Colorado River Water Availability Study Alternate Hydrology Development

Colorado Climate Technical Advisory Group August 13, 2009 Ben Harding, Subhrendu Gangopadhyay

Consulting Team

- Boyle Engineering
- AMEC
- Canyon Water Resources
- Leonard Rice Engineers
- Stratus Consulting

AMEC Core Team

Ben Harding Subhrendu Gangopadhyay Laura Condon **Roger Wolvington Kevin Wheeler**

Agenda

- Overview of approach
- Status
- Description of principal elements
- PRELIMINARY Results
- Discussion

Colorado River Water Availability Study

Study Purpose:

"How much water from the Colorado River Basin System is available to meet Colorado's current and future water needs?"

- Phase I <u>Water Availability</u> under current water supply infrastructure, currently perfected water rights, and current levels of consumptive and non-consumptive water demands
- Phase II <u>Water Availability</u> under projected demands from existing, conditional and new water rights and for additional consumptive and non-consumptive water uses

Two Scales

Study Approach – Three Step Hydrologic Analysis

Observed Hydrology

- Use commonly accepted flows
- Colorado River
 - CRSS natural flows (Big River)
 - CDSS natural flows (Intra-state)

Overall Hydrology Approach

Paleohydrology – Tree Ring Data

Resequencing – Alternate Historical Hydrology

Resequencing – Alternate Historical Hydrology

Overall Hydrology Approach

Alternate Weather

2040, 2070

Alternate Hydrology

- Built the "infrastructure"
- Obtained all data
- Developed the paleo stochastic model
- Obtained and evaluated Christensen & Lettenmaier
 VIC calibrated soil file
- Made initial VIC runs and produced PRELIMINARY as-if hydrology (presented later)
- Evaluated routing methods
- Implemented MOCOM automated calibration method
- Refined calibrations (ongoing)

Paleohydrology Methodology

Prairie et al. (2008) paper [Prairie, J., K. Nowak,

B. Rajagopalan, U. Lall, and T. Fulp (2008), A stochastic nonparametric approach for streamflow generation combining observational and paleoreconstructed data, Water Resour. Res., 44, W06423, doi:10.1029/2007WR006684.]

🖹 M_paleo_Final_1950-2005.txt - WinVi
Ele £dt Search Options Windows Help
International Internat

Figure 4. The nonparametric paleoconditioning (NPC) modeling framework description.

Source: Prairie et al (2008)

Paleohydrology Results – Basic Statistics

100 simulations each of length 100 years; Meko et al. (2007) reconstruction; resampling period, WY 1950-2005

Paleohydrology Results – Drought Statistics

Statistics of the observed period are shown as blue triangles, and those of the paleo-simulations are shown as red circles.

Use VIC model

- Land Surface, Vegetation and Soil Data
 - From Christiansen and Lettenmaier (C&L data)
- Refined calibration
 - Maurer/Wood gridded weather
 - CRDSS natural flows
 - MOCOM automated calibration (multi-objective SCE)
- Routing
 - Daily
 - Monthly
 - Annual
- Sum to monthly

Land Surface, Vegetation, Soils Data

- Land cover tiles
 (vegetation)
- Elevation zones (topography)
- Snow model

solved for each tile

Snow state
 variables and
 fluxes averaged
 (area weighted)

Source: Kostas Andreadis, 2007

Land Surface, Vegetation, Soils Data

- Land surface processes –
 "advanced" physical representation –
 "complex"
- Subsurface processes "conceptual"

Snow Model

- 5 snow-bands
- fractional-area
- "2-layer" formulation
- ground snow pack
- snow interception and canopy processes
- energy balance approach

Snow Model Validation

Berthoud Summit (Upper Colorado) 11,300'

Observed Weather/Forcings

- Andy Wood west wide forecast datasets, 1950-2005, daily
 - Precipitation
 - Maximum temperature
 - Minimum temperature
 - Wind
- Spatial resolution 1/8-degree
 ~7.5-mile grid

Simulation Results CY 1950-2004 using C&L Parameters – soil, vegetation, land surface

Calibration

- Land surface processes "better" physical representation "complex"
- Subsurface processes "conceptual"
 - Dsmax maximum baseflow that can occur from the lowest soil layer (mm/d).
 - 2. Ds fraction of Dsmax where nonlinear baseflow begins.
 - 3. Ws fraction of maximum soil moisture in lowest soil layer where non-linear baseflow occurs.
 - 4. Layer 1 soil depth (D_2).
 - 5. Layer 2 soil depth (D_3).
 - 6. binf shape of the variable infiltration capacity curve control for infiltration versus surface runoff.

Calibration Approach - Autocalibration

MOCOM

- Three-stage approach
 - Scalar values let the 6 subsurface parameters vary within [min, max]
 - Slope sensitivity analysis 'will explain details in next slide
 - Hybrid slope/scalar calibration

Periods

- Parameter estimation 1950 1984
- Validation 1985 2004 (spin up with 1983 and 1984)

- Scalar MOCOM run using [min, max] parameter bound for all the 6 subsurface parameters for the 11-year period, 1950-1960.
- Select the "best" parameter values from the 11-year run -> "effective" parameter for the basin.

