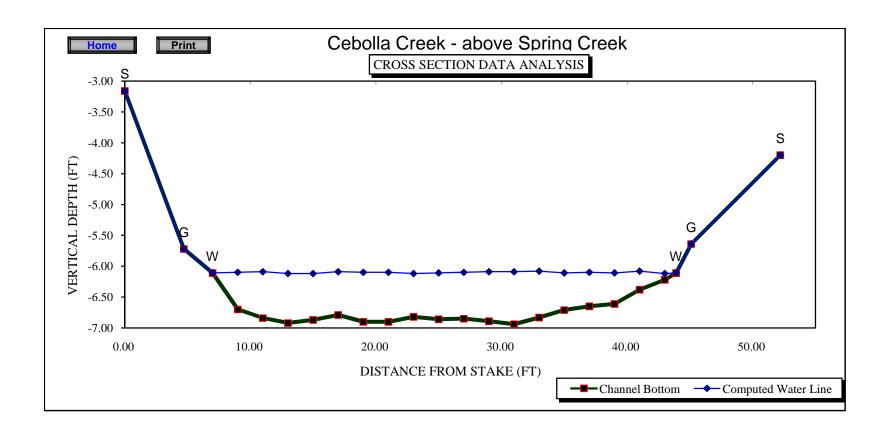
WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	23.65	23.34	-1.3%
5.86	23.65	32.83	38.8%
5.88	23.65	32.05	35.5%
5.90	23.65	31.28	32.3%
5.92	23.65	30.50	29.0%
5.94	23.65	29.74	25.8%
5.96	23.65	28.97	22.5%
5.98	23.65	28.21	19.3%
6.00	23.65	27.45	16.1%
6.02	23.65	26.70	12.9%
6.04	23.65	25.94	9.7%
6.06	23.65	25.20	6.6%
6.07	23.65	24.82	5.0%
6.08	23.65	24.45	3.4%
6.09	23.65	24.08	1.8%
6.10	23.65	23.71	0.3%
6.11	23.65	23.34	-1.3%
6.12	23.65	22.97	-2.8%
6.13	23.65	22.60	-4.4%
6.14	23.65	22.24	-5.9%
6.15	23.65	21.87	-7.5%
6.16	23.65	21.51	-9.0%
6.18	23.65	20.79	-12.1%
6.20	23.65	20.07	-15.1%
6.22	23.65	19.35	-18.2%
6.24	23.65	18.64	-21.2%
6.26	23.65	17.94	-24.1%
6.28	23.65	17.24	-27.1%
6.30	23.65	16.55	-30.0%
6.32	23.65	15.87	-32.9%
6.34	23.65	15.19	-35.8%
6.36	23.65	14.52	-38.6%

WATERLINE AT ZERO AREA ERROR =

STREAM NAME: Cebolla Creek - above Spring Creek at BLM - private boundary at cabin XS LOCATION:

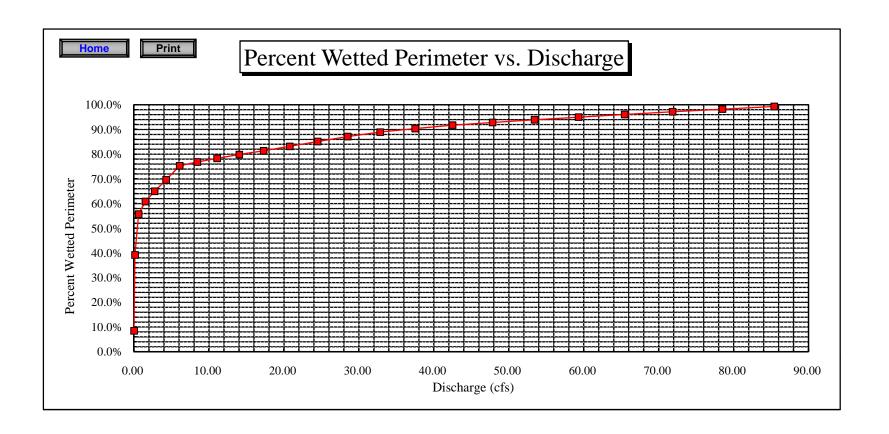
XS NUMBER:

Constant Manning's n


 $^*GL^*$ = lowest Grassline elevation corrected for sag $^*WL^*$ = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

