Stream: Battlement Creek

Executive Summary

Water Division: 5 Water District: 45 CDOW#: 19059 CWCB ID: 08/5/A-004

Segment: Outlet of Battlement Reservoir to Headgate Battlement Ditch

Upper Terminus: OUTLET BATTLEMENT RESERVOIR AT

(Latitude 39° 22' 29.98"N) (Longitude 107° 56' 15.5"W)

Lower Terminus: HDGT BATTLEMENT DITCH AT (Latitude 39° 26'10.01"N) (Longitude 107° 58' 42.44"W)

Watershed: Colorado headwaters-Plateau (HUC#: 14010005)

Counties: Garfield Length: 5.15 miles USGS Quad(s): Rulison

Flow Recommendation: 6.3 cfs (April 1 - June 30)

3.5 cfs (July 1 - July 31)

1.5 cfs (August 1 - March 31)

Staff Analysis and Recommendation

Summary

The information contained in this report and the associated instream flow appendices (see CD entitled 2008 Instream Flow Recommendations) forms the basis for staff's instream flow recommendation to be considered by the Board. It is staff's opinion that the information contained in this report is sufficient to support the findings required in Rule 5.40.

Colorado's Instream Flow Program was created in 1973 when the Colorado State Legislature recognized "the need to correlate the activities of mankind with some reasonable preservation of the natural environment" (see 37-92-102 (3) C.R.S.). The statute vests the CWCB with the exclusive authority to appropriate and acquire instream flow and natural lake level water rights. In order to encourage other entities to participate in Colorado's Instream Flow Program, the statute directs the CWCB to request instream flow recommendations from other state and federal agencies. The Bureau of Land Management (BLM) recommended this segment of Battlement Creek to the CWCB for inclusion into the Instream Flow Program. Battlement Creek is being considered for inclusion into the Instream Flow Program because it has a natural environment that can be preserved to a reasonable degree with an instream flow water right.

Battlement Creek is approximately 8 miles long. It begins on the west flank of Haystack Mountain on the Grand Mesa National Forest at an elevation of approximately 10100 feet and terminates at the confluence the Colorado River at an elevation of approximately 5100 feet. Approximately 50% of the land on the 5.15 mile segment addressed by this report is publicly owned. Battlement Creek is located within Garfield County. The total drainage area of the creek is approximately 10.5 square miles. Battlement Creek generally flows in a northwesterly direction.

The subject of this report is a segment of Battlement Creek beginning at the outlet of Battlement reservoir and extending downstream to the headgate of the Battlement Ditch. The proposed segment is located approximately 13 miles southwest of Rifle. The staff has received only one recommendation for this segment, from the BLM. The recommendation for this segment is discussed below.

Instream Flow Recommendation(s)

BLM recommended 6.3 cfs, high temperature period, 3.5 cfs, late summer and 1.5 cfs, low temperature period, based on its data collection efforts. The modeling results from this survey effort are within the confidence interval produced by the R2Cross model.

Land Status Review

		Total Length	Land Ow	nership
Upper Terminus	Lower Terminus	(miles)	% Private	% Public
Outlet of Battlement Reservoir	Headgate of Battlement Ditch	5.15	50%	50%

50% of the public lands are managed by the BLM and 50% are managed by the U.S. Forest Service.

Biological Data

The BLM has conducted field surveys of the fishery resources on this stream and have found a natural environment that can be preserved. As reported in the letter from BLM to the CWCB "Battlement Creek is a high gradient stream, with moderate substrate size. The creek is often confined by a narrow canyon, and it has cut down to bedrock in numerous locations. The riparian community is very vigorous in these confined locations and provides substantial shading and nutrient supply for the creek. The creek provides good pool habitat, but rifles for spawning are a limiting factor for the fish population. Fishery surveys indicate that the creek supports a selfsustaining population of Colorado River Cutthroat Trout. Genetic sampling of the trout population has revealed extremely high genetic purity, despite the proximity of roads, campgrounds and reservoirs. These features often attract informal stocking of brook and rainbow trout by visiting fishermen".

Field Survey Data & Biological Flow Quantification

BLM staff used the R2Cross methodology to quantify the amount of water required to preserve the natural environment to a reasonable degree. The R2Cross method requires that stream discharge and channel profile data be collected in a riffle stream habitat type. Riffles are most easily visualized, as the stream habitat types that would dry up first should streamflow cease. This type of hydraulic data collection consists of setting up a transect, surveying the stream channel geometry, and measuring the stream discharge.

The CWCB staff relied upon the biological expertise of the cooperating agencies to interpret output from the R2Cross data collected to develop the initial, biologic instream flow This initial recommendation is designed to address the unique biologic recommendation. requirements of each stream without regard to water availability. Three instream flow hydraulic parameters, average depth, percent wetted perimeter, and average velocity are used to develop biologic instream flow recommendations. The CDOW has determined that maintaining these three hydraulic parameters at adequate levels across riffle habitat types, aquatic habitat in pools and runs will also be maintained for most life stages of fish and aquatic invertebrates (Nehring 1979; Espegren 1996).

For this segment of stream, three data sets were collected with the results shown in Table 1 below. Table 1 shows who collected the data (Party), the date the data was collected (Date), the measured discharge at the time of the survey (Q), the accuracy range of the predicted flows based on Manning's Equation (240% and 40% of Q), the summer flow recommendation based on meeting 3 of 3 hydraulic criteria and the winter flow recommendation based upon 2 of 3 hydraulic criteria.

Table 1: Battlement Creek R2Cross Summary

			Confidence Intervals	Recommende	ed Flows (cfs)
Party	Date	Q (cfs)	250%-40%	Summer (3/3)	Winter (2/3)
BLM	6/12/2006	(1)	(1)	(1)	(1)
BLM	7/26/2006	7.98	19.9 – 3.2	9.14	3.15
BLM	7/26/2006	6.77	16.9 – 2.7	3.27	(1)

BLM = Bureau of Land Management
(1) Predicted flow outside of the accuracy range of Manning's Equation.

The high temperature flow recommendation, which meets 3 of 3 criteria and is within the accuracy range of the R2CROSS model is 6.3 cfs (See Table 1). The late summer flow recommendation, which meets 2 or 3 criteria and is within the accuracy range of the R2Cross model is 5.0 cfs. These recommendations were derived by averaging the results of the three data sets. The low temperature flow recommendation is based on water availability limitations is 2.0 cfs. It is our belief that recommendations that fall outside of the accuracy range of the model, over 250% of the measured discharge or under 40% of the measured discharge may not give an accurate estimate of the necessary instream flow required.

Hydrologic Data and Analysis

After receiving the cooperating agency's biologic recommendation, the CWCB staff conducted an evaluation of the stream hydrology to determine if water was physically available for an instream flow appropriation. This evaluation was done through a computation that is, in essence, a "water balance". In concept a "water balance" computation can be viewed as an accounting exercise. When done in its most rigorous form, the water balance parses precipitation into all the avenues water pursues after it is deposited as rain, snow, or ice. In other words, given a specified amount of water deposition (input), the balance tries to account for all water depletions (losses) until a selected end point is reached. Water losses include depletions due to evaporation and transpiration, deliveries into ground water storage, temporary surface storage, incorporations into plant and animal tissue and so forth. These losses are individually or collectively subtracted from the input to reveal the net amount of stream runoff as represented by the discharge measured by stream gages. Of course, the measured stream flow need not be the end point of interest; indeed, when looking at issues of water use to extinction stream flow measurements may only describe intermediate steps in the complex accounting process that is a water balance carried out to a net value of zero.

In its analysis, CWCB staff has attempted to use this idea of balancing inputs and losses to determine if water is available for the recommended Instream Flow Appropriation. Of course, this analysis must be a practical exercise rather than a lengthy, and costly, scientific investigation. As a result, staff has simplified the process by lumping some variables and employing certain rational and scientifically supportable assumptions. The process may be described through the following description of the steps used to complete the evaluation for this particular stream.

The first step required in determining water availability is a determination of the hydrologic regime at the Lower Terminus (LT) of the recommended ISF reach. In the best case this means looking at the data from a gage at the LT. Further, this data, in the best case, has been collected for a long period of time (the longer the better) including wet and dry periods. In the case of **Battlement Creek** such a gage is available at the LT. The gage station is BATTLEMENT CREEK NEAR PARACHUTE, CO (USGS 09092600), a gage with a 9 year period of record (POR) collected between 1956 and 1965. The gage is at an elevation of 6,630 ft above mean sea level (amsl) and has a drainage area of 10.5 mi². The hydrograph (plot of discharge over time) produced by this gage includes virtually no upstream consumption through diversions. While this lack of significant upstream diversion and use make this gage attractive for our purposes, the gage does have one drawback; namely, it has a short POR.

To keep the positive values of the Battlement Creek gage while reducing the limitation of its short POR, a statistical procedure called linear regression was employed. The procedure gives us the means to relate characteristics of a limited (short) data set to those of a larger (longer) data set and, if the two data sets are similar enough, to predict the data values "missing" from the short data set. The outcome is a "predicted" (called "Y - Hat" or \hat{Y}) set of data that augments the short data set; creating, in effect, a longer POR that is reflective of climate variation (i.e., it includes more wet-dry cycles.) The gage that was selected to provide the longer POR was WEST DIVIDE CREEK NEAR RAVEN, CO (USGS 09089500), a gage with a 50 year POR collected between 1955 and 2005. The West Divide Creek gage is at an elevation of 7050 ft amsl and has a drainage area of 64.6 mi².

Before performing the linear regression described above, the measured hydrographs of both gages must be adjusted to remove the effects of water consumption by upstream irrigation diversion. As mentioned above, the hydrograph of the Battlement Creek gage includes virtually no upstream consumption through diversions. West Divide Creek, however, does have a small number of upstream diversions as well as a trans-basin source of increased discharge. Thus, before performing the linear regression, the West Divide data record must be increased by the amount of consumptive loss due to upstream diversions; it must also be decreased by the amount of trans-basin additions. When the data sets are adjusted in the manner described, then the two gages can be regressed one against the other to produce a "predicted" hydrograph for Battlement Creek that displays the important attributes of a gage that is located nearby, is un-impacted (by irrigation consumption or "foreign water"), and exhibits a long-term POR.

With the creation of the Battlement Creek "predicted" hydrograph we have represented a distribution of flow over time reflective of existing conditions.

The following hydrograph depicts the mean monthly discharge of Battlement Creek (regressed on West Divide Creek near Raven). Included in the hydrograph are the recommended ISF values. The data used in the creation of this hydrograph are displayed

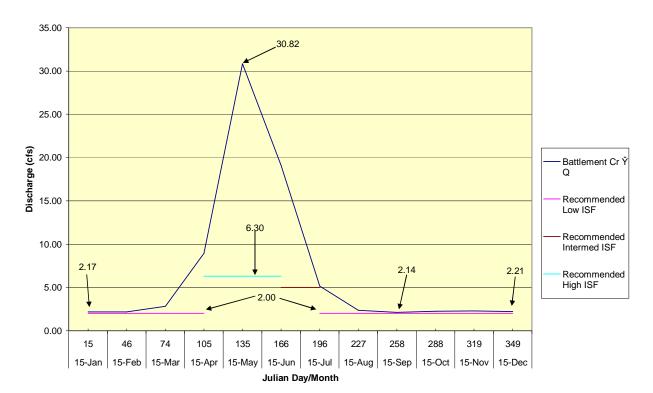


Figure 1 - Battlement Creek Discharge (regressed on West Divide Cr nr Raven) & ISFs

Table 2 – Mean Monthly Discharge and Recommended Instream Flows – Battlement Cr.

	Julian Day	Battlement Cr (cfs)	Recommended ISF (cfs)
15-Jan	15	2.17	1.50
15-5an	46	2.17	1.50
15-Mar	74	2.81	1.50
15-Mai	105	8.95	1.50
	i		
30-Apr	120	8.95	1.50
1-May	121	30.82	6.30
15-May	135	30.82	6.30
15-Jun	166	19.11	6.30
15-Jul	196	5.16	6.30
31-Jul	212	5.16	6.30
1-Aug	213	2.35	3.50
15-Aug	227	2.35	3.50
15-Sep	258	2.14	3.50
15-Oct	288	2.27	3.50
31-Oct	304	2.27	3.50
1-Nov	305	2.29	1.50
15-Nov	319	2.29	1.50
15-Dec	349	2.21	1.50

Existing Water Right Information

Staff has analyzed the water rights tabulation to identify any potential water availability problems. The U.S. Forest Service holds water rights Battlement Reservoir 1 through 5, which are located just above the upper terminus of the proposed instream flow reach. In total, these reservoirs are decreed for 669.45 acre feet of storage. The lower terminus of the creek is located at the headgate of the first ditch on the creek, called battlement ditch. This ditch is decreed for 17.84 cfs with 1890s priorities. Based on this analysis staff has determined that water is available for appropriation on Battlement Creek, from the outlet of Battlement Reservoir and the headgate of the Battlement Ditch, to preserve the natural environment to a reasonable degree without limiting or foreclosing the exercise of valid existing water rights.