Dsmax – Gunnison at Gunnison

GNGUN soil parameter Ds_MAX

■ Original Calibration ◆ S1 ▲ S2 ■ S3 × S4 × S5 ● S6 + S7 ● S8 ■ S9 • S10 ▲ S55

Ds – Gunnison at Gunnison

GNGUN soil parameter Ds

■ Original Calibration ◆ S1 ▲ S2 ■ S3 × S4 × S5 ● S6 + S7 < S8 ■ S9 - S10 ▲ S55

Ws – Gunnison at Gunnision

GNGUN soil parameter Ws

■ Original Calibration ◆ S1 ▲ S2 ■ S3 × S4 × S5 ● S6 + S7 < S8 ■ S9 - S10 ▲ S55

GNGUN soil parameter DEPTH_2

■ Original Calibration ◆ S1 ▲ S2 ■ S3 × S4 × S5 ● S6 + S7 ● S8 ■ S9 - S10 ▲ S55

Layer 2 soil depth – Gunnison at Gunnison

GNGUN soil parameter DEPTH_3

■ Original Calibration ◆ S1 ▲ S2 ■ S3 × S4 × S5 ● S6 + S7 ◆ S8 ■ S9 - S10 ▲ S55

Calibration Results

- 2-most sensitive parameters are:
 - Dsmax
 - Ws

Calibration Results – Gunnison at Gunnison

8,000 SAVE 64 Annual Obs Sim SAVE 64 Sim/Obs Correlation Coefficient = 0.92 7,000 Avg Flow (AF) 1558.1 1562.0 Nash-Sutcliff Effc. = 0.83 1.00 RMSE/Obs Mean = 0.67 MSE/Obs Var = 0.23 SAVE 55 Abs Avg Peak Diff (AF) = 549.9 6,000 Annual Obs Sim Sim/Obs Avg Flow (AF) 1558.1 1558.6 SAVE 55 Monthly Volume in AF 1.00 5,000 Correlation Coefficient = 0.91 Nash-Sutcliff Effc. = 0.83 RMSE/Obs Mean = 0.62 = 0.19 MSE/Obs Var 4,000 Abs Avg Peak Diff (AF) = 85.8 3,000 0 2,000 1,000 -0 0 2 3 5 6 7 8 9 10 11 12 1 4 Month

Actual vs Simulated for GNGUN run SAVE_64 and GNGS2 run SAVE_55 Calculated stats for period: 1950 1 to 1960 12

---ObsAvg - - - GNGUN SAVE_64 - - → - GNGS2 SAVE_55

Calibration Results, 1950-1984, Calibration Period

Monthly Flow for the Gunnison River at Gunnison 1950-1984

Calibration Results, 1985-2004, Validation Period

Monthly Flow for the Gunnison River at Gunnison 1985-2004

- - - Best Calibration ----- Observed Flows ----- VIC C&L Calibration

Calibration Results, 1950-2004

Monthly Flow for the Gunnison River at Gunnison 1950-2004

◆ - Best Calibration ----- Observed Flow ----- VIC C&L Calibration

Time-series Comparison

GCM Results – Colorado – Cameo PRELIMINARY RESULTS—Not for citation.

Colorado River at Cameo Average Monthly Flow 25,000 2040 Range -2040 Average 20,000 15,000 8% reduction in average annual runoff me 7-day shift earlier 10,000 5,000 0 -2 3 5 6 7 8 9 10 11 4 12 1 Month Colorado River at Cameo Average Monthly Flow 25,000 2070 Range -2070 Average 20,000 S) 15,000 15% reduction in average annual runoff me 10,000 11-day shift earlier 5,000 0 -2 3 5 6 7 9 10 4 8 11 12 1 Month

GCM Results – Colorado – Dotsero PRELIMINARY RESULTS—Not for citation.

Colorado River at Dotsero **Average Monthly Flow** 14,000 2040 range 12,000 -2040 average 10,000 Natural Flow 8,000 7% reduction in average annual 6,000 runoff volume 4,000 7-day shift earlier 2,000 0 -2 5 1 З 4 6 7 8 9 10 11 12 Month **Colorado River at Dotsero Average Monthly Flow** 14,000 **2070** range 12,000 2070 average 10,000 cfs) 8,000 14% reduction in average annual Average F 6,000 runoff volume 4,000 12-day shift earlier 2,000 0 2 3 5 6 7 9 10 12 4 8 11 1 Month

GCM Results – Gunnison – G. Junction

GCM Results – Gunnison – Gunnison

GCM Results – Yampa – Maybell

GCM Results – Yampa – Steamboat PRELIMINARY RESULTS—Not for citation.

47

ameco

GCM Results – White – Meeker

GCM Results – San Juan – Pagosa Springs

GCM Results – Animas – Durango

Questions/Uncertainties

- Temperature adjustment
- Routing parameters
- Observed forcings
- MOCOM non-convergence
- Monthly Flow for the Yampa River at Maybell (1950-1960) 8,000 SAVE 46 Correlation Coefficient = 0.94 Nash-Sutcliff Effc. = 0.81 7,000 RMSE/Obs Mean = 0.69 MSE/Obs Var = 0.21 Abs Avg Peak Diff (AF/30) = 1149.3 6,000 SAVE_46 Sim Sim/Obs Annual Obs Avg Flow (AF/30) 3186.9 4508.9 (ct) 5,000 (ct) 4,000 (ct) 3,000 (ct) 4,000 1.41 Std Dev (AF/30) 4739.2 4997.7 3,000 2,000 1,000 · -0-0 4 5 6 7 8 9 10 11 12 1 Month - - - Best Calibration Observed Flow VIC C&L Calibration

- Wrap up calibration
- Develop REVIEW as-if hydrology
- Conduct review of as-if hydrology
- Re-sequence as-if hydrology to develop alternate hydrology of climate change
- Document methods and results