•	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	5.72	40.20	0.95	1.22	38.37	40.44	100.0%	0.95	89.95	2.34
	5.75	39.93	0.93	1.19	37.10	40.16	99.3%	0.92	85.43	2.30
	5.80	39.50	0.89	1.14	35.12	39.72	98.2%	0.88	78.51	2.24
	5.85	39.08	0.85	1.09	33.15	39.29	97.2%	0.84	71.86	2.17
	5.90	38.66	0.81	1.04	31.21	38.85	96.1%	0.80	65.46	2.10
	5.95	38.24	0.77	0.99	29.29	38.41	95.0%	0.76	59.32	2.03
	6.00	37.81	0.72	0.94	27.38	37.98	93.9%	0.72	53.45	1.95
	6.05	37.39	0.68	0.89	25.50	37.54	92.8%	0.68	47.84	1.88
WL	6.10	36.97	0.64	0.84	23.64	37.11	91.8%	0.64	42.50	1.80
	6.15	36.42	0.60	0.79	21.81	36.54	90.4%	0.60	37.53	1.72
	6.20	35.84	0.56	0.74	20.00	35.95	88.9%	0.56	32.85	1.64
	6.25	35.12	0.52	0.69	18.23	35.23	87.1%	0.52	28.52	1.56
	6.30	34.33	0.48	0.64	16.49	34.42	85.1%	0.48	24.51	1.49
	6.35	33.53	0.44	0.59	14.80	33.62	83.1%	0.44	20.78	1.40
	6.40	32.82	0.40	0.54	13.14	32.90	81.4%	0.40	17.29	1.32
	6.45	32.22	0.36	0.49	11.51	32.29	79.8%	0.36	14.05	1.22
	6.50	31.61	0.31	0.44	9.92	31.67	78.3%	0.31	11.10	1.12
	6.55	31.01	0.27	0.39	8.35	31.06	76.8%	0.27	8.44	1.01
	6.60	30.40	0.22	0.34	6.81	30.44	75.3%	0.22	6.10	0.89
	6.65	28.11	0.19	0.29	5.35	28.14	69.6%	0.19	4.29	0.80
	6.70	26.25	0.15	0.24	3.99	26.27	65.0%	0.15	2.75	0.69
	6.75	24.57	0.11	0.19	2.72	24.58	60.8%	0.11	1.52	0.56
	6.80	22.51	0.07	0.14	1.53	22.53	55.7%	0.07	0.62	0.40
	6.85	15.84	0.03	0.09	0.54	15.84	39.2%	0.03	0.14	0.25
	6.90	3.41	0.02	0.04	0.05	3.42	8.4%	0.02	0.01	0.15

Cebolla Creek - above Spring Creek at BLM - private boundary at cabin


XS NUMBER:

MEASURED FLOW (Qm)=	42.56	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	42.50	cfs	=======================================	========
(Qm-Qc)/Qm * 100 =	0.1	%		
			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	6.11	ft	========	======
CALCULATED WATERLINE (WLc)=	6.10	ft		
(WLm-WLc)/WLm * 100 =	0.1	%		
MAX MEASURED DEPTH (Dm)=	0.85	ft		
MAX CALCULATED DEPTH (Dc)=	0.84			
(Dm-Dc)/Dm * 100	1.4			
MEAN VELOCITY=	1.80	ft/sec		
MANNING'S N=	0.042	10360		
SLOPE=	0.00466667	ft/ft		
.4 * Qm =	17.0	ofe		
.4 ^ Qm = 2.5 * Qm=	17.0 106.4			
RECOMMENDATION BY:		AGENCY		DATE:
CWCB REVIEW BY:				DATE:

-7 -3

ChartMin 0 ChartMinY ChartMax 55 ChartMaxY

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

Cebolla Creek - above Spring Creek

LOCATION INFORMATION

STREAM NAME:

XS LOCATION: XS NUMBER:	at BLM - priv	ate boundary at cabin
DATE: OBSERVERS:	26-Sep-06 R. Smith, A.	Hayes, T. Fresques, J. Thompson
1/4 SEC: SECTION: TWP: RANGE: PM:	SW 12 44N 2W N.M.	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Gunnison 4 38895	
USGS MAP: USFS MAP:	Mineral Mtn. 0	7.5'
SUPPLEMENTAL DATA	=	*** NOTE *** Leave TAPE WT and TENSION at defaults for data collected
TAPE WT: TENSION:	0.0106 99999	with a survey level and rod
CHANNEL PROFILE DATA	<u> </u>	
SLOPE:	0.00466667	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:		DATE

STREAM NAME: XS LOCATION: XS NUMBER: Cebolla Creek - above Spring Creek at BLM - private boundary at cabin