CWCB Staff's Instream Flow Recommendation

Staff recommends the Board form its intent to appropriate on the following stream reach:

Segment: Outlet of Battlement Reservoir to Headgate Battlement Ditch

Upper Terminus: OUTLET BATTLEMENT RESERVOIR AT

(Latitude 39° 22' 29.98"N) (Longitude 107° 56' 15.5"W)

UTM = 4362508.9 N UTM = 246951.1 E

NE SE S12 T8S R95W 6PM

930' West of the East Section Line; 1540' North of the South Section Line

Lower Terminus: HDGT BATTLEMENT DITCH AT

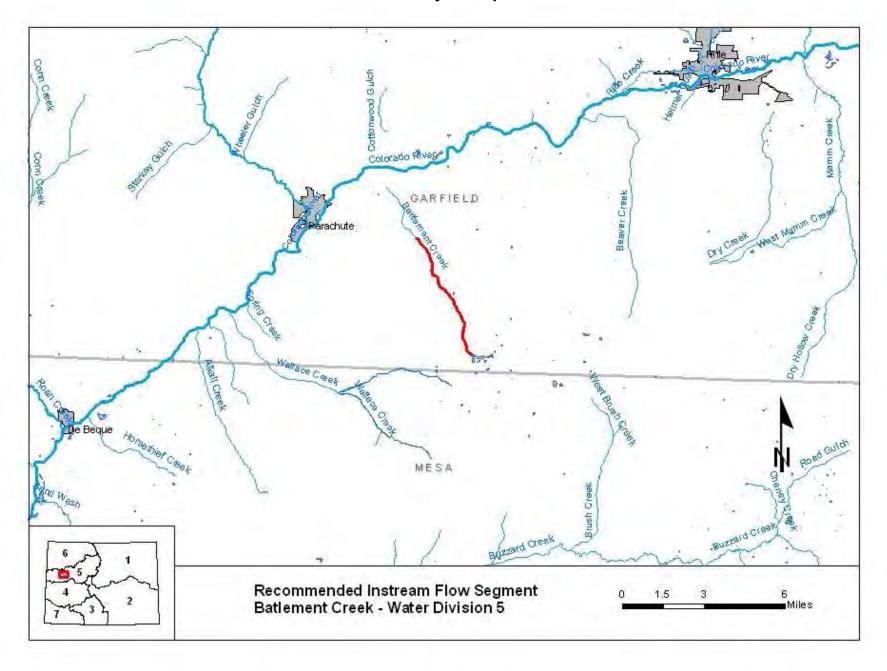
(Latitude 39° 26'10.01"N) (Longitude 107° 58' 42.44"W)

UTM = 4369409 N UTM =243658.5 E

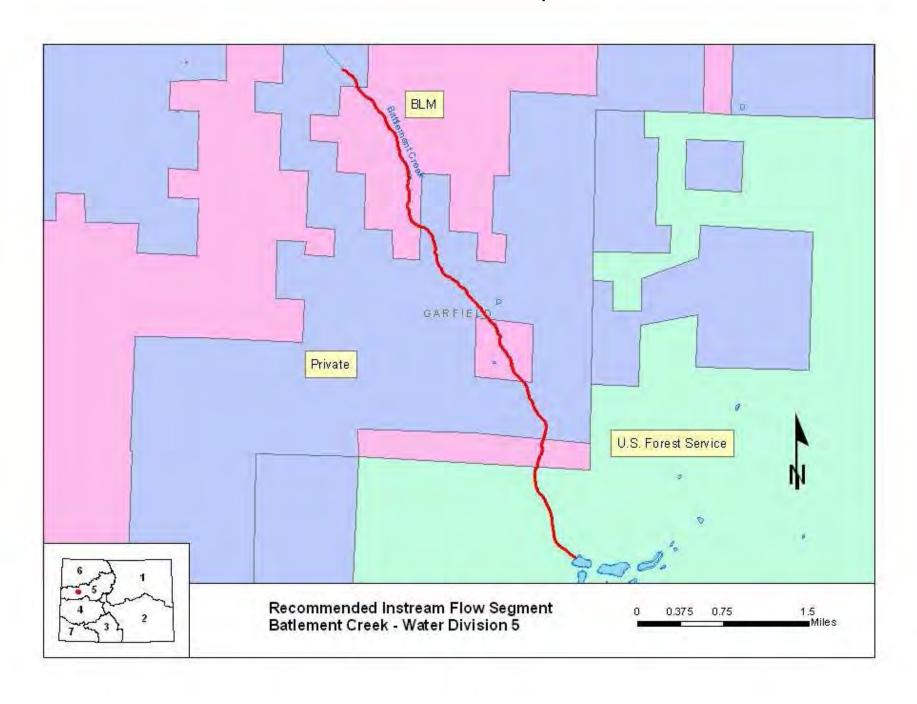
NE SE S15 T7S R95W 6PM

1170' West of the East Section Line; 2160' North of the South Section Line

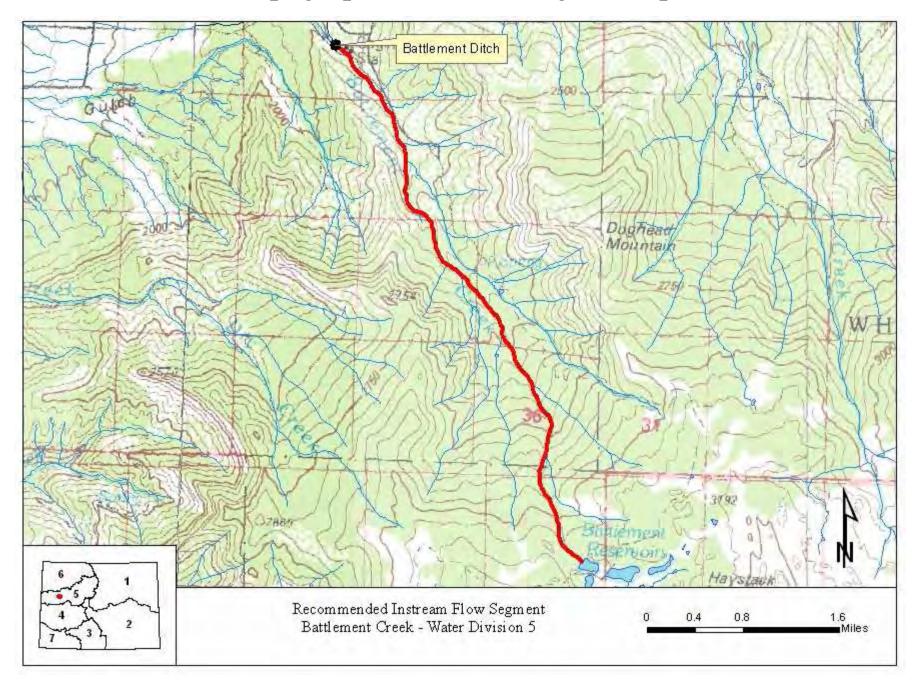
Watershed: Colorado headwaters-Plateau (HUC#: 14010005)


Counties: Garfield Length: 5.15 miles USGS Quad(s): Rulison

Flow Recommendation: 6.3 cfs (April 1- June 30)


3.5 cfs (July 1 - July 31)

1.5 cfs (August 1 - March 31)


Vicinity Map

Land Use Map

Topographic & Water Rights Map

UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT COLORADO STATE OFFICE 2850 YOUNGFIELD STREET LAKEWOOD, COLORADO 80215-7093

In Reply Refer To: 7250 (CO-932)

DEC 2 6 2007

Ms. Linda Bassi Colorado Water Conservation Board 1313 Sherman Street, Room 721 Denver, Colorado 80203

Dear Ms. Bassi:

The Bureau of Land Management (BLM) is writing this letter to formally communicate its instream flow recommendation for Battlement Creek, located in Water Division 5.

Location and Land Status. Battlement Creek is tributary to the Colorado River approximately 13 miles southwest of Rifle, Colorado. The creek is located within the lower Colorado River watershed. This recommendation covers the stream reach beginning at the outlet of Battlement Reservoirs and extends downstream to the headgate of the Battlement Ditch. Approximately 50 percent of the 5.0-mile reach is located on federal lands, while the remaining 50 percent is located on private lands. Approximately 50% of the federal lands are managed by the U.S. Forest Service, and 50% are managed by the BLM.

Biological Summary. Battlement Creek is a high gradient stream, with moderate substrate size. The creek is often confined by a narrow canyon, and it has cut down to bedrock in numerous locations. The riparian community is very vigorous in these confined locations and provides substantial shading and nutrient supply for the creek. The creek provides good pool habitat, but riffles for spawning are a limiting factor for the fish population. Fishery surveys indicate that the creek supports a self-sustaining population of Colorado River Cutthroat Trout. Genetic sampling of the trout population has revealed extremely high genetic purity, despite the proximity of roads, campgrounds, and reservoirs. These features often attract informal stocking of brook and rainbow trout by visiting fishermen.

R2Cross Analysis. BLM's data analysis, coordinated with the Division of Wildlife, indicates that the following flows are needed to protect the fishery and natural environment to a reasonable degree:

- 6.3 cubic feet per second is recommended during the high temperature period from April 1 through June 30. This recommendation is driven by the average depth and average velocity criteria. Because the creek is characterized by short riffles between numerous plunge pools, it is very important to maintain adequate velocity and depth in the limited riffle habitat.
- 5.0 cubic feet second is recommended for the period from July 1 to July 31. It is very important to provide as much physical habitat as possible during this high temperature period, when the fish population is putting on weight for overwintering.
- 2.0 cubic feet per second is recommended for the period from August 1 through March 31. This recommendation is driven by water availability. This flow should provide sufficient water exchange in pools to allow the fish population to successfully overwinter. During late summer and fall months, this flow rate will allow some portions of the stream to meet the wetted perimeter criteria and velocity criteria, allowing fish movement between pools.

Water Availability. The U.S. Forest Service holds water rights Battlement Reservoirs 1 through 5, which are located just above the upper terminus of the proposed instream flow reach. In total, these reservoirs are decreed for 669.45 acre feet of storage. The lower terminus of the creek is located at the headgate of the first ditch on the creek, called Battlement Ditch. This ditch is decreed for 17.84 cfs with 1890s priorities.

BLM recommends using the historic Battlement Creek Gage (U.S. Geological Survey (USGS) 09092600), which was operated for 10 years from 1956 through 1965. This period of record incorporates the operation of the upstream reservoirs, because the reservoirs have been in operation since the 1890s.

Relationship to Management Plans. BLM has placed this creek in its intensive management category because of the high quality Colorado River Cutthroat Trout population. BLM will take actions to prevent unnecessary disturbance and degradation along the creek corridor from any activities authorized on BLM lands. BLM will also work with the U.S. Forest Service to prevent inadvertent introduction of diseases and non-native species. BLM is also working under the three state species conservation agreement for Colorado River Cutthroat Trout to establish this creek as a core genetic population. If a sufficient number of core genetic populations are established, it may be possible to avoid a listing of species under the Endangered Species Act.

The BLM requests that the Board recognize that this recommendation is based only upon the minimum flows necessary to support cold-water and cool-water fishery values. BLM may wish to work with the Board and/or through the Colorado water rights system to appropriate flows to optimally protect fish values and to protect other water-dependent values specified in BLM resource management plans. Data sheets, R2Cross output, fishery survey information, and

photographs of the cross section were included with BLM's draft recommendation in February 2007.

We thank both the Division of Wildlife and the Water Conservation Board for their cooperation in this effort. If you have any questions regarding our instream flow recommendation, please contact Roy Smith at 303-239-3940.

