

Colorado's Water Supply Future

Rio Grande Basin Roundtable Meeting

Alamosa, CO April 13, 2010

Presentation Overview

- CWCB Assistance with Basin Needs Assessments
- Agricultural Demands
 - Current agricultural acres
 - Current agricultural demands
 - Current agricultural shortages
 - Range of 2050 irrigated acres
 - Climate change affects on agricultural demands
- Preliminary M&I Gap Analysis

CWCB Assistance with Basin Needs Assessments

M&I Demands

- CWCB Staff have gathered comments on M&I Demands to 2050 report
- CWCB will respond to comments and revise report – available May/June 2010
- Report will be included as an appendix to statewide update of consumptive and nonconsumptive needs – November 2010

Nonconsumptive Focus Areas Mapping

- CWCB Staff have gathered feedback on report
- CWCB will respond to comments and revise report - available May/June 2010
- Report will be included as a section in the statewide update of consumptive and nonconsumptive needs – November 2010

Nonconsumptive Projects and Methods

- CWCB will examine past studies:
 - Existing studies and plans by "ISF recommending entities"
 - Watershed restoration plans and flood Decision
 Support System (DSS) for identified restoration projects
 - Other relevant restoration and quantification studies, plans, and processes
 - Other WSRA funded studies or Basin Roundtable studies
- Information will be summarized by focus area
- Results will be included in statewide update of consumptive and nonconsumptive needs – November 2010

Agricultural Shortages

- CWCB will update the agricultural shortages from SWSI 1
- CWCB will summarize results of Yampa WSRA study
- CWCB will review information with roundtables second quarter 2010
- Information will be included in statewide update
 - November 2010
- CWCB will also review the Alternative Agricultural Transfer Methods Grant Projects

Consumptive Gap Analysis

- CWCB will update M&I gap analysis from SWSI 1 using updated IPP database
- CWCB will update agricultural shortages statewide
- CWCB will review information with roundtables second quarter 2010
- Information will be included in report updating consumptive and nonconsumptive needs statewide – November 2010

Report Summarizing Needs Assessments (November 2010)

- CWCB will provide update of statewide consumptive and nonconsumptive needs based on recent reports and Basin Roundtable Needs Assessment efforts
- Target completion date of report is November 2010

Agricultural Demands

Current Agricultural Acres, Demands, and Shortages

- Agricultural Acres
 - Agricultural acres estimated based on aerial image data from Colorado DSS (1998)
- Agricultural Demands
 - StateCU model used to estimate Irrigation Water
 Requirement (IWR) and Water Supply Limited (WSL)
 consumptive use values
- Agricultural Shortages
 - Shortage = IWR WSL

Current Agricultural Acres, Demands and Shortages by Water District

Water District	Irrigated Acres	Irrigation Water Requirement (Acre-Feet)	Supply Limited CU (Acre-Feet)	Shortage (Acre-Feet)	Percent Shortage
WD20 - Rio Grande	341,193	646,526	486,209	160,316	25%
WD21 - Alamosa La Jara	53,174	118,419	50,149	68,270	58%
WD22 - Conejos Creek	82,674	196,733	106,303	90,430	46%
WD24 - Culebra Creek	27,875	61,967	43,222	18,745	30%
WD25 - San Luis Creek	34,546	81,786	45,281	36,505	45%
WD26 - Saguache Creek	29,933	71,813	45,895	25,918	36%
WD27 - Carnero Creek	22,101	42,719	35,995	6,724	16%
WD35 - Trinchera Creek	30,108	63,383	41,483	21,900	35%
Total	621,602	1,283,345	854,537	428,809	33%

Rio Grande 10-Year Average by Water District Agricultural Demands and Shortages

Rio Grande Basin 10-Year Summary Agricultural Demands and Shortages

Water District 20 – Rio Grande Agricultural Demands and Shortages

Water District 21 - Alamosa La Jara Agricultural Demands and Shortages

Water District 22 - Conejos Creek Agricultural Demands and Shortages

Water District 24 - Culebra Creek Agricultural Demands and Shortages

Water District 25 - San Luis Creek Agricultural Demands and Shortages

Water District 26 - Saguache Creek Agricultural Demands and Shortages

Water District 27 - Carnero Creek Agricultural Demands and Shortages

Water District 35 - Trinchera Creek Agricultural Demands and Shortages

Prospective Changes in the Number of Irrigated Acres in Colorado by Year 2050

- History and context
- What will cause the change?
- What direction and magnitude will each influence have on irrigated acreage?
- Net effects and outcomes

Historical Trends in Irrigated Acres for Colorado (Statewide) – 1987 to 2007

 Water supply in a given year affects number of irrigated acres, but trend is downward...

	Total Land in Farms		Total Irrigated Acres			
	Millions of Acres	Percent Change from Previous Period	Millions of Acres	Percent Change from Previous Period		
1987	NA	NA	3.0	NA		
1992	34.0	NA	3.2	6.7		
1997	32.6	-4.1	3.4	6.3		
2002	31.1	-4.6	2.6	-23.5		
2007	31.6	1.6	2.9	11.5		
Percent change	for 1992-2007 period	-7.0		-10.0		

Source: USDA Census of Agriculture, selected years.