1

DATA POINTS=

29

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% C
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
S	0.00	4.30			0.00		0.00	0.00	0.0%
1 G	2.50	5.79			0.00		0.00	0.00	0.0%
W	3.40	6.34			0.00		0.00	0.00	0.0%
	5.00	6.60	0.25	0.81	1.62	0.25	0.45	0.36	0.9%
	7.00	6.86	0.50	2.04	2.02	0.50	1.00	2.04	4.8%
	9.00	7.05	0.70	2.33	2.01	0.70	1.40	3.26	7.7%
	11.00	7.03	0.70	2.11	2.00	0.70	1.40	2.95	7.0%
	13.00	6.89	0.55	2.09	2.00	0.55	1.10	2.30	5.4%
	15.00	6.97	0.65	1.89	2.00	0.65	1.30	2.46	5.8%
	17.00	6.90	0.55	1.48	2.00	0.55	1.10	1.63	3.9%
	19.00	6.84	0.50	1.28	2.00	0.50	1.00	1.28	3.0%
	21.00	6.88	0.55	1.51	2.00	0.55	1.10	1.66	3.9%
	23.00	6.73	0.40	2.02	2.01	0.40	0.80	1.62	3.8%
	25.00	6.78	0.45	1.94	2.00	0.45	0.90	1.75	4.1%
	27.00	6.79	0.45	1.74	2.00	0.45	0.90	1.57	3.7%
	29.00	6.83	0.50	1.88	2.00	0.50	1.00	1.88	4.5%
	31.00	6.85	0.50	2.13	2.00	0.50	1.00	2.13	5.0%
	33.00	6.86	0.50	1.85	2.00	0.50	1.00	1.85	4.4%
	35.00	6.92	0.60	2.22	2.00	0.60	1.20	2.66	6.3%
	37.00	6.91	0.60	2.12	2.00	0.60	1.20	2.54	6.0%
	39.00	7.02	0.70	1.63	2.00	0.70	1.40	2.28	5.4%
	41.00	6.94	0.60	1.79	2.00	0.60	1.20	2.15	5.1%
	43.00	6.94	0.60	1.92	2.00	0.60	1.20	2.30	5.5%
	45.00	6.96	0.60	1.10	2.00	0.60	1.20	1.32	3.1%
	47.00	6.63	0.30	0.55	2.03	0.30	0.44	0.24	0.6%
W	47.90	6.33			0.95		0.00	0.00	0.0%
	49.00	6.05			0.00		0.00	0.00	0.0%
G	50.40	5.76			0.00		0.00	0.00	0.0%
S	54.80	4.24			0.00		0.00	0.00	0.0%
TO	TALS				44.64	0.7	23.29	42.23	100.0%

Manning's n = Hydraulic Radius=

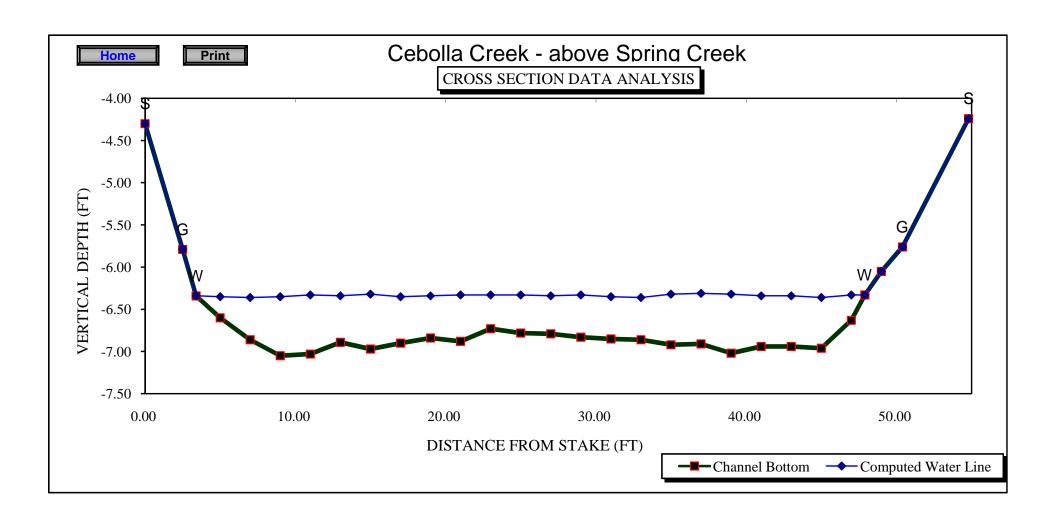
0.0363 0.52156944 STREAM NAME: Cebolla Creek - above Spring Creek XS LOCATION: at BLM - private boundary at cabin XS NUMBER: 1

