

Colorado River Water Availability Study Interbasin Compact Committee Meeting December 2, 2009

Consulting Team

AECOM Water

AMEC Earth & Environmental

Canyon Water Resources

Leonard Rice Engineers

Stratus Consulting

Agenda

- Status report on in-state modeling results
- Builds on previous PRELIMINARY results:
 - Drought frequencies and durations
 - Hydrologic impacts of projected climate change
 - Climate change impacts on consumptive use
- Today's results
 - Water availability using CDSS/ StateMod for each basin for one of the hydrologic traces

Colorado Decision Support System

Last Step for Phase | - Water Availability

GCM's & Hydrology - Process

GCM's Effect On Temperature

Lower Elevations Show Largest Increase

Basin Wide 2040 Average Increase = 3.6 Deg F

Basin Wide 2070 Average Increase = 5.8 Deg F

Increase is Consistent Each Month

Figure 2 - 2070 Average Annual Temperature Increase from Historical (deg F)

GCM's Effect On Winter Precipitation

Winter Precipitation
Increases Basin-Wide

Winter Precipitation Increases More in Northern CO

Winter Precipitation Increases

More at Higher Elevations

Figure 4 - 2070 Percent of Historical Winter (Nov - Mar) Precipitation

GCM's Effect On Irrigation Season Precipitation

Summer Precipitation
Decreases Basin-wide

Precipitation Decreases

More in Southern CO

Precipitation Decreases
Less at Higher
Elevations

Figure 6 - 2070 Percent of Historical Irrigation Season (Apr-Oct) Precipitation

GCM's Effect On Crop Irrigation Requirement

- 2040 Average Increase
 - = 20% (0.4 AF/Acre)
 - = 8 more growing days
- 2070 Average Increase
 - = 31% (0.64 AF/Acre)
 - = 29 more growing days

Lower Elevations Show Largest Increase

Figure 8 - 2070 Increase in CIR from Historical (inches)

Colorado River at Dotsero - Breakdown

- Natural Flow Decrease
 - = 180,000 AF/YR (9% of Historical)
- Crop Consumptive Use (Supply-limited) Increase
 - = 118,000 AF/YR (22% of Historical)
- Legally Available Flow Decrease
 - = 129,000 AF/Year (23 % of Historical)

Colorado River at Dotsero - Breakdown

	2070 Legally Available Flow				
	Historical Average (AF/YR)	Climate Scenario Average (AF/YR)	Decrease (AF/YR)	% Decrease	
5 Driest Consecutive Years	173,000	114,000	59,000	34%	
10 Driest Consecutive Years	386,000	282,000	104,000	27%	

	2070 Physically Available Flow				
	Historical Average	Climate Scenario Average	Decrease		
	(AF/YR)	(AF/YR)	(AF/YR)	% Decrease	
5 Driest Consecutive Years	933,000	815,000	118,000	13%	
10 Driest Consecutive Years	1,206,000	1,055,000	151,000	13%	

White River Below Meeker (09304800) 2070 Average Monthly Modeled Legally Available Flow

Colorado River Near Grand Lake (09011000) 2070 Average Monthly Modeled Legally Available Flow

Gunnison River at Grand Junction-Breakdown

- Natural Flow Decrease
 - = 326,000 (14% of Historical)
- Crop Consumptive Use (Supply-limited) Increase
 - = 43,600 AF/YR (7% of Historical)
- Legally Available Flow Decrease
 - = 401,000 AF/YR (32% of Historical)

Dolores River at Bedrock-Breakdown

- Natural Flow Decrease
 - = 129,000 AF/YR (32 % of Historical)
- Crop Consumptive Use (Supply-limited) Decrease
 - = 45,000 AF/YR (14% of Historical -includes transbasin diversions)
- Legally Available Flow Decrease
 - = 89,500 AF/Year (71% of Historical)

Resequencing – Alternate Historical Hydrology

١.

Repeat 100x

Phases

Phase I

Water Availability under current water supply infrastructure, currently perfected water rights, and current levels of consumptive and non-consumptive water demands

Phase II

Water Availability under projected demands from existing, conditional, and new water rights and for additional consumptive and non-consumptive water demands

Comments and Questions?

Contact Information:

Ray Alvarado: 303.866.3441 ray.alvarado@state.co.us

Blaine Dwyer: 303.987.3443 blaine.dwyer@aecom.com

Matt Brown: 303.987.3443 matthew.brown@aecom.com

Ben Harding: 303.443.7839 ben.harding@amec.com

Erin Wilson: 303.455.9589 erin.wilson@lrcwe.com

Website:

http://cwcb.state.co.us/WaterInfo/CRWAS