What are the Potential Influences on Changes for the Number of Colorado's Irrigated Acres?

- Urbanization of irrigated lands
- Agricultural water transfers to urban uses
- Demographic factors
- Biofuels production
- Climate change
- Farm programs
- Subdivision of Ag lands and lifestyle farms
- Yield and productivity
- Open space and conservation easements
- Economics of agriculture

Note: For purposes here, we assume normalized hydrologic conditions and current water provisions under existing Colorado water law.

Summary of Prospective Changes in Number of Irrigated Acres in Colorado by Year 2050

		Low (pessimistic)	Medium	High (optimistic)
1.	Urbanization of irrigated lands	Calculated	Calculated	Calculated
2.	Ag transfers to urban users	Calculated	Calculated	Calculated
3.	Demographic changes	No effect	No effect	No effect
4.	Bio fuels production	No effect	Negligible, positive	Negligible, positive
5.	Climate change	Modest, negative	Modest, negative	No effect
6.	Farm programs	No effect	No effect	No effect
7.	Subdivision of ag lands and lifestyle farms	Negligible, negative	No effect	No effect
8.	Yield and productivity	Negligible, negative	No effect	No effect
9.	Open space and conservation easements	No effect	Negligible, positive	Modest, positive
10.	Economics of agriculture	No change	Modest, positive	Modest, positive
Net effects (minus No. 1 and 2 above)		Modest, negative	Modest, positive	Moderate, positive

Urbanization of Irrigated Lands

- Examined existing ratio of irrigated lands within urban boundaries
- Estimated population density per urbanized area
- Change in population from 2008 to 2050
- Irrigated Acres Urbanized = Change in Population ÷ Population Density x Ratio of Irrigated Lands to Urban Boundary

Agricultural to Municipal Transfers

- Based on information gathered from CWCB as part of Basin Needs Decision Support System (BNDSS) updates
- Will project on low and high basis

Draft 2050 Irrigated Acres – Rio Grande Basin

	Decrease in Irrigated Acres Due to Urbanization		Current Irrigated	Decrease in Irrigated Acres Due to Agricultural to Municipal Transfers		Decrease in Irrigated Acres Due to Other	2050 Irrigated Acres	
Water District	Low	High	Acres	Low	High	Factors	Low	High
WD20-Rio Grande	541	880	341,193	_	_	80,000	260,312	260,651
WD21-Alamosa La Jara	114	180	53,174	-	-	-	52,994	53,060
WD22-Conejos Creek	95	152	82,674	-	_	-	82,523	82,579
WD24-Culebra Creek	13	22	27,875	-	_	-	27,853	27,861
WD25-San Luis Creek	10	13	34,546	_	_	-	34,533	34,536
WD26-Saguache Creek	8	10	29,933	_	_	-	29,922	29,925
WD27-Carnero Creek	17	22	22,101	_	-	-	22,079	22,084
WD35-Trinchera Creek	11	17	30,108	_	-	-	30,091	30,097
Total	808	1,295	621,602	_	-	80,000	540,308	540,794

Demographic Trends

- Baby boomers as heads of farm households
- Next generation less interested in continuing to farm
- Who will take over the farm?

Assumption: Farmers will sell to neighbors or corporate operators, but operation will continue in some form. Demographic factors will contribute to ag transfers, easements, etc.

Biofuels Production

- Ethanol will remain leading biofuel for near and intermediate term (2030) if government support remains
- Cellulosic and algae biofuels a long-term possibility; might benefit Colorado ag processing sector, not irrigated acreage
- With solid livestock demand, firming corn prices
- Continued increase in corn acreage, less wheat and hay at lower elevations
- Continued demand for corn irrigation, emphasis on efficiency with constrained water supply

Assumption: Upward pressure in irrigated acreage, but mostly a trade-off with other crops.

Climate Change

- Limited clarity or predictability
- State likely to be warmer and therefore higher consumptive use;
 more precipitation variability
- More uncertainty for farmers
- Earlier runoff and more competition for water
- Longer growing season at higher elevations

Assumption: Highly uncertain effect. Might discourage irrigated agriculture, spur to ag water transfers, could benefit West Slope agriculture.

Farm Programs

- Always changing, but always there in some form
- Much discussion about elimination of particular support program, or adding another
- Food production a recognized national strategic resource
- Little evidence of significant change

Assumption: No net effect on number of irrigated acres in Colorado.

Subdivision of Ag Lands and Lifestyle Farms

- Lands preserved from urbanization or ag transfers, depending on circumstances
- Less focus on beneficial use of water, less intensity of use
- Less actual irrigation
- Same water tied to same property

Assumption: Contradictory effects. Difficult to determine net effect on number of irrigated acres. Perhaps limited net change?

Yield and Productivity

- Historic gains in productivity generally for agriculture since 1950s
- Technological improvements gradual but continuous in equipment and process

Assumption: Continued gradual improvements likely. Colorado farmers will produce more per acre long-term.