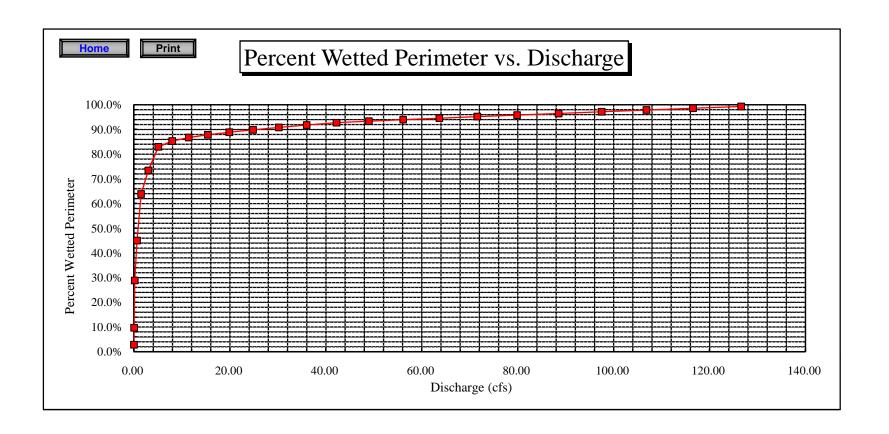
WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	23.29	23.41	0.5%
6.09	23.29	34.70	49.0%
6.11	23.29	33.79	45.1%
6.13	23.29	32.87	41.2%
6.15	23.29	31.96	37.3%
6.17	23.29	31.05	33.4%
6.19	23.29	30.14	29.5%
6.21	23.29	29.24	25.6%
6.23	23.29	28.33	21.7%
6.25	23.29	27.43	17.8%
6.27	23.29	26.54	14.0%
6.29	23.29	25.64	10.1%
6.30	23.29	25.19	8.2%
6.31	23.29	24.74	6.3%
6.32	23.29	24.30	4.4%
6.33	23.29	23.85	2.4%
6.34	23.29	23.41	0.5%
6.35	23.29	22.96	-1.4%
6.36	23.29	22.52	-3.3%
6.37	23.29	22.08	-5.2%
6.38	23.29	21.63	-7.1%
6.39	23.29	21.19	-9.0%
6.41	23.29	20.31	-12.8%
6.43	23.29	19.44	-16.5%
6.45	23.29	18.57	-20.3%
6.47	23.29	17.70	-24.0%
6.49	23.29	16.83	-27.7%
6.51	23.29	15.97	-31.4%
6.53	23.29	15.11	-35.1%
6.55	23.29	14.26	-38.8%
6.57	23.29	13.41	-42.4%
6.59	23.29	12.56	-46.0%

WATERLINE AT ZERO AREA ERROR =

STREAM NAME: Cebolla Creek - above Spring Creek at BLM - private boundary at cabin XS LOCATION:


XS NUMBER: Constant Manning's n


 $^*GL^*$ = lowest Grassline elevation corrected for sag $^*WL^*$ = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

=	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
_	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
_										
GL	5.79	47.76	1.02	1.26	48.51	48.12	100.0%	1.01	136.54	2.81
	5.84	47.45	0.97	1.21	46.24	47.79	99.3%	0.97	126.62	2.74
	5.89	47.12	0.93	1.16	43.87	47.45	98.6%	0.92	116.57	2.66
	5.94	46.80	0.89	1.11	41.53	47.10	97.9%	0.88	106.87	2.57
	5.99	46.48	0.84	1.06	39.19	46.76	97.2%	0.84	97.53	2.49
	6.04	46.15	0.80	1.01	36.88	46.42	96.5%	0.79	88.55	2.40
	6.09	45.86	0.75	0.96	34.58	46.11	95.8%	0.75	79.89	2.31
	6.14	45.59	0.71	0.91	32.29	45.81	95.2%	0.70	71.59	2.22
	6.19	45.31	0.66	0.86	30.02	45.51	94.6%	0.66	63.67	2.12
	6.24	45.03	0.62	0.81	27.76	45.21	94.0%	0.61	56.14	2.02
	6.29	44.75	0.57	0.76	25.52	44.92	93.3%	0.57	48.99	1.92
WL	6.34	44.48	0.52	0.71	23.28	44.62	92.7%	0.52	42.25	1.81
	6.39	44.03	0.48	0.66	21.07	44.16	91.8%	0.48	36.02	1.71
	6.44	43.58	0.43	0.61	18.88	43.69	90.8%	0.43	30.21	1.60
	6.49	43.12	0.39	0.56	16.71	43.22	89.8%	0.39	24.83	1.49
	6.54	42.66	0.34	0.51	14.57	42.75	88.9%	0.34	19.90	1.37
	6.59	42.20	0.29	0.46	12.45	42.28	87.9%	0.29	15.42	1.24
	6.64	41.66	0.25	0.41	10.35	41.73	86.7%	0.25	11.44	1.11
	6.69	40.98	0.20	0.36	8.28	41.04	85.3%	0.20	7.98	0.96
	6.74	39.88	0.16	0.31	6.25	39.93	83.0%	0.16	5.09	0.81
	6.79	35.29	0.12	0.26	4.35	35.33	73.4%	0.12	3.01	0.69
	6.84	30.70	0.09	0.21	2.70	30.74	63.9%	0.09	1.49	0.55
	6.89	21.63	0.07	0.16	1.43	21.66	45.0%	0.07	0.65	0.46
	6.94	13.86	0.04	0.11	0.54	13.87	28.8%	0.04	0.17	0.32
	6.99	4.65	0.03	0.06	0.16	4.66	9.7%	0.03	0.05	0.30
	7.04	1.35	0.01	0.01	0.01	1.36	2.8%	0.01	0.00	0.09

STREAM NAME: XS LOCATION: XS NUMBER: Cebolla Creek - above Spring Creek at BLM - private boundary at cabin