Sincerely,

Dennis D. Jachman (AcriN4)

Deputy State Director Resources and Fire

cc: Jamie Connell, Grand Junction FO Tom Fresques, Glenwood Springs FO

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

COLORADO WATER CONSERVATION BOARS	D			•	LOC	ATIO	N IN	IFOF	RMA	TION	ı								<u> </u>
STREAM NAME:	4410	ment	··· ($\overline{\mathbb{C}}$	ek	ς										C	ROSS-S	SECTION	NO.:
CROSS-SECTION LOCATION:		dired					UN (4	at	13	LI	4 1	CI XI	d					
				· · · ·	10						- R**			1.70-					
DATE: 7-26-06 OBSE	ERVERS:	2. Si	nis	H			M.		301	yuv	W.								
LEGAL % SEC DESCRIPTION	TION: N	W SE	CTION		3	TC	OWNSH	1P:		7 N	<u>(S)</u>	RANGE:		95		W		45	<u>, </u>
COUNTY: GATA	eld	WATERSHE	D: (C01	010	ade	,	WA	TER DI	VISION:	5				DOW W	VATER (190	59
MAP(S):	mkt	Mrsd	\overline{C}	re	ek	_7	ر ب	,											
USFS:																			
					SUF	PPLE	ME	NTA	L DA	TA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YESV N	IO ME	TER TY	PE:	40	B	トー	M	cf	311	'Me	М			1			-	f
METER NUMBER:		DATE RATE	D:				3/SPIN:					/EIGHT:	UY	Jey.	ect is/foot	1 "	TENS	- 6	<i>€.0</i> lbs
CHANNEL BED MATERIAL SIZ	E RANGE:	0 1-	80	o of	be	ou la	ers	т РНОТС	GRAPI	IS TAKE	EN YES	S/NO		NUMBE	ROFF	РНОТОС	RAPHS	s: 3	
										DAT				y ⁿ .					
	 				<u> </u>	*****								.×					
STATION DISTANCE (ft) ROD READING (ft) Tape @ Stake LB 0.0 SULVAVED Stake ®																			
Tape @ Stake LB Tape @ Stake RB							/	t 1.	<u> </u>									- Sta	ake 🕱
		0.0					yes		S () () () () () () () () () (۶	<u> </u>	- H	~				Sta	ation (1)
WS @ Tape LB/RB			,	(4			o, S'	—— '	ġ l		</td <td>T</td> <td>∕ [</td> <td>X</td> <td>A. C.</td> <td>Contract of the second</td> <td>•</td> <td>Ph</td> <td>noto 🕠</td>	T	∕ [X	A. C.	Contract of the second	•	Ph	noto 🕠
WS Upstream WS Downstream		30,0		+		5.7 0.7		\dashv	-	• • • •				(3)	<u> </u>			Direc	ction of Flow
SLOPE	A 99	141,0 =	 .	<u> </u>		<u> </u>	<u>'</u>	\dashv			(1	\mathcal{L}	(3				-	
<u> </u>	0, 11/	71,0 =							٠										<u> </u>
				AC	TAU	ic s	AMF	PLIN	G S	JMM	ARY								
STREAM ELECTROFISHED:	YES	DISTANCE	ELECT	ROFIS	HED:	ft		F	ISH CA	UGHT:	YES/NO)		WATER	CHEM	MISTRY	SAMPL	ED YES	signo
		LENGTH	FREQ	UENC	Y DIST	RIBUTIO	ON BY	ONE-IN	CH SIZ	E GRO	UPS (1.	0-1.9, 2	.0-2.9,	ETC.)		τ	,		
SPECIES (FILL IN)			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
						 	 									 			
AOUATIC INSECTS IN STOTE	M SECTION 1	OV COMMON:	00.000																
May Au	add				O OHDE	<u>*</u>	IE: 												
	£300, 200 \$ 200 \$	7 444 2 37		<i>> </i>	136	7) MM	ENT	s										
Temp= 1	0.50	<i>C</i>																	
Ph= 8.3															-, -,				
TRS: 16	·																		

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Batt	emer	of Cre	ek		C	ROSS-SECTIO	N NO.:	DATE: 7-26-(Olo SHEET	OF
BEGINNING OF M	EASUREMENT	EDGE OF W	ATER LOOKING D	OWNSTREAM:	LEFT / RIG	HT Gage	Reading:	O. Zn	тіме: З :1	Spin	ş:
Stake (S) Grassline (G) Waterline (W) Rock (R)	Distance From Initial	Width (ft)	Total Vertical Depth From	Water Depth (ft)	Depth of Obser-	Revolution	j		y (ft/sec) Mean in	Area	Discharge
1	Point (ft)		Tape/Inst (ft)		vation (ft)		Time (sec)	Point	Vertical	(ft ²)	(cfs)
LS	0,0		4.16							-	
G	1.3		5,22					<u> </u>	 		
W	1.4		6.57	0.55				1.32			
	2.5		7.12	0.55				1.80			
	3.0		7.39	0.85				0.83			
	3 5		7,44	0.9				1.96			
			7,35					2.08			
	4.0			0.8				2.13	-		
	4.5		7, 27	0.7	<u>-</u> -		_	2.03		+	
	5		7,10	0.55					-		
	6		7,01	0.45				0.27	 		<u> </u>
<u>_</u>	-1-		6.75	0.2			_	0.79			
	8		6.66	0.1				0.0			
	9		6.71	0.15				0.06		-	
	10		6.86	0.3 0.2				0.95			
	51		6.91	0.35				1.87			
	13		6.74	0.2		İ		2.23	<u> </u>	 	
	14		673	0.2				2.28			
	15		6.72	0.2				0.82		-	
	16			0.15				1.08			
			6.69		<u>.</u>			T			
	(7		6.74	0.2				1.68			
	18		6.68	0.15				1.03	 	-	
			6.62	0.1				0.54		-	
	20		6.58	0.05				10.0			
						ļ		 	-	 	
								 			
						<u> </u>				ļ	
										+	
										 	
										 	
								 	 	 	
							-			†	
				ļ							
_ W_	24.6		6.52		· ·						
	24.6		6.78					1			
(5	29.7		6.52 6. 3 8 5.19 4.38		 	ļ				1	
125	34.0		4.55								
TOTALS:						l		1			

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

151								
	ADO WATER)	L	OCATION IN	IFORMATION			OF WIT
STREAM NA	ME: Bat	Hement	Creek	£.				CROSS-SECTION NO.:
CROSS-SECT	TION LOCATION:	1/2 mile	: upsdr	cam from	n. 13LM c	comparo	und o	4
dur	noff					7 63		
DATE: 7- Z		RVERS: 2 S	imith.		um			
LEGAL DESCRIPTION	1/4 SEC	TION: NW	SECTION:	33 TOWNSHI	7 NE	RANGE:	95 E.W	PM: 6 #
COUNTY:	Garfie	WATERS	HED:	orado	WATER DIVISION:	5	DOW WATER	
MAP(S):	USGS: Ha	uxhursd	Creek	7.5'	Zone 13	0244	287	
MAF(0).	USFS:					4368	626	6880 A
				SUPPLEMEI	NTAL DATA		-	-
SAG TAPE SE	ECTION SAME AS SECTION:	YES / NO	METER TYPE:	Marsh-N	1 c Birney		*	
METER NUMI	BER:	DATE R		CALIB/SPIN:	sec TA	APE WEIGHT:	Dibs/foot TA	SUN VOYED PETENSION: lbs
CHANNER BE	ED MATERIAL SIZ	erange: Ples to Z	· Foot }	oulders	PHOTOGRAPHS TAKEN	N	UMBER OF PHOTO	OGRAPHS:
				CHANNEL P	ROFILE DATA			
STATI	ION	DISTANCE FROM TAPE	(ft)	ROD READING (ft)		*		LEGEND:
(X) Tape @	Stake LB	0.0		Alexand		Ÿ		

STATION	DISTANCE FROM TAPE (ft)	ROD READING (ft)	€	LEGEND:
X Tape @ Stake LB	0.0	surveyed		Stake 🛠
Yape @ Stake RB	0.0	का तन्त्र		Station (1)
WS @ Tape LB/RB	0.0	4.81/481	T S S S S S S S S S S S S S S S S S S S	Photo (1)
2 WS Upstream	11.0	4.48		
3 WS Downstream	13.0	5,64		Direction of Flow
SLOPE 1, 1	6/24.0=		⊗	

AQUATIC SAMPLING SUMMARY

STREAM ELECTROFISHED: YES/NO	DISTANCE	ELEC	TROFIS	HED:	ft		F	ISH CA	UGHT:	YES/NO)		WATER	CHEM	USTRY	SAMPL	ED: YES	S(NO)
	LENGTH	· FREC	UENC	DISTR	IBUTIO	ON BY)NE-IN	CH SIZ	E GRO	JPS (1.	0-1.9, 2	2.0-2.9,	ETC.)					
SPECIES (FILL IN)		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
												_						
AQUATIC INSECTS IN STREAM SECTION BY	COMMON	OR SCI	ENTIFIC	ORDE	RNAM	E:												
mayfly, caddi	sfly	5	y py	w/	y													

COMMENTS

105=160	
Ph=8,3	
Temp: 16.50C	

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Bat	Hem	ent a	reek		CR	OSS-SECTION	NO.: 2	DATE:	Ob SHEE	T OF
BEGINNING OF M	MEASUREMENT	EDGE OF W	/ATER LOOKING (KE)	OOWNSTREAM:	LEFT / RIG	HT Gage I	Reading: {	0 <u>.35</u> ,,		.20 pm	
Stake (S)	Distance	Width	Total	Water	Depth	Revolutions		Velocit	y (ft/sec)	Ţ	
Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	(ft)	Vertical Depth From Tape/inst (ft)	Depth (ft)	of Obser- vation (ft)		Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
LS	0.0		1.62								
G	2.2		4.04						<u> </u>	ļ	
	3		11 (2)						<u> </u>	 	
W	3.5		4.90	0.1				0.98	 	 	
	4		4.88	0.1				0.0			
	4.5		5.02	0.2				1.46			
	5		5,00	0.2				1,47			
	5,5		5,01	0.2				0.74			
	6		5.13	0.35				0.37			
	6.5		5,24	0.45				1,27		<u> </u>	ļ
	7		5,26	0.45				0.87	 		<u> </u>
'	8		5,20	0.4			_	1,01	 	ļ	
	9		5,15	0.35			_	1.41		 	
	10		5,32	0.55				1,35			
	12		5, 26	0.45				0.54	1		
	13		5.15	0.35				0,99			
	14		5,44	0.65				2.04			
	14,5		5,27	0.45		<u>.</u>		2,24			
	15	-	5.27	0.45				2.17			ļ <u></u>
	15.5		5.19	0.4				1.42			ļ <u>.</u>
	16		5.16	0.35				0.54		ļ <u>.</u>	
	16.5		5,14	0.3				0.45			
W	17,7		4.81	0.15		_		0.0		-	
	1101		7,01								-
			!						 	1	
										ļ	ļ
									-	ļ	
									-	 	-
									 	 	