Open Space and Conservation Easements

- Wide variety of open space and easement types and landowners
- Many cities and counties more active in acquiring open space in 1990s and early 2000 years
- Net effect of open space acquisition within urban growth boundaries increased development outside urban planning areas, in some cases on irrigated lands
- Some conservation easements protect irrigated acres, help farm viability, and deter development; larger proportion on non-irrigated lands
- Conservation easement activity closely tied to tax breaks and incentives that might be reined in

Assumption: Rush to purchase open space and put lands with easements transitioning to lower sustainable levels. Will continue to be a factor, although modest in total irrigated acres impacted.

Economics of Agriculture

Range of assumptions from SWSI 2050 population projections:

- World food demand increasing from developing countries
- Acceptance and enhancement from genetic modification modest over long-term
- Trends toward locally produced foods
- Irrigated agriculture more resilient segment
- Prices generally more firm with usual oscillation
- Costs may keep pace with firmer prices, so net income stable
- Government policies have a major impact on agricultural economics

Assumption: Farming, especially irrigated agriculture, will remain a resilient economic sector. Without incentives to reduce this activity, irrigated acreage will remain steady.

Summary of Prospective Changes in Number of Irrigated Acres in Colorado by Year 2050

		Low (pessimistic)	Medium	High (optimistic)	
1.	Urbanization of irrigated lands	Calculated	Calculated	Calculated	
2.	Ag transfers to urban users	Calculated	Calculated	Calculated	
3.	Demographic changes	No effect	No effect	No effect	
4.	Bio fuels production	No effect	Negligible, positive	Negligible, positive	
5.	Climate change	Modest, negative	Modest, negative	No effect	
6.	Farm programs	No effect	No effect	No effect	
7.	Subdivision of ag lands and lifestyle farms	Negligible, negative	No effect	No effect	
8.	Yield and productivity	Negligible, negative	No effect	No effect	
9.	Open space and conservation easements	No effect	Negligible, positive	Modest, positive	
10.	Economics of agriculture	No change	Modest, positive	Modest, positive	
Net effects (minus No. 1 and 2 above)		Modest, negative	Modest, positive	Moderate, positive	

Preliminary M&I Gap Analysis

Methodology

- Interviewed largest providers in basin to determine plans, projects, and processes to meet 2050 M&I water demands
- Aggregated this information at the county level
- Estimate 2050 Low, Medium and High M&I Gaps
 - Use water provider interviews
 - Use SWSI 1 to address information gap
 - Need assistance from roundtables to identify additional gaps
- Future activity summarize future methods for meeting needs by major categories

Draft M&I Gap Analysis

- Used draft information from June Demands to 2050 report
- Analysis will be updated
 - New population data
 - New water usage data
 - Passive Conservation

Draft M&I Gap Analysis

	Current Demand (AFY)	2050 Demand (AFY)		2050 Water Needs (AFY)		Identified Projects and Processes (AFY)		Gap Identified by	Information/
County		Low	High	Low	High	Low	High	Providers (AFY)	Real Gap (AFY)
Alamosa	4,800	7,600	9,700	2,800	4,900	2,800	4,900	0	0
Conejos	5,200	6,700	7,600	1,500	2,400	1,500	2,400	_	0
Costilla	800	1,100	1,200	300	400	200	300	_	100
Mineral	300	400	600	100	300	100	300	-	0
Rio Grande	6,100	8,800	10,600	2,700	4,500	2,700	4,500	0	0
Saguache	2,600	3,700	4,200	1,100	1,600	1,100	1,600	-	0
Total	19,800	28,300	33,900	8,500	14,100	8,400	14,000	_	100

Draft M&I Gap Analysis

	Current Demand (AFY)	2050 Demand (AFY)		2050 Water Needs (AFY)		Identified Projects and Processes (AFY)		Gap Identified by	Information/
County		Low	High	Low	High	Low	High	Providers (AFY)	Real Gap (AFY)
Alamosa	4,800	7,600	9,700	2,800	4,900	2,800	4,900	0	0
Conejos	5,200	6,700	7,600	1,500	2,400	500	500	_	1,000-1,900
Costilla	800	1,100	1,200	300	400	0	0	_	300-400
Mineral	300	400	600	100	300	100	100	-	0-200
Rio Grande	6,100	8,800	10,600	2,700	4,500	900	900	0	1,800-3,600
Saguache	2,600	3,700	4,200	1,100	1,600	800	800	_	300-800
Total	19,800	28,300	33,900	8,500	14,100	5,100	7,200	_	3,400-6,900

Discussion

- Information vs. real gap
- Methods for meeting gap
 - Urbanization onto agricultural lands
 - Ag to municipal transfers
 - Conservation
 - In-Basin project
 - Firming of existing water rights

Suggested Approach – Future Demand and Supply without Climate Change

- Same approach as SWSI I Adjust current demand recently developed for revised acreage
- Irrigation demand (IWR) proportional to acreage
- Non-irrigation demand proportional to acreage
- Shortage proportional to IWR

Suggested Approach – Future Demand and Supply with Climate Change

- Use CRWAS results in Colorado River basins
- Treat other basins (east slope) qualitatively
 - No downsized climate models from CRWAS for east slope
 - Front Range Study currently in draft form