MEASURED FLOW (Qm)=	42.23		RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	42.25	cfs	=======================================	=========
(Qm-Qc)/Qm * 100 =	0.0	%	ELOW (CEC)	DEDIOD
MEASURED WATERLINE (WLm)=	6.34	ft	FLOW (CFS) ========	PERIOD ======
CALCULATED WATERLINE (WLc)=	6.34			
(WLm-WLc)/WLm * 100 =	0.0			
,				
MAX MEASURED DEPTH (Dm)=	0.70	ft		
MAX CALCULATED DEPTH (Dc)=	0.71	ft		
(Dm-Dc)/Dm * 100	-1.8	%		
MEAN VELOCITY=	1.81	ft/sec		
MANNING'S N=	0.036			
SLOPE=	0.00466667	ft/ft		
.4 * Qm =	16.9	cfs		
2.5 * Qm=	105.6	cfs		
RECOMMENDATION BY:		AGENCY		DATE:
CWCD DEVIEW DV.				DATE:

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

400' upstream from BLM-USFS boundary

Cebolla Creek - upper

LOCATION INFORMATION

STREAM NAME:

XS LOCATION:

XS NUMBER:	3	
DATE: OBSERVERS:	8-Oct-08 R. Smith, A.	Hayes
1/4 SEC: SECTION: TWP: RANGE: PM:	NW 22 44N 2W N.M.	
COUNTY: WATERSHED: DIVISION: DOW CODE:	Hinsdale Gunnison 4 38895	
USGS MAP: USFS MAP:	0 0	
SUPPLEMENTAL DATA	=	*** NOTE ***
		Leave TAPE WT and TENSION
TAPE WT: TENSION:	0.0106 99999	Leave TAPE WT and TENSION at defaults for data collected with a survey level and rod
	99999	at defaults for data collected
TENSION:	99999	at defaults for data collected
TENSION: CHANNEL PROFILE DATA SLOPE:	99999 <u>\</u> 0.005	at defaults for data collected
TENSION: CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	99999 0.005	at defaults for data collected with a survey level and rod
TENSION: CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	99999 0.005	at defaults for data collected with a survey level and rod

Cebolla Creek - upper

400' upstream from BLM-USFS boundary

XS NUMBER:

DATA POINTS=

26

VALUES COMPUTED FROM RAW FIELD DATA

FEATURE		VERT	WATER		WETTED	WATER	AREA	Q	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
LS	2.00	5.22			0.00		0.00	0.00	0.0%
1 G	4.10	5.96			0.00		0.00	0.00	0.0%
W	4.90	6.55			0.00		0.00	0.00	0.0%
••	6.00	7.20	0.65	0.16	1.28	0.65	0.68	0.11	0.4%
	7.00	7.20	0.65	1.76	1.00	0.65	0.65	1.14	4.2%
	8.00	7.35	0.80	1.33	1.01	0.80	1.20	1.60	5.8%
	10.00	7.35	0.80	1.69	2.00	0.80	1.60	2.70	9.8%
	12.00	7.25	0.70	1.82	2.00	0.70	1.40	2.55	9.2%
	14.00	7.25	0.70	1.73	2.00	0.70	1.40	2.42	8.8%
	16.00	7.25	0.70	1.44	2.00	0.70	1.40	2.02	7.3%
	18.00	7.10	0.55	1.59	2.01	0.55	1.10	1.75	6.3%
	20.00	7.15	0.60	1.54	2.00	0.60	1.20	1.85	6.7%
	22.00	7.30	0.75	1.82	2.01	0.75	1.50	2.73	9.9%
	24.00	7.25	0.70	1.60	2.00	0.70	1.40	2.24	8.1%
	26.00	7.15	0.60	1.20	2.00	0.60	1.20	1.44	5.2%
	28.00	7.15	0.60	0.95	2.00	0.60	1.20	1.14	4.1%
	30.00	7.05	0.50	1.12	2.00	0.50	0.75	0.84	3.0%
	31.00	6.80	0.25	0.66	1.03	0.25	0.25	0.17	0.6%
	32.00	6.85	0.30	0.32	1.00	0.30	0.45	0.14	0.5%
	34.00	7.10	0.55	0.82	2.02	0.55	1.10	0.90	3.3%
	36.00	7.15	0.60	1.07	2.00	0.60	1.20	1.28	4.7%
	38.00	6.75	0.20	0.52	2.04	0.20	0.40	0.21	0.8%
	40.00	6.85	0.30	0.53	2.00	0.30	0.60	0.32	1.2%
	42.00	6.75	0.20	0.06	2.00	0.20	0.28	0.02	0.1%
W	42.80	6.55			0.82		0.00	0.00	0.0%
1 RS & G	46.30	5.95			0.00		0.00	0.00	0.0%
TC	OTALS				38.23	0.8	20.96	27.56	100.0%

Manning's n = Hydraulic Radius=

(Max.)