							-			 	1
											
							-			 	-
			·				+		ļ	 	
G	19,0		3.93				+			 	+
125	20.0		2.84				1			 	
TOTALS:			-								1

FIELD DATA FOR INSTREAM FLOW DETERMINATIONS

LOCATION INFORMATION

CONSERVATION BOARD)					A 1 1 C													
STREAM NAME: 8	144	eme	17	(")	ro	r }											ROSS-	SECTIO	N NO.:
CROSS-SECTION LOCATION:	M.	Arst.	("CX	Wa	240	E. 161	S	O1°	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	C × 1	\$	ut Y	ŶijÇ	XÒ					
					V 						4.								<u>.</u>
V. 12 00	RVERS:		<u>'Ľ</u>	1k	Ι.	<u> </u>		<u>50</u>	uc	.11							lov.	. 1	
LEGAL % SEC DESCRIPTION	TION: C	3W	ECTION	N:]	4	T	OWNSH				<u>(S)</u>	RANGI	:	\underline{q}	<u>5</u> E	<u>w</u>	<u> </u>	65	
county: Garfi	eld	WATERSHE	.D:	\subseteq	do	rac	do	w/	TER D	VISION	:	5			DOW V	VATER	CODE:	196	159
MAP(S): USGS: Pa	rack	ute	7.	ی	/					Zo	ne	13 s) व्य	399	ે €	, ,		
USFS:			·										4.	368	999	<u>/V</u>			
					SUI	PPLI	EME	NTA	L DA	ATA									
SAG TAPE SECTION SAME AS DISCHARGE SECTION:	YES / N	IO ME	ETER TY	YPE:	14	ai	3/4	v. \$	VIC	12		្វ	•						
METER NUMBER:		DATE RAT	ED:	-		CALI	B/SPIN:			sec	TAPE V	VEIGHT	: _		bs/foot	TAP	E TENS	SION:	lbs
CHANNEL BED MATERIAL SIZ	E RANGE:	100	2010	PC		1		РНОТО	OGRAP	HS TAK	EN YE	s/No		NUMB	ER OF	•ното	GRAPH	ıs: S	>
V					CHA	NN	EL P	ROF	ILE	DAT	A								
STATION	D FF	ISTANCE ROM TAPE	ft)	T	ROI	READ	ING (ft	,	1				(3	3				T	LEGEND:
X Tape @ Stake LB		0.0			≶-V	INC	ye.		_					<u> </u>				_ sı	take 🕱
X Tape @ Stake RB		0.0		\perp	5 h 1	ne	jed		s K		*	*~~				دسس			ation (1)
1 WS @ Tape LB/RB		0.0			5,0	3/	5.0	12	E T C	4		~/	TAPE	1		hand	3	<i>></i>	hoto (1)
2 WS Upstream		30.0	<u> </u>			4.0	0		H					2	7			-	
3 WS Downstream		300	ş C	\perp	k	o. 7	<u>′</u> O_		_			general.						Dire	ction of Flow
SLOPE 2.	71/	60.0		. (), C	24:	3) (·					
				AC	TAU	ıc s	AMF	PLIN	G S	JMM	IARY	•							
STREAM ELECTROFISHED: Y	ES/NO	DISTANCE	E ELEC.	TROFIS	HED: _	f	t	F	ISH CA	UGHT:	YES/N)		WATE	RCHE	/ISTRY	SAMPL	LED: YE	S/NO
		LENGTH	- FREC	JUENC	Y DISTE	RIBUTIO	ON BY	ONE-IN	CH SIZ	E GRO	UPS (1.	0-1.9, 2	2.0-2.9	, ETC.)	·-	·			
SPECIES (FILL IN)			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	>15	TOTAL
sec prevk	3767 2767	9,1		-		-	-			-				-	├	 	├	┼	
	· CC · CC	7-		 	 	 				 				 	 		\vdash	_	
AQUATIC INSECTS IN STREAM							IE:												
caddia fly cas	12-25			13508.5	: <u> </u>	11	<u> 77.</u>	(ly	<u> </u>	n ok	,	ali	را ۾	14:15	10,00				
						CC	MMC	ENT	S										
01-30						,,													
TOS: 90																			
Temp= 8	3 0			·															
,																			

DISCHARGE/CROSS SECTION NOTES

STREAM NAME:	Ba	Hlew	rend (reck		CROS	SS-SECTION	1 NO.:	DATE: (a - 12 -	C 6 SHEE	T OF
BEGINNING OF N		EDOC OF W	ATER LOOKING D			IT Gage Re	eading:	. Z ft	тіме:	aire	
ο Stake (S)	Distance	Width	Total	Water	Depth	Revolutions			y (ft/sec)		
Stake (S) Grassline (G) Waterline (W) Rock (R)	From Initial Point (ft)	(ft)	Vertical Depth From Tape/Inst (ft)	Depth (ft)	of Obser- vation (ft)		Time (sec)	At Point	Mean in Vertical	Area (ft ²)	Discharge (cfs)
5	0.0		2.83								
	2.0		3,40								
G	2.2		3.62 5.08				ļ				ļ
- W	2.6		5.08 5.99	0.70			 	2.95		 	
	3.0			0.9 1.3				4.56			
	4.8 5.0		6.36						 		
			6.70	6.4			 	3.39	-		
	6.0		5,98	0.9			 -	<u> </u>		 	
	7.5		5.69	0.6				Q 11	 	<u> </u>	
	24		5.51	0.45			 	. 0.00		 	
	9.0		5,56	0.5			<u> </u>	1.90	-	 	
	10.0		5,51	0.45			<u> </u>	2 15	 	ļ	
	11.0	-	5,58	<u>0.5</u>					 	 	<u> </u>
<u></u>	13.0		5-57 5.56	0.55			 	2/2			
	14.0		5.52	C,55 C,45				3.62 3.70			
	15.C		5,50	0.45				2.82		 	
	16.0		5.44	C.H			 	2.72			
	17.0		5,47	0.45				2,50			
	8.0		5.38	6.35				1.49			
	19.0		5.72	0.8				1,35			
	20.0		5.19	0.0				000			
	21.0		5 13	Cost				* CAS			
			5.11					1.24			
	23.0		5.11	0.1				1 16			
						, <u> </u>				`	
							ļ		-		<u> </u>
	-						-		 	-	-
						· · · · ·			-		
							 			 	
									 	-	
V	24.4		5.02								
	27.0		5.02 9.58 3.58 3.37								
<u>G</u>	31.0		3.58								
S	33.7		3.37								
TOTALS:											
End of Measur	ement Tim	ne: 10:30	Gage Reading	1: 211	CALCULATIO	NS PERFORME	D BY:	C	ALCULATIONS	CHECKED BY:	

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:

XS LOCATION: XS NUMBER:	At first carr	pground on county road
31		
DATE:	12-Jun-06	
OBSERVERS:	R. Smith, I	. Fresques
1/4 SEC:	SW	
SECTION:	14	
TWP:	7S	
RANGE:	95W	
PM:	6th	
COUNTY:	Garfield	
WATERSHED:	Colorado	
DIVISION:	5	
DOW CODE:	19059	
USGS MAP:	Parachute	7.5'
USFS MAP:	0	
SUPPLEMENTAL DATA		*** NOTE ***
		Leave TAPE WT and TENSION at defaults for data collected
TAPE WT:	0.0106	with a survey level and rod
TENSION:	99999	200 400 40 40 40 40 40
CHANNEL PROFILE DATA	<u>\</u>	
SLOPE:	0.045	
INPUT DATA CHECKED B	Y:	DATE
W. 24 M. 11. 2012 2012 2013		
ASSIGNED TO:		DATE

Battlement Creek

STREAM NAME:

Battlement Creek

XS LOCATION: XS NUMBER:

1

At first campground on county road

DATA POINTS=

29

VALUES COMPUTED FROM RAW FIELD DATA

		23 2744 (13399 8)	9	1.50	11,000,000	21.2211.200		.,,,,	
FEATURE	- Frederick	VERT	WATER		WETTED	WATER	AREA	Q	% Q
	DIST	DEPTH	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
•	0.00	0.00			2.22			2.00	2.33
S	0.00	2.83			0.00		0.00	0.00	0.0%
	2.00	3.40			0.00		0.00	0.00	0.0%
i G	2.20	3.62			0.00		0.00	0.00	0.0%
W	2.60	5.08	45.37	0.547	0.00	2.37	0.00	0.00	0.0%
	3.00	5.99	0.90	2.93	0.99	0.90	0.63	1.85	6.2%
	4.00	6.36	1.30	4.56	1.07	1.30	1.30	5.93	20.0%
	5.00	6.20	1.10	3.39	1.01	1.10	1.10	3.73	12.6%
	6.00	5.98	0.90	2.87	1.02	0.90	0.90	2.58	8.7%
	7.00	5.69	0.60	2.91	1.04	0.60	0.60	1.75	5.9%
	8.00	5.51	0.45	1.67	1.02	0.45	0.45	0.75	2.5%
	9.00	5.56	0.50	1.90	1.00	0.50	0.50	0.95	3.2%
	10.00	5.51	0.45	2.13	1.00	0.45	0.45	0.96	3.2%
	11.00	5.58	0.50	2.60	1.00	0.50	0.50	1.30	4.4%
	12.00	5.57	0.55	2.38	1.00	0.55	0.55	1.31	4.4%
	13.00	5.56	0.55	3.62	1.00	0.55	0.55	1.99	6.7%
	14.00	5.52	0.45	3.70	1.00	0.45	0.45	1.67	5.6%
	15.00	5.50	0.45	2.88	1.00	0.45	0.45	1.30	4.4%
	16.00	5.44	0.40	2.72	1.00	0.40	0.40	1.09	3.7%
	17.00	5.47	0.45	2.59	1.00	0.45	0.45	1.17	3.9%
	18.00	5.38	0.35	1.49	1.00	0.35	0.35	0.52	1.8%
	19.00	5.22	0.20	1.35	1.01	0.20	0.20	0.27	0.9%
	20.00	5.19	0.20	0.96	1.00	0.20	0.20	0.19	0.6%
	21.00	5.13	0.10	0.99	1.00	0.10	0.10	0.10	0.3%
	22.00	5.11	0.10	1.26	1.00	0.10	0,10	0.13	0.4%
	23.00	5.11	0.10	1.12	1.00	0.10	0.12	0.13	0.5%
W	24.40	5.02	- 07 (0-		1.40	120.00	0.00	0.00	0.0%
	27.00	4.58			0.00		0.00	0.00	0.0%
G	31.00	3.58			0.00		0.00	0.00	0.0%
S	33.90	3.37			0.00		0.00	0.00	0.0%
					5.40		3.30	0.00	0.070
TC	TALS	············			22.58	1,3	10.35	29.65	100.0%
						(Max.)			

Manning's n = Hydraulic Radius= 0.0654 0.458277182 STREAM NAME;

Battlement Creek

XS LOCATION:

At first campground on county road

XS NUMBER:

1

WATER LINE COMPARISON TABLE

AREA	COMP	MEAS	WATER
ERROR	AREA	AREA	LINE
-0.9%	10.25	10.35	
53.1%	15.85	10.35	4.80
48.7%	15.39	10.35	4.82
44.2%	14.93	10.35	4.84
39.8%	14.47	10.35	4.86
35.4%	14.01	10.35	4.88
31.0%	13.56	10.35	4.90
26.7%	13.11	10.35	4.92
22.4%	12.66	10.35	4.94
18.1%	12.22	10.35	4.96
13.8%	11.78	10.35	4.98
9.5%	11.34	10.35	5.00
7.4%	11.12	10.35	5.01
5.3%	10.90	10.35	5.02
3.2%	10.68	10.35	5.03
1.1%	10.47	10.35	5.04
-0.9%	10.25	10.35	5.05
-3.0%	10.04	10.35	5.06
-5.0%	9.83	10.35	5.07
-7.1%	9.62	10.35	5.08
-9.1%	9.41	10.35	5.09
-11.1%	9.20	10.35	5.10
-14.9%	8.81	10.35	5.12
-18.5%	8.44	10.35	5.14
-21.9%	8.08	10.35	5.16
-25.4%	7.73	10.35	5.18
-28.7%	7.38	10.35	5.20
-31.9%	7.05	10.35	5.22
-35.1%	6.72	10.35	5.24
-38.2%	6.40	10.35	5.26
-41.3%	6.08	10.35	5.28
-44.4%	5.76	10.35	5.30

WATERLINE AT ZERO AREA ERROR =

5.045

STREAM NAME: XS LOCATION: XS NUMBER:

Battlement Creek

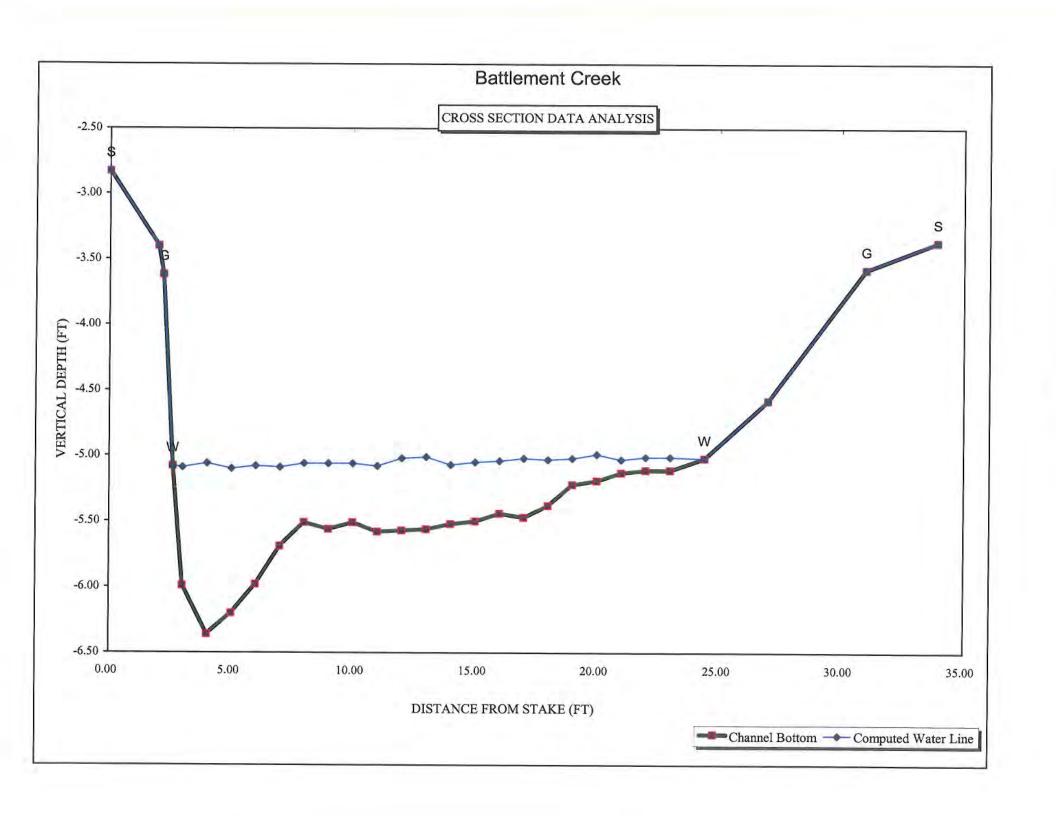
At first campground on county road

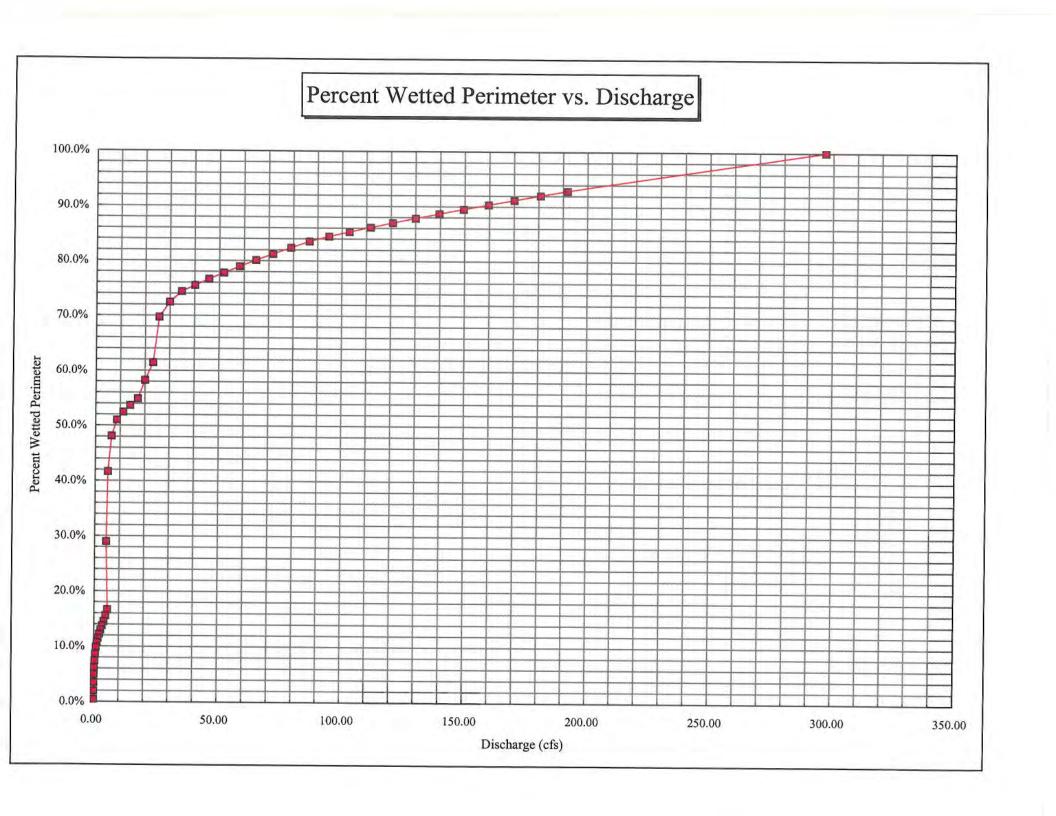
Constant Manning's n

STAGING TABLE

GL = lowest Grassline elevation corrected for sag
WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO WATER	TOP WIDTH	AVG. DEPTH	MAX. DEPTH	AREA	WETTED PERIM.	PERCENT WET PERIM	HYDR RADIUS	FLOW	AVG. VELOCITY
-	(FT)	(FT)	(FT)	(FT)	(SQ FT)	(FT)	(%)	(FT)	(CFS)	(FT/SEC)
GL	3.62	28.64	1.63	2.74	46.62	30.69	100.0%	1.52	296.92	6.37
	4.05	26.82	1.30	2,31	34.82	28.50	92.8%	1.22	191.84	5.51
	4.10	26.61	1.26	2.26	33.49	28.24	92.0%	1.19	180.82	5.40
	4.15	26.39	1.22	2.21	32.16	27.98	91.2%	1.15	170.10	5.29
	4.20	26.18	1.18	2.16	30.85	27.72	90.3%	1.11	159.65	5.18
	4.25	25.97	1.14	2.11	29.55	27.47	89.5%	1.08	149.49	5.06
	4.30	25.75	1.10	2.06	28.25	27.21	88.6%	1.04	139.63	4.94
	4.35	25.54	1.06	2.01	26.97	26.95	87.8%	1.00	130.05	4.82
	4.40	25.33	1.01	1.96	25.70	26.69	87.0%	0.96	120.76	4.70
	4.45	25.11	0.97	1.91	24.44	26.43	86.1%	0.92	111.77	4.57
	4.50	24.90	0.93	1.86	23.19	26.18	85.3%	0.89	103.07	4.45
	4.55	24.68	0.89	1.81	21.95	25.92	84.4%	0.85	94.68	4.31
	4.60	24.44	0.85	1.76	20.72	25.63	83.5%	0.81	86.65	4.18
	4.65	24.13	0.81	1.71	19.51	25.28	82.4%	0.77	79.08	4.05
	4.70	23.82	0.77	1.66	18.31	24.93	81.2%	0.73	71.81	3.92
	4.75	23.51	0.73	1.61	17.12	24.58	80.1%	0.70	64.85	3,79
	4.80	23.20	0.69	1.56	15.95	24.23	78.9%	0.66	58.20	3.65
	4.85	22.90	0.65	1.51	14.80	23.87	77.8%	0.62	51.87	3.50
	4.90	22.59	0.61	1.46	13.67	23.52	76.6%	0.58	45.85	3.36
	4.95	22.28	0.56	1.41	12.54	23.17	75.5%	0.54	40.15	3.20
	5.00	21.97	0.52	1.36	11.44	22.82	74.3%	0.50	34.78	3.04
WL*	5.05	21.41	0.48	1.31	10.35	22.22	72.4%	0.47	29.97	2.90
	5.10	20.62	0.45	1.26	9.30	21.39	69.7%	0.43	25.72	2.77
	5,15	18.11	0.46	1.21	8.34	18.85	61.4%	0.44	23.34	2.80
	5.20	17.17	0.43	1.16	7.46	17.87	58.2%	0.42	20.07	2.69
	5.25	16.17	0.41	1.11	6.63	16.84	54.9%	0.39	17.17	2.59
	5.30	15.83	0.37	1.06	5.83	16.47	53.6%	0,35	14.07	2.41
	5.35	15.50	0.33	1.01	5.05	16.10	52.4%	0.31	11,23	2.22
	5.40	15.09	0.28	0.96	4.28	15.65	51.0%	0.27	8.70	2.03
	5.45	14.24	0.25	0.91	3.54	14,77	48.1%	0.24	6.59	1.86
	5.50	12.29	0.24	0.86	2.89	12.78	41.6%	0,23	5.18	1.79
	5.55	8.44	0.28	0.81	2.36	8.89	29.0%	0.27	4.71	1.99
	5.60	4.70	0.44	0.76	2,06	5,11	16.6%	0.40	5.41	2.63
	5.65	4.40	0.42	0.71	1.83	4.77	15.5%	0.38	4.65	2.54
	5.70	4.11	0.39	0.66	1.62	4.45	14.5%	0.36	3.97	2.46
	5.75	3.92	0.36	0.61	1.42	4.21	13.7%	0.34	3.30	2.33
	5.80	3.72	0.33	0.56	1.23	3.98	13.0%	0.31	2.69	2.20
	5.85	3.53	0.30	0.51	1.04	3.74	12.2%	0.28	2.15	2.06
	5.90	3.33	0.26	0.46	0.87	3.51	11.4%	0.25	1.66	1.91
	5.95	3.14	0.23	0.41	0.71	3.28	10.7%	0.22	1.24	1,74
	6.00	2.92	0.19	0.36	0.56	3.02	9.8%	0.19	0.88	1.57
	6.05	2.55	0.17	0.31	0.42	2.64	8.6%	0.16	0.60	1.42
	6.10	2.19	0.14	0.26	0.30	2.26	7.4%	0.13	0.38	1.26
	6.15	1,83	0.11	0.21	0.20	1.88	6.1%	0.11	0.22	1.09
	6.20	1.47	0.08	0.16	0.12	1.51	4.9%	80.0	0.11	0.90
	6.25	1,03	0.06	0.11	0.06	1.06	3.4%	0.06	0.04	0.70
	6.30	0.58	0.03	0.06	0.02	0.59	1.9%	0.03	0.01	0.48
	6.35	0.13	0.01	0.01	0.00	0.13	0.4%	0.01	0.00	0.18


STREAM NAME: XS LOCATION: XS NUMBER:


Battlement Creek

At first campground on county road

SUMMARY SHEET

MEASURED FLOW (Qm)=	29.65	cfs	RECOMMENDED INS	TREAM FLOW:
CALCULATED FLOW (Qc)=	29.97	cfs	=======================================	
(Qm-Qc)/Qm * 100 =	-1.1	%		
			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	5.05	ft	=========	
CALCULATED WATERLINE (WLc)=	5.05	ft		
(WLm-WLc)/WLm * 100 =	0.1	%		
MAX MEASURED DEPTH (Dm)=	1.30	4		
MAX CALCULATED DEPTH (Dc)=	1.31		_	
(Dm-Dc)/Dm * 100				
(BIII-DC)/BIII 100	-1.1	%	-	_
MEAN VELOCITY=	2.90	ft/sec		
MANNING'S N=	0.065			
SLOPE=	0.045	ft/ft		
.4 * Qm =	11.9	ofe		
2.5 * Qm=	74.1			
RECOMMENDATION BY:		AGENCY		DATE
CWCB REVIEW BY:				DATE

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

LOCATION INFORMATION

STREAM NAME:

XS LOCATION:	At first can	npground at BLM land
XS NUMBER:	1	A section of the sect
DATE:	26-Jul-06	
OBSERVERS:	R. Smith, M	M. Boyum
1/4 SEC:	NW	
SECTION:	23	
TWP:	7S	
RANGE:	95W	
PM:	6th	
COUNTY:	Garfield	
WATERSHED:	Colorado	
DIVISION:	5	
DOW CODE;	0	
USGS MAP:	Hawxhurst	Creek 7.5'
USFS MAP:	0	
SUPPLEMENTAL DATA		*** NOTE ***
		Leave TAPE WT and TENSION
		at defaults for data collected
TAPE WT:	0.0106	at defaults for data collected with a survey level and rod
TAPE WT: TENSION:	0.0106 99999	at defaults for data collected with a survey level and rod
	99999	STATES AND THE PARTY OF THE PROPERTY OF THE PARTY OF THE
TENSION:	99999	STATES AND THE PARTY OF THE PROPERTY OF THE PARTY OF THE
TENSION: CHANNEL PROFILE DATA SLOPE;	99999 0.0241	STATES AND THE PARTY OF THE PROPERTY OF THE PARTY OF THE
TENSION: CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	99999 <u>A</u> 0.0241 Y:	with a survey level and rod
TENSION: CHANNEL PROFILE DATA SLOPE: INPUT DATA CHECKED B	99999 <u>A</u> 0.0241 Y:	with a survey level and rod

Battlement Creek

STREAM NAME: XS LOCATION: XS NUMBER:

Battlement Creek

At first campground at BLM land

DATA POINTS=

29

VALUES COMPUTED FROM RAW FIELD DATA

		VEDT	MATED		METTED	MALATED	ADEA	-	01.0
FEATURE	DIST	VERT DEPTH	WATER DEPTH	VEL	WETTED PERIM.	WATER DEPTH	AREA (Am)	Q (Qm)	% C
10	0.00	3.44			19,000				1000
LS	0.00	4.16			0.00		0.00	0.00	0.0%
G	1.30	5.22			0.00		0.00	0.00	0.0%
W	1.40	6.57			0.00		0.00	0.00	0.0%
	2.00	7.12	0.55	1.32	0.81	0,55	0.30	0.40	5.0%
	2.50	7.16	0.60	1.80	0.50	0.60	0.30	0.54	6.8%
	3.00	7.39	0.85	0.83	0.55	0.85	0.43	0.35	4.4%
	3.50	7.44	0.90	1.96	0.50	0.90	0.45	0.88	11.1%
	4.00	7.35	0.80	2.08	0.51	0.80	0.40	0.83	10.4%
	4.50	7.27	0.70	2.13	0.51	0.70	0.35	0.75	9.3%
	5.00	7.10	0.55	2.03	0.53	0.55	0.41	0.84	10.5%
	6.00	7.01	0.45	0.27	1.00	0.45	0.45	0.12	1.5%
	7.00	6.75	0.20	0.79	1.03	0.20	0.20	0.16	2.0%
	8.00	6.66	0.10	0.00	1.00	0.10	0.10	0.00	0.0%
	9.00	6.71	0.15	0.06	1.00	0.15	0.15	0.01	0.1%
	10.00	6.86	0.30	0.95	1.01	0.30	0.30	0.29	3.6%
	11.00	6.74	0.20	1.95	1.01	0.20	0.20	0.39	4.9%
	12.00	6.91	0.35	1.87	1.01	0.35	0.35	0.65	8.2%
	13.00	6.74	0.20	2.23	1.01	0.20	0.20	0.45	5.6%
	14.00	6.73	0.20	2.28	1.00	0.20	0.20	0.46	5.7%
	15.00	6.72	0.20	0.82	1.00	0.20	0.20	0.16	2.1%
	16.00	6.69	0.15	1.08	1.00	0.15	0.15	0.16	2.0%
	17.00	6.74	0.20	1.68	1.00	0.20	0.20	0.34	4.2%
	18.00	6.68	0.15	1.03	1.00	0.15	0.15	0.15	1.9%
	19.00	6.62	0.10	0.54	1.00	0.10	0.10	0.05	0.7%
	20.00	6.58	0.05	0.00	1.00	0.05	0.04	0.00	0.0%
W	20.60	6.52	3.700		0.60	17.00	0.00	0.00	0.0%
	24.60	6.78			0.00		0.00	0.00	0.0%
G	29.70	5.19			0.00		0.00	0.00	0.0%
RS	34.00	4.88			0.00		0.00	0.00	0.0%
то	TALS				19.61	0.9 (Max.)	5.63	7.98	100.0%

Manning's n = Hydraulic Radius=

0.0708 0.287102449 STREAM NAME:

Battlement Creek

XS LOCATION:

At first campground at BLM land

XS NUMBER:

1

WATER LINE COMPARISON TABLE

WATER	MEAS	COMP	AREA
LINE	AREA	AREA	ERROR
	5.63	6.15	9.2%
6.30	5.63	12.23	117.3%
6.32	5.63	11.74	108.5%
6.34	5.63	11.24	99.7%
6.36	5.63	10.75	91.0%
6.38	5.63	10.26	82.3%
6.40	5.63	9.77	73.6%
6.42	5.63	9.28	64.9%
6.44	5.63	8.80	56.2%
6.46	5.63	8.31	47.6%
6.48	5.63	7.83	39.0%
6.50	5.63	7.34	30.4%
6.51	5.63	7.10	26.2%
6.52	5.63	6.86	21.9%
6.53	5.63	6.62	17.6%
6.54	5.63	6.38	13.4%
6.55	5.63	6.15	9.2%
6.56	5.63	5.92	5.1%
6.57	5.63	5.69	1.0%
6.58	5.63	5.46	-3.0%
6.59	5.63	5.24	-6.9%
6.60	5.63	5.02	-10.8%
6.62	5.63	4.60	-18.3%
6.64	5.63	4.19	-25.6%
6.66	5.63	3.80	-32.5%
6.68	5.63	3.42	-39.2%
6.70	5.63	3.08	-45.3%
6.72	5.63	2.77	-50.8%
6.74	5.63	2.52	-55.2%
6.76	5.63	2.32	-58.7%
6.78	5.63	2.15	-61.9%
6.80	5.63	1.99	-64.6%

WATERLINE AT ZERO AREA ERROR =

6.568

STREAM NAME:

Battlement Creek

XS LOCATION: XS NUMBER:

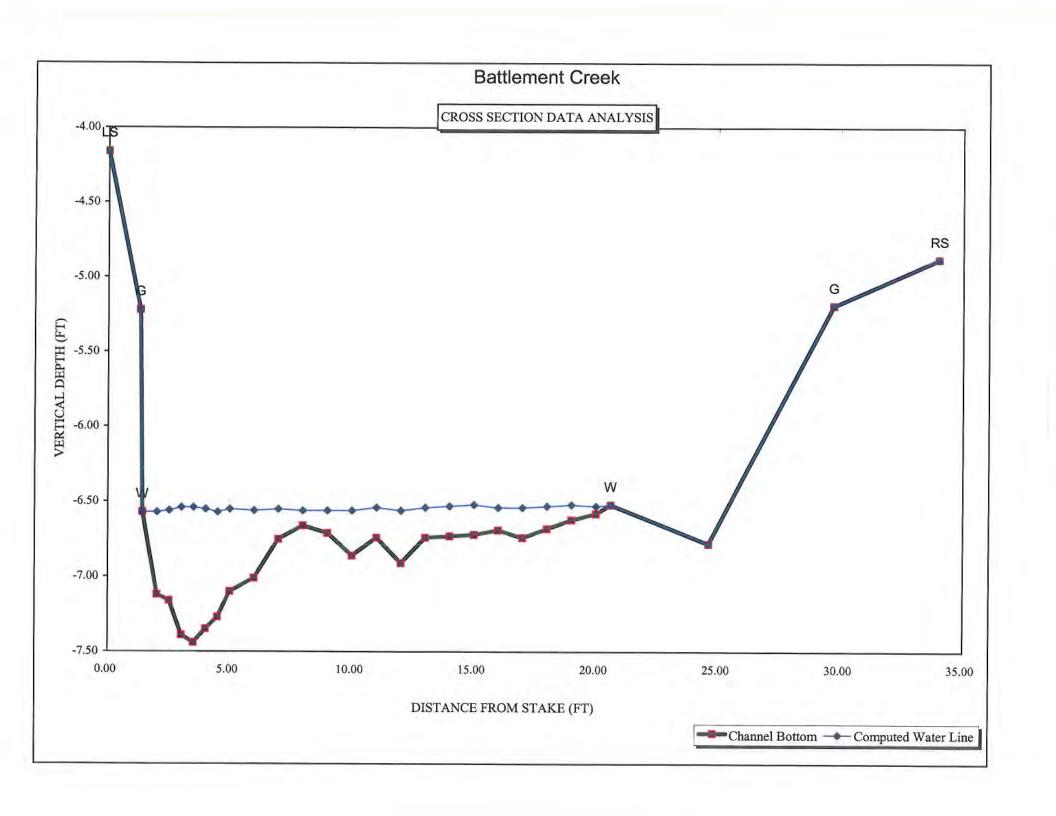
At first campground at BLM land

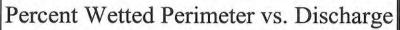
Constant Manning's n

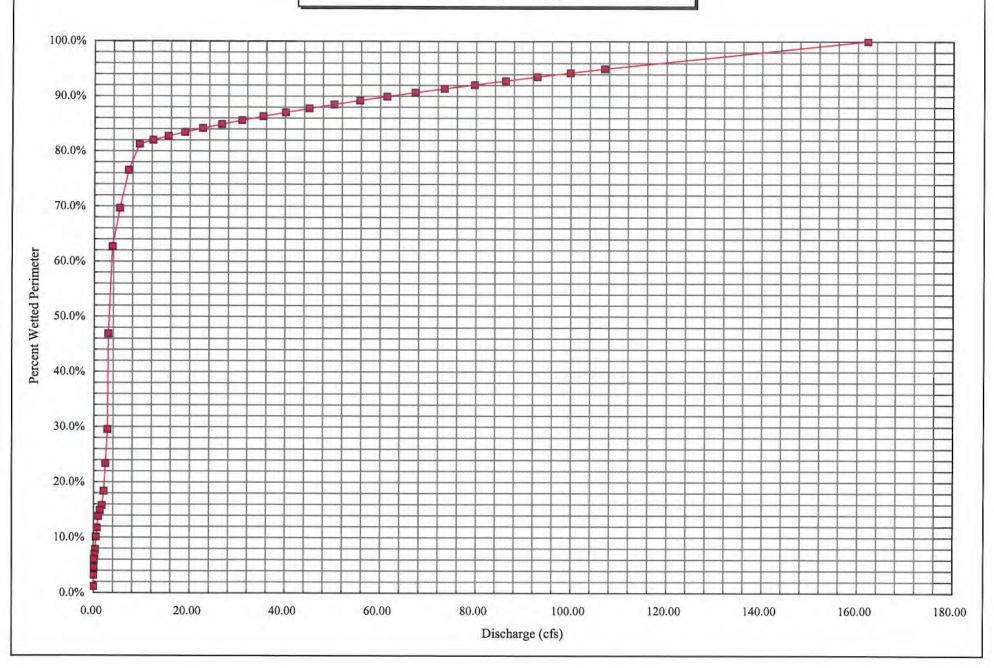
STAGING TABLE

GL = lowest Grassline elevation corrected for sag
WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO WATER	TOP WIDTH	AVG. DEPTH	MAX. DEPTH	AREA	WETTED	PERCENT	HYDR	Fr Attack	AVG
	(FT)	(FT)	(FT)	(FT)	(SQ FT)	PERIM. (FT)	WET PERIM (%)	RADIUS	FLOW	VELOCITY
ide	1.11	1.17.	71.17	(1-1)	(50)	(61)	(%)	(FT)	(CFS)	(FT/SEC
GL*	5.22	28.30	1.44	2.22	40.76	30.21	100.0%	1.35	450 40	2.00
	5.57	27.16	1.15	1.87	31.12	28.70	95.0%	1.08	162.10 107.00	3.98
	5.62	27.00	1.10	1.82	29.77	28.48	94.3%	1.05		3.44
	5.67	26.83	1.06	1.77	28.42	28.26	93.5%	1.05	99.86	3.35
	5.72	26.67	1.02	1.72	27.09	28.04	92.8%	0.97	92.92	3.27
	5.77	26.51	0.97	1.67	25.76	27.82			86.19	3.18
	5.82	26.34	0.93	1.62	24.44	27.62	92.1% 91.4%	0.93	79.67	3.09
	5.87	26.18	0.88	1.57	23.12	27.39		0.89	73.36	3.00
	5.92	26.01	0.84	1.52	21.82		90.6%	0.84	67,27	2,91
	5.97	25.85	0.79	1.47	20.52	27.17	89.9%	0.80	61.38	2.81
	6.02	25.69	0.75	1.42		26.95	89.2%	0.76	55.72	2.72
	6.07	25.52	0.70	1.37	19.23	26.73	88.5%	0.72	50.29	2.61
	6.12	25.36	0.66		17.95	26.52	87.8%	0.68	45.08	2.51
	6.17	25.19	0.61	1.32	16.68	26.30	87.0%	0.63	40.10	2.40
	6.22	25.03		1.27	15.42	26.08	86.3%	0.59	35.36	2.29
	6.27	24.87	0.57	1.22	14.16	25.86	85.6%	0.55	30.87	2.18
	6.32	24.70	0.52	1.17	12.91	25.64	84.9%	0.50	26,62	2.06
	6.37		0.47	1.12	11.67	25.42	84.2%	0.46	22.63	1.94
		24.54	0.43	1.07	10.44	25.21	83.4%	0.41	18.90	1.81
	6.42	24.37	0.38	1.02	9.22	24.99	82.7%	0.37	15.45	1.68
	6.47	24.21	0.33	0.97	8.01	24.77	82.0%	0.32	12.28	1.53
	6.52	24.05	0.28	0.92	6.80	24.55	81.3%	0.28	9.41	1.38
Ar.	6.57	22.67	0.25	0.87	5.63	23.12	76.5%	0.24	7.15	1.27
	6.62	20.63	0,22	0.82	4.54	21.04	69.7%	0.22	5.33	1.17
	6.67	18.55	0.19	0.77	3.56	18.94	62.7%	0.19	3.80	1.07
	6.72	13.81	0.20	0.72	2.74	14.16	46.9%	0.19	2.98	1.09
	6.77	8.61	0.26	0.67	2.21	8.92	29.5%	0.25	2.84	1.29
	6.82	6.79	0.27	0.62	1.83	7.06	23.4%	0.26	2.42	1.32
	6.87	5.32	0.29	0.57	1.53	5.55	18.4%	0.28	2.11	1.38
	6.92	4.58	0.28	0.52	1.28	4.77	15.8%	0.27	1.74	1.36
	6,97	4.33	0.25	0.47	1.06	4.49	14.9%	0.24	1.32	1.24
	7.02	4.03	0.21	0.42	0.85	4.17	13.8%	0.20	0.96	1.13
	7.07	3.42	0.19	0.37	0.66	3.54	11.7%	0.19	0.71	1.07
	7.12	2.95	0.17	0.32	0.51	3.05	10.1%	0.17	0.50	0.99
	7.17	2.28	0.17	0.27	0.38	2.37	7.8%	0.16	0.36	0.96
	7.22	2.03	0.13	0.22	0.27	2.09	6.9%	0.13	0.22	0.83
	7.27	1.77	0.10	0.17	0.17	1.82	6.0%	0.10	0.12	0.68
	7.32	1.36	0.07	0.12	0.10	1.39	4.6%	0.07	0.05	0.55
	7.37	0.95	0.04	0.07	0.04	0.96	3.2%	0.04	0.01	0.38
	7.42	0.35	0.01	0.02	0.00	0.35	1.2%	0.01	0.00	0.16