0.0535 0.54837898 STREAM NAME:

Cebolla Creek - upper 400' upstream from BLM-USFS boundary XS LOCATION:

XS NUMBER:

WATER LINE COMPARISON TABLE

MEAO	COMP	4054
		AREA
AREA	AKEA	ERROR
00.00	00.00	0.00/
		0.0%
		46.3%
		42.5%
		38.7%
		35.0%
		31.2%
		27.5%
		23.8%
20.96	25.18	20.1%
20.96	24.40	16.4%
20.96	23.63	12.7%
20.96	22.87	9.1%
20.96	22.48	7.3%
20.96	22.10	5.4%
20.96	21.72	3.6%
20.96	21.34	1.8%
20.96	20.96	0.0%
20.96	20.58	-1.8%
20.96	20.21	-3.6%
20.96	19.83	-5.4%
20.96	19.45	-7.2%
20.96	19.08	-9.0%
20.96	18.32	-12.6%
20.96	17.58	-16.2%
20.96	16.83	-19.7%
20.96	16.08	-23.3%
20.96	15.34	-26.8%
20.96	14.60	-30.3%
20.96	13.86	-33.9%
20.96	13.13	-37.4%
20.96	12.41	-40.8%
20.96	11.72	-44.1%
	20.96 20.96	AREA AREA 20.96

WATERLINE AT ZERO AREA ERROR =

STREAM NAME: Cebolla Creek - upper

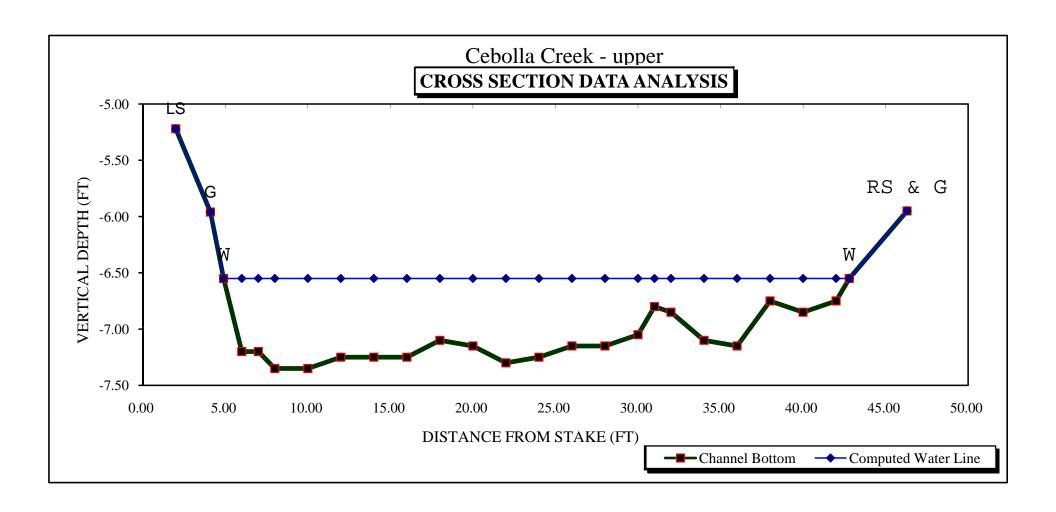
XS LOCATION: 400' upstream from BLM-USFS boundary

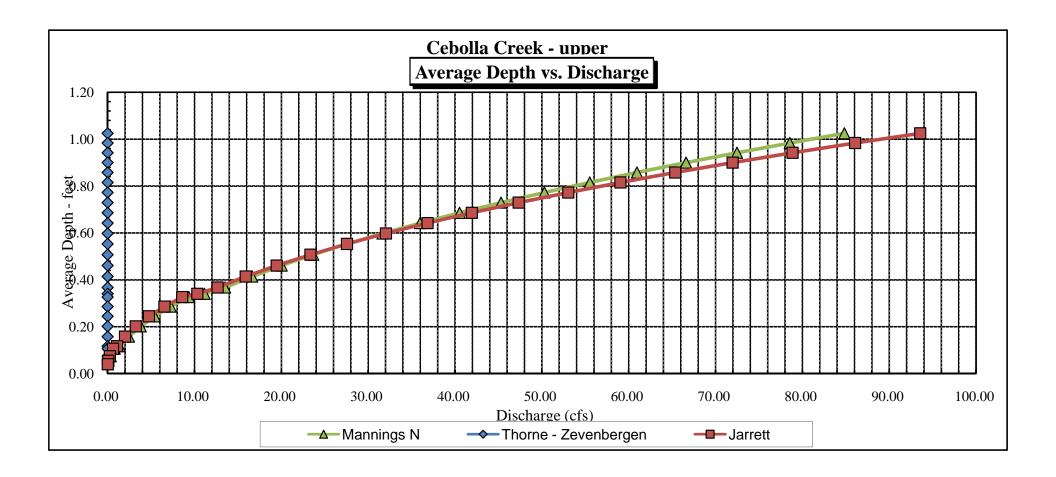
XS NUMBER:

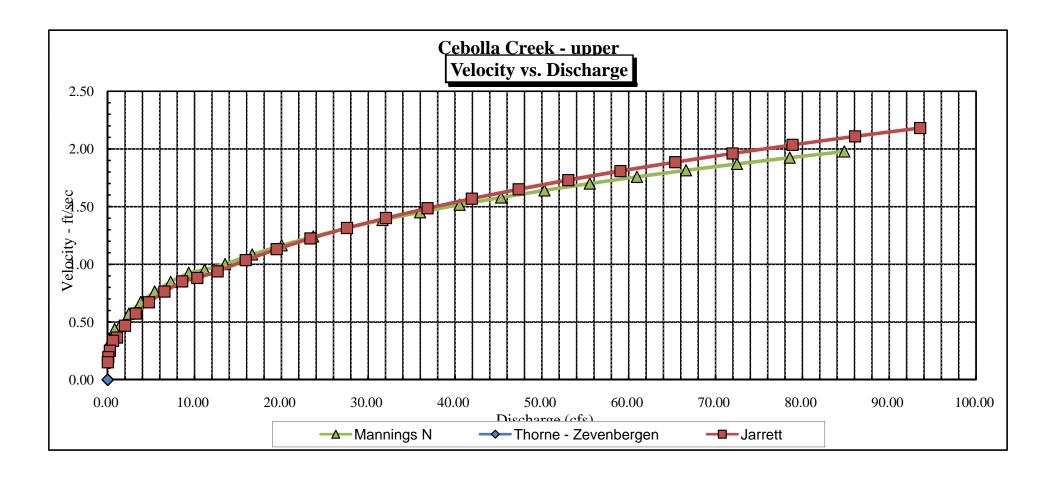
 $^*GL^*$ = lowest Grassline elevation corrected for sag $^*WL^*$ = Waterline corrected for variations in field measured water surface elevations and sag STAGING TABLE

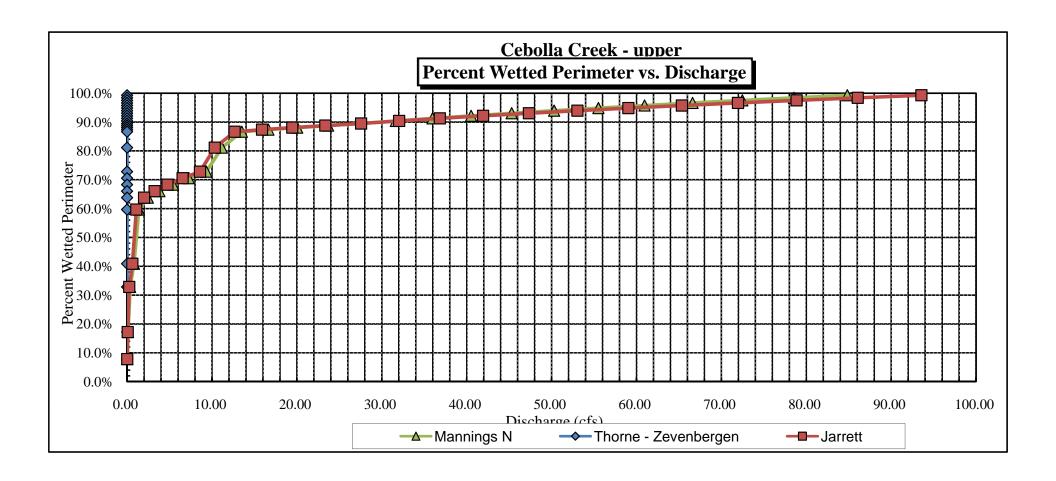
_	DIST TO	TOP	AVG.	MAX.		WETTED	PERCENT	HYDR		AVG.
	WATER	WIDTH	DEPTH	DEPTH	AREA	PERIM.	WET PERIM	RADIUS	FLOW	VELOCITY
_	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
_										
GL	5.96	42.14	1.06	1.39	44.58	42.71	100.0%	1.04	90.01	2.02
	6.00	41.85	1.02	1.35	42.89	42.41	99.3%	1.01	84.83	1.98
	6.05	41.49	0.98	1.30	40.81	42.03	98.4%	0.97	78.55	1.92
	6.10	41.14	0.94	1.25	38.75	41.65	97.5%	0.93	72.47	1.87
	6.15	40.78	0.90	1.20	36.70	41.27	96.6%	0.89	66.61	1.81
	6.20	40.42	0.86	1.15	34.67	40.89	95.7%	0.85	60.95	1.76
	6.25	40.06	0.82	1.10	32.66	40.51	94.8%	0.81	55.52	1.70
	6.30	39.70	0.77	1.05	30.66	40.13	93.9%	0.76	50.30	1.64
	6.35	39.34	0.73	1.00	28.69	39.75	93.1%	0.72	45.30	1.58
	6.40	38.98	0.69	0.95	26.73	39.37	92.2%	0.68	40.52	1.52
	6.45	38.62	0.64	0.90	24.79	38.99	91.3%	0.64	35.97	1.45
	6.50	38.26	0.60	0.85	22.87	38.61	90.4%	0.59	31.65	1.38
WL	6.55	37.90	0.55	0.80	20.96	38.23	89.5%	0.55	27.56	1.31
	6.60	37.62	0.51	0.75	19.07	37.92	88.8%	0.50	23.68	1.24
	6.65	37.33	0.46	0.70	17.20	37.62	88.1%	0.46	20.04	1.16
	6.70	37.05	0.41	0.65	15.34	37.31	87.4%	0.41	16.65	1.09
	6.75	36.76	0.37	0.60	13.50	37.01	86.6%	0.36	13.52	1.00
	6.80	34.43	0.34	0.55	11.72	34.65	81.1%	0.34	11.16	0.95
	6.85	30.89	0.33	0.50	10.08	31.09	72.8%	0.32	9.34	0.93
	6.90	29.96	0.29	0.45	8.56	30.13	70.5%	0.28	7.26	0.85
	6.95	29.02	0.24	0.40	7.09	29.16	68.3%	0.24	5.42	0.76
	7.00	28.09	0.20	0.35	5.66	28.20	66.0%	0.20	3.81	0.67
	7.05	27.15	0.16	0.30	4.28	27.24	63.8%	0.16	2.44	0.57
	7.10	25.42	0.12	0.25	2.96	25.48	59.7%	0.12	1.39	0.47
	7.15	17.42	0.11	0.20	1.84	17.46	40.9%	0.11	0.81	0.44
	7.20	14.00	0.07	0.15	1.03	14.02	32.8%	0.07	0.36	0.34
	7.25	7.33	0.05	0.10	0.40	7.35	17.2%	0.05	0.11	0.28
	7.30	3.33	0.04	0.05	0.13	3.34	7.8%	0.04	0.03	0.23