STREAM NAME: XS LOCATION: XS NUMBER:


Battlement Creek


At first campground at BLM land

SUMMARY SHEET

### AGENCY TOP ### AGENCY	MEASURED FLOW (Qm)=	7.98	cfs	RECOMMENDED INS	TDEAM ELOW:
Compacing 10.4 % FLOW (CFS) PERIOD	CALCULATED FLOW (Qc)=				
MEASURED WATERLINE (WLC)= (CALCULATED WATERLINE (WLC)= (WLm-WLc)/WLm * 100 = -0.3 % MAX MEASURED DEPTH (Dm)= MAX CALCULATED DEPTH (Dc)= (Dm-Dc)/Dm * 100 MEAN VELOCITY= MANNING'S N= 0.071 SLOPE= 0.0241 ft/ft 4 * Qm = 3.2 cfs 2.5 * Qm= 19.9 cfs RATIONALE FOR RECOMMENDATION:		0.00.7			
MEASURED WATERLINE (WLC)= (CALCULATED WATERLINE (WLC)= (WLm-WLc)/WLm * 100 = MAX MEASURED DEPTH (Dm)= MAX CALCULATED DEPTH (Dc)= (Dm-Dc)/Dm * 100 MEAN VELOCITY= MANNINGS N= 0.071 SLOPE= 0.0241 ft/ft 4 * Qm = 2.5 * Qm= 19.9 cfs RATIONALE FOR RECOMMENDATION: RECOMMENDATION BY: MEAN VELOCITY= AGENCY. DATE:				FLOW (CFS)	PERIOD
CALCULATED WATERLINE (WLc)= (WLm-WLc)WLm * 100 =		6.55	ft		
MAX MEASURED DEPTH (Dm)=	CALCULATED WATERLINE (WLc)=	6.57	ft		
MAX MEASURED DEPTH (Dm)=			- A		
MAX CALCULATED DEPTH (Dc)=			,,		
MAX CALCULATED DEPTH (DC)= (Dm-Dc)/Dm * 100 3.1 % MEAN VELOCITY= 1.27 ft/sec MANNING'S N= 0.071 SLOPE= 0.0241 ft/ft 4* Qm = 2.5 * Qm= 19.9 cfs RATIONALE FOR RECOMMENDATION:	MAX MEASURED DEPTH (Dm)=	0.90	ft		
(Dm-Dc)/Dm * 100 3.1 % MEAN VELOCITY=					
MEAN VELOCITY= 1.27 ft/sec MANNING'S N= 0.071 SLOPE= 0.0241 ft/ft 4 * Qm = 3.2 cfs 2.5 * Qm= 19.9 cfs RATIONALE FOR RECOMMENDATION:					
MANNING'S N= 0.071 SLOPE= 0.0241 ft/ft 4 * Qm = 3.2 cfs 2.5 * Qm= 19.9 cfs RATIONALE FOR RECOMMENDATION:	(5)	3.1	70		
MANNING'S N= 0.071 SLOPE= 0.0241 ft/ft 4 * Qm = 3.2 cfs 2.5 * Qm= 19.9 cfs RATIONALE FOR RECOMMENDATION:	MEAN VELOCITY=	4.07	Mara		
SLOPE= 0.0241 ft/ft 4 * Qm = 3.2 c/s 2.5 * Qm= 19.9 c/s RATIONALE FOR RECOMMENDATION: ===================================			ivsec		
### 3.2 cfs 2.5 * Qm = 3.2 cfs 19.9 cfs RATIONALE FOR RECOMMENDATION: ###################################			0.00		
2.5 * Qm= 19.9 cfs RATIONALE FOR RECOMMENDATION:	CLOT L-	0.0241	π/π		
2.5 * Qm= 19.9 cfs RATIONALE FOR RECOMMENDATION:	4 * Om =		265		
RATIONALE FOR RECOMMENDATION:			-3/15/		
RECOMMENDATION BY:	2.5 ((11)-	19.9	cfs		
RECOMMENDATION BY:					
	RECOMMENDATION BY:		AGENOV		2.02
CWCB REVIEW BY:			AGENCY	***************************************	DATE:
	CWCB REVIEW BY:				2720

COLORADO WATER CONSERVATION BOARD INSTREAM FLOW / NATURAL LAKE LEVEL PROGRAM STREAM CROSS-SECTION AND FLOW ANALYSIS

1/2 mile upstream from BLM campground at turnoff

LOCATION INFORMATION

STREAM NAME:

XS LOCATION:

XS NUMBER;	2	and the second s
DATE:	26-Jul-06	
OBSERVERS:	R. Smith, M	/l. Boyum
1/4 SEC:	NW	
SECTION:	23	
TWP:	78	
RANGE:	95W	
PM:	6th	
COUNTY:	Garfield	
WATERSHED:	Colorado	
DIVISION:	5	
DOW CODE:	19059	
USGS MAP:	Hawxhurst	Creek 7.5
USFS MAP:	0	
SUPPLEMENTAL DATA	3-	*** NOTE ***
		Leave TAPE WT and TENSION
TAPE WT:	0.0106	at defaults for data collected
TENSION:	99999	with a survey level and rod
TENSION,	99999	
CHANNEL PROFILE DATA	<u>\</u>	
SLOPE:	0.0483	
INPUT DATA CHECKED B	Y:	DATE
ASSIGNED TO:	********	DATE

Battlement Creek

STREAM NAME:

Battlement Creek

XS LOCATION: XS NUMBER:

1/2 mile upstream from BLM campground at turnoff

3

DATA POINTS=

27

VALUES COMPUTED FROM RAW FIELD DATA

		2000 10 20 20 23		- 77	WESTS COM	O'LD I NOW I	ON TILLD DA	10	
FEATURE	DIST	VERT DEPTH	WATER	MEI	WETTED	WATER	AREA	Q	% Q
	Dioi	DEPIN	DEPTH	VEL	PERIM.	DEPTH	(Am)	(Qm)	CELL
LS	0.00	1.62			0.00		0.00	0.00	0.0%
1 G	2.20	4.04			0.00		0.00	0.00	0.0%
W	3.00	4.81			0.00		0.00	0.00	0.0%
	3.50	4.90	0.10	0.98	0.51	0.10	0.05	0.05	0.7%
	4.00	4.88	0.10	0.00	0.50	0.10	0.05	0.00	0.0%
	4.50	5.02	0.20	1.46	0.52	0.20	0.10	0.15	2.2%
	5.00	5.00	0.20	1.47	0.50	0.20	0.10	0.15	2.2%
	5.50	5.01	0.20	0.74	0.50	0.20	0.10	0.07	1.1%
	6.00	5.13	0.35	0.37	0.51	0.35	0.18	0.06	1.0%
	6.50	5.24	0.45	1.27	0.51	0.45	0.23	0.29	4.2%
	7.00	5.26	0.45	0.87	0.50	0.45	0.34	0.29	4.3%
	8.00	5.20	0.40	1.01	1.00	0.40	0.40	0.40	6.0%
	9.00	5.15	0.35	1.91	1,00	0.35	0.35	0.67	9.9%
	10.00	5.32	0.55	1.58	1.01	0.55	0.55	0.87	12.8%
	11.00	5.36	0.55	1.35	1.00	0.55	0.55	0.74	11.0%
	12.00	5.26	0.45	0.54	1.00	0.45	0.45	0.24	3.6%
	13.00	5.15	0.35	0.99	1.01	0.35	0.35	0.35	5.1%
	14.00	5.44	0.65	2.04	1.04	0.65	0.49	0.99	14.7%
	14.50	5.27	0.45	2.24	0.53	0.45	0.23	0.50	7.4%
	15.00	5.27	0.45	2.17	0.50	0.45	0.23	0.49	7.2%
	15.50	5.19	0.40	1.42	0.51	0.40	0.20	0.28	4.2%
	16.00	5.16	0.35	0.54	0.50	0.35	0.18	0.09	1.4%
	16.50	5.14	0.30	0.45	0.50	0.30	0.15	0.07	1.0%
	17.00	4.97	0.15	0.00	0.53	0.15	0.09	0.00	0.0%
W	17.70	4.81			0.72	2015	0.00	0.00	0.0%
G	19.00	3.93			0.00		0.00	0.00	0.0%
RS	20.00	2.84			0.00		0.00	0.00	0.0%
							-5.5%	0,00	0.070
ТО	TALS				14.91	0.65	5.34	6.77	100.0%
						(Max.)			

Manning's n = Hydraulic Radius= 0.1300 0.358219367 STREAM NAME:

Battlement Creek

XS LOCATION:

1/2 mile upstream from BLM campground at turnoff

XS NUMBER:

2

WATER LINE COMPARISON TABLE

AREA ERROR	COMP AREA	MEAS AREA	WATER LINE
-2.0%	5.23	5.34	
68.3%	8.98	5.34	4.56
62.5%	8.68	5.34	4.58
56.8%	8.37	5.34	4.60
51.1%	8.07	5.34	4.62
45.4%	7.77	5.34	4.64
39.8%	7.46	5.34	4.66
34.1%	7.16	5.34	4.68
28.5%	6.86	5.34	4.70
22.9%	6.56	5.34	4.72
17.3%	6.27	5.34	4.74
11.8%	5.97	5.34	4.76
9.0%	5.82	5.34	4.77
6.2%	5.67	5.34	4.78
3.5%	5.53	5.34	4.79
0.7%	5.38	5.34	4.80
-2.0%	5.23	5.34	4.81
-4.8%	5.08	5.34	4.82
-7.5%	4.94	5.34	4.83
-10.2%	4.79	5.34	4.84
-12.9%	4.65	5.34	4.85
-15.6%	4.51	5.34	4.86
-20.9%	4.23	5.34	4.88
-26.0%	3.95	5.34	4.90
-30.9%	3.69	5.34	4.92
-35.8%	3.43	5.34	4.94
-40.6%	3.17	5.34	4.96
-45.3%	2.92	5.34	4.98
-50.0%	2.67	5.34	5.00
-54.4%	2.43	5.34	5.02
-58.6%	2.21	5.34	5.04
-62.8%	1.99	5.34	5.06

WATERLINE AT ZERO AREA ERROR =

4.803

STREAM NAME:

Battlement Creek

XS LOCATION: XS NUMBER:

1/2 mile upstream from BLM campground at turnoff

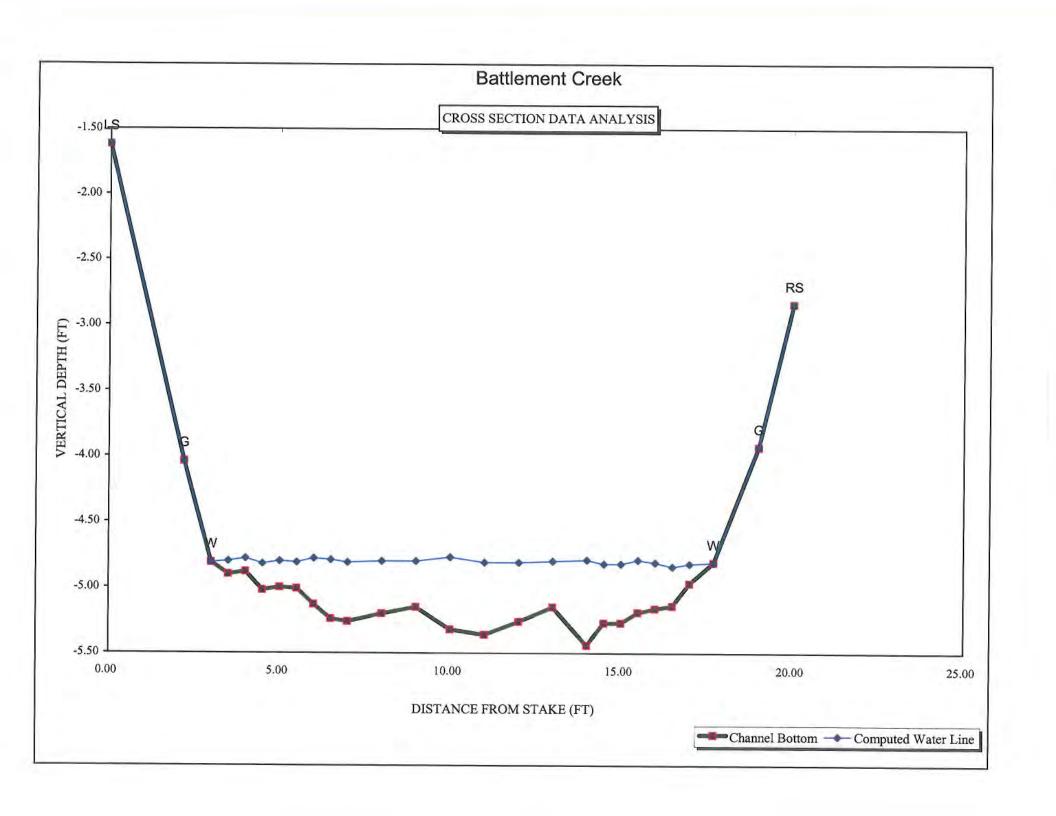
Constant Manning's n

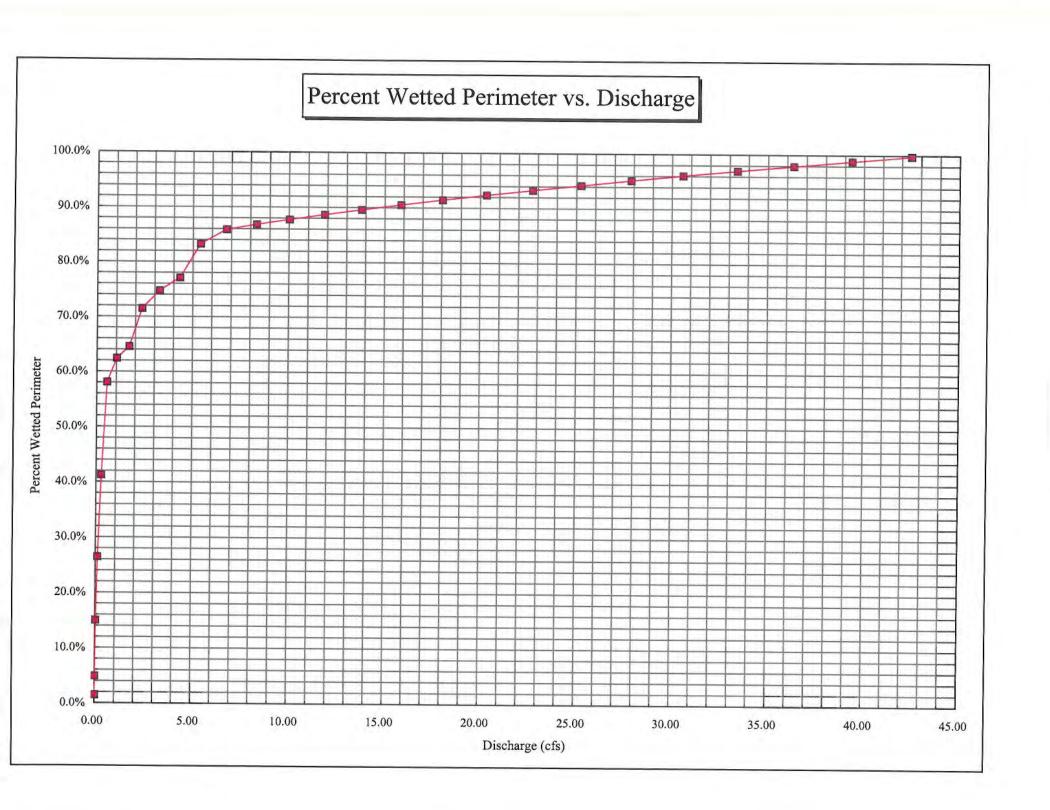
STAGING TABLE

GL = lowest Grassline elevation corrected for sag
WL = Waterline corrected for variations in field measured water surface elevations and sag

	DIST TO WATER (FT)	TOP WIDTH (FT)	AVG. DEPTH (FT)	MAX. DEPTH (FT)	AREA (SQ FT)	WETTED PERIM. (FT)	PERCENT WET PERIM (%)	HYDR RADIUS (FT)	FLOW (CFS)	AVG, VELOCITY (FT/SEC)
					1		1.01	1.77	10.07	(i troco)
GL	4.04	16.64	1.04	1.40	17.30	17.39	100.0%	0.99	43.29	2.50
	4.05	16.61	1.03	1.39	17.09	17.35	99.8%	0.98	42.49	2.49
	4.10	16.48	0.99	1.34	16.26	17.19	98.8%	0.95	39.36	2.42
	4.15	16.35	0.94	1.29	15.44	17.03	97.9%	0.91	36.33	2.35
	4.20	16.23	0.90	1.24	14.62	16.87	97.0%	0.87	33.41	2.28
	4.25	16.10	0.86	1.19	13.82	16.71	96.1%	0.83	30.58	2.21
	4.30	15.98	0.81	1.14	13.01	16.54	95.1%	0.79	27.86	2.14
	4.35	15.85	0.77	1.09	12.22	16.38	94.2%	0.75	25.24	2.07
	4.40	15.73	0.73	1,04	11.43	16.22	93.3%	0.70	22.73	1.99
	4.45	15.60	0.68	0.99	10.65	16.06	92.3%	0.66	20.33	1.91
	4.50	15.47	0.64	0.94	9.87	15.90	91.4%	0.62	18.04	1.83
	4.55	15.35	0.59	0.89	9.10	15.74	90.5%	0.58	15.86	1.74
	4.60	15.22	0.55	0.84	8.33	15.58	89.6%	0.54	13.80	1.66
	4.65	15.10	0.50	0.79	7.58	15.41	88.6%	0.49	11.85	1.56
	4.70	14.97	0.46	0.74	6.82	15.25	87.7%	0.45	10.03	1.47
	4.75	14.84	0.41	0.69	6.08	15.09	86.8%	0.40	8.33	1.37
WL	4.80	14.72	0.36	0.64	5.34	14.93	85.9%	0.36	6.76	1.27
	4.85	14.28	0.32	0.59	4.61	14.48	83.2%	0.32	5.41	1.17
	4.90	13.21	0.30	0.54	3.92	13.40	77.0%	0.29	4.34	1.11
	4.95	12.82	0.26	0.49	3.27	12.99	74.7%	0.25	3.27	1.00
	5.00	12.27	0.21	0.44	2.64	12.43	71.5%	0.21	2.36	0.89
	5.05	11.08	0.19	0.39	2.07	11.22	64.5%	0.18	1.68	0.81
	5.10	10.72	0.14	0.34	1.52	10.85	62.4%	0.14	1.03	0.68
	5.15	9.98	0.10	0.29	1.00	10.10	58.1%	0.10	0.54	0.54
	5.20	7.08	0.08	0.24	0.58	7.17	41.2%	0.08	0.27	0.47
	5.25	4.53	0.06	0.19	0.28	4.60	26.4%	0.06	0.11	0.39
	5.30	2.55	0.05	0.14	0.12	2.60	15.0%	0.04	0.04	0.39
	5.35	0.82	0.03	0.09	0.03	0.85	4.9%	0.03	0.01	0.24
	5.40	0.24	0.02	0.04	0.00	0.25	1.4%	0.02	0.00	0.24

STREAM NAME:


Battlement Creek


XS LOCATION: XS NUMBER:

1/2 mile upstream from BLM campground at turnoff 2

SUMMARY SHEET

MEASURED FLOW (Qm)=	6.77	cfs	RECOMMENDED INST	DEAMELOW
CALCULATED FLOW (Qc)=	6.76		KECOMMENDED INST	
(Qm-Qc)/Qm * 100 =	0.1	JPE170		
			FLOW (CFS)	PERIOD
MEASURED WATERLINE (WLm)=	4.81	ft	========	FERIOD
CALCULATED WATERLINE (WLc)=	4.80			
(WLm-WLc)/WLm * 100 =	0.2			
		70		
MAX MEASURED DEPTH (Dm)=	0.65	ft		
MAX CALCULATED DEPTH (Dc)=	0.64			
(Dm-Dc)/Dm * 100	1.9			
, ,	1.5	70		_
MEAN VELOCITY=	4 07	ft/sec		
MANNING'S N=	0.130	ivsec	-	
SLOPE=		0.00		
OLOI L-	0.0483	tvitt		
.4 * Qm =	2.2			
2.5 * Qm=	2.7	717		
2.5 QIII-	16.9	cfs		
RECOMMENDATION BY:		AGENCY		DATE:
CWCB REVIEW BY:				2122

Glenwood Springs Field Office Stream Surveys October 2004

Battlement Creek - Water Code #19059

Battlement Creek, located east of Battlement Mesa, CO and located on BLM lands managed by the GSFO was sampled on October 25, 2004. Battlement Creek is tributary to the Colorado River. Fish sampling was conducted to collect fin clips for genetic analysis of Colorado River cutthroat trout present in the stream. Sampling was conducted via backpack electro-shocker. Personnel present were Bill Elmblad, Colorado Division of Wildlife Fish Biologist, and Tom Fresques, BLM West Slope Fisheries Biologist.

A total of 25 adult fish were collected and fin clips taken. Genetic samples were sent to and analyzed by Dennis Shiozawa, BYU, and the following results were emailed to Bill Elmblad on May 15, 2006. A copy of the formal report alluded to below has not been obtained by BLM regarding the Battlement Creek Fish:

From: Dennis Shiozawa [mailto:shiozawa@byu.edu]

Sent: Monday, May 15, 2006 11:34 AM

To: Elmblad, Bill

Subject: cuthroat trout analyses

Bill,

We are finally getting organized and the dust is settling (from Paul's travels to Egypt and England, a number of workers leaving, and a new one starting). Sorry for the delay in this, but hopefully it has gotten to you in time.

So here are the results, a formal report will be sent to you soon. We will also send copies of the report to the BLM and USFS.

Collier Creek Colorado River cutthroat trout, no

Yellowstone, no rainbow trout

Fortification Creek Colorado River cutthroat trout, no

Yellowstone, no rainbow trout

Fourmile Creek Colorado River cutthroat trout, no Yellowstone,

no rainbow trout

West Prong Creek Colorado River cutthroat trout, no Yellowstone, no

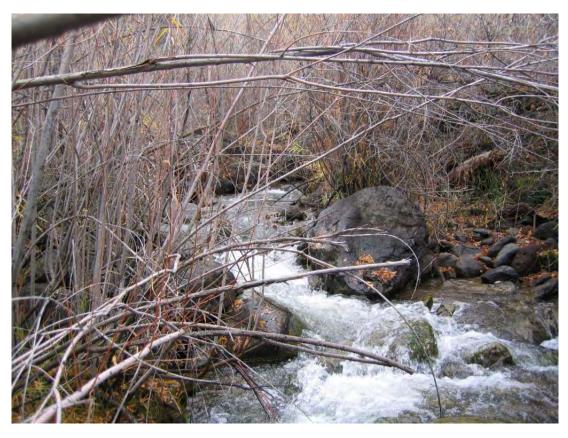
rainbow trout

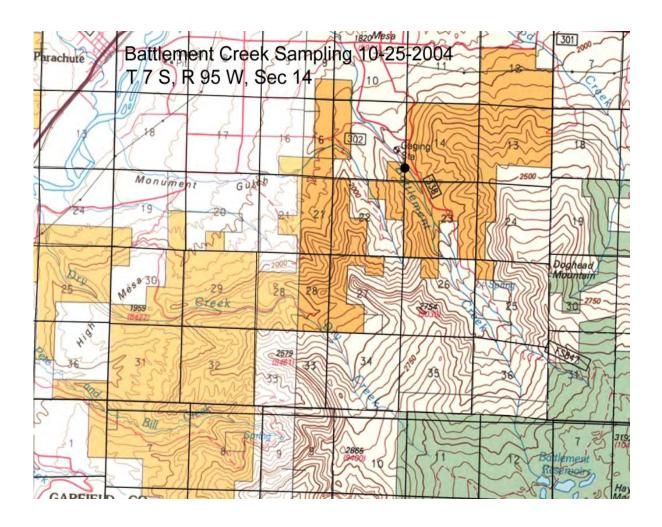
Battlement Creek Colorado River cutthroat trout, no Yellowstone,

no rainbow trout

Canyon Creek About 50% Yellowstone Cutthroat trout, 50%

Colorado River Cutthroat trout, no rainbow


I hope all is going well for you.


Dennis