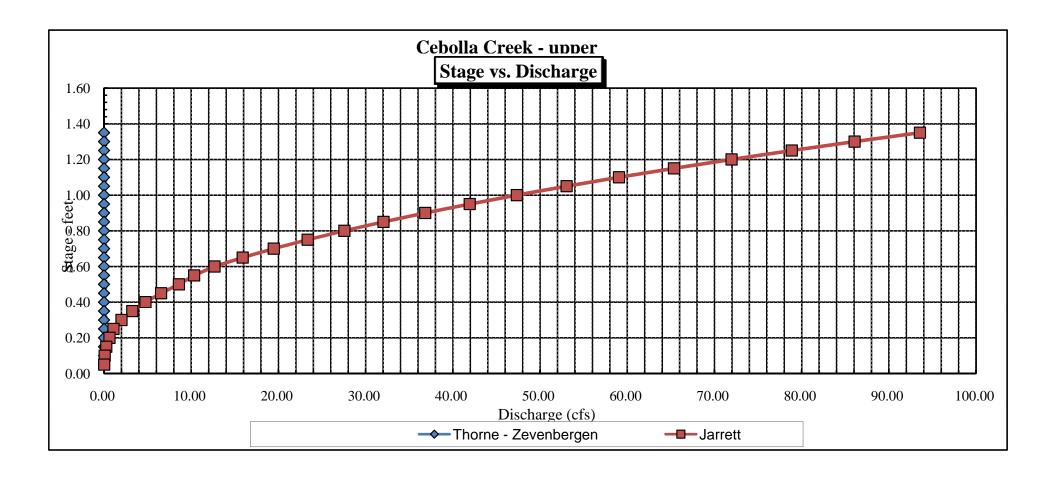
Constant Manning's n


STREAM NAME:


Cebolla Creek - upper


XS LOCATION: XS NUMBER: 400' upstream from BLM-USFS boundary


S NUMBER:


MEASURED FLOW (Qm)=	27.56	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	27.56	cfs	=======================================	========
(Qm-Qc)/Qm * 100 =	0.0	%		
			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	6.55	ft	========	======
CALCULATED WATERLINE (WLc)=	6.55	ft		
(WLm-WLc)/WLm * 100 =	0.0	%		
MAX MEASURED DEPTH (Dm)=	0.80			
MAX CALCULATED DEPTH (Dc)=	0.80	ft		
(Dm-Dc)/Dm * 100	0.0	%	-	
MEAN VELOCITY=	1.31	ft/sec		
MANNING'S N=	0.054			
SLOPE=	0.005	ft/ft		
.4 * Qm =	11.0			
2.5 * Qm=	68.9	cfs		
				
RECOMMENDATION BY:		AGENCY		DATE:
				DATE:
CWCB REVIEW BY:				

