Diet and incidence of predation for rainbow and brown trout near the Little Colorado River, Grand Canyon: Winter 2003

Michael Yard, Lewis Coggins, Melanie Caron, and Erica Tietjen Southwest Biological Science Center, Grand Canyon Monitoring and Research Center

- Mechanical Removal
 - Multi-year treatment
 - Reduce non-native abundance
 - Assess recruitment of HBC in out-years
- Diet and incidence of predation
 - Rainbow trout
 - Brown trout

ENVIRONMENTAL FACTORS

- Trend departure from the typical annual thermal pattern
- Expected increase in seasonal warming for the coming years 2004 & 2005

- Changes in food consumption
- Changes in invertebrate composition and abundance
- Temperature Control Device

Why are we interested in the interactions between abiotic and biotic factors?

- Stochastic events
- Sediment augmentation

Temporal/spatial variability in suspended loads

- Influences:
 - Autotrophic related production
 - Allochthonous inputs
 - Trout behavior
 - visual sight-feeding

Sampling Design – Mechanical Removal Reach

- January Trip:
 - 5 pass depletion in original reach
 - Above
 - Below
- February Trip
 - 5 pass depletion in original reach
 - Above
 - Below
- March Trip:
 - 5 pass depletion in original reach
 - Above
 - Below

Field Process

- Euthanized
- Field measurements
- Evisceration
- Sample Preservation

Microscopic Assessment

- Diet Analysis
 - Rainbow trout (n = 360)
 - All Brown trout (n = 130)
 - **Incidence of predation**
 - Rainbow trout (n = 6360)
 - Brown trout (n = 130)

GROSS CHARACTERIZATION

- RBT (< 250 mm)
 - 30% to 45% of detrital CPOM/FPOM
 - 55% to 70% aquatic insects
 - Spatial differences in the proportion of detritus to invertebrates consumed

GROSS CHARACTERIZATION

- RBT (< 250 mm)
 - 30% to 45% of detrital CPOM/FPOM
 - 55% to 70% aquatic insects
 - Spatial differences in the proportion of detritus and invertebrates consumed
- RBT (> 250 mm)
 - Consume a larger proportion of detrital CPOM/FPOM
 - RBT consume a higher proportion of aquatic invertebrates over terrestrial invertebrates
 - RBT consume a higher proportion of aquatic plant material
 - RBT predation occurs with larger fish downstream of the LCR

OVERALL TREND

RBT (> 250 mm & <250 mm)

- Significant difference between different size-classes
 - < 250 mm (81% CI ± 4%)
 - > 250 mm (57% CI ± 5%)

RBT (> 250 mm)

- Marginal significance for spatial difference
 - Below (63% CI ± 6%)
 - Above (50% CI ± 7%)

RBT (< 250 mm)

- No significant spatial difference
 - Below (77% CI ± 6%)
 - Above (84% $CI \pm 5\%$)

OVERALL TRENDS

- RBT (> 250 mm)
 - Spatial variability in biomass
 - Due to a single occurrence of predation on HBC

- Restricted intake???
 - Foraging behavior
 - Foodbase availability
 - Spatial trend
 - Seasonal trend

TOTAL BIOMASS

RBT (> 250 mm)

Excluding influence due to fish predation

There was a significant difference in total biomass between RBT located above and below the LCR

Above mean value 340 mg (SE ± 70)

Below mean value 157 mg (SE ± 23)

RBT (< 250 mm)

There was a significant difference in total biomass between RBT located above and below the LCR

Above mean value 254 mg (SE ± 36)

Below mean value 136 mg (SE ± 20)

BNT ABOVE LCR

- BNT >250 mm
- 39% Gammarus
 - 24% Simulids
 - 1% Fish
- BNT <250 mm
 - 46% Gammarus
 - 40% Simulid

BNT BELOW LCR

- BNT >250 mm increased predation
- BNT >250 mm
 - 36% Fish
 - 32% Simulids
 - 14% Gammarus
- BNT <250 mm
 - 75% Simulid
 - 25% Gammarus

 BNT abundance for smaller size-class less common below the LCR

 BNT average total biomass reduced in comparison to RBT

- Average total biomass highly variable
- Incidence of predation for BNT > 250 mm

WINTER 2003 - CONCLUSIONS

- Diet composition and proportion varies between trout species
- Diet proportion differs between size classes (< 250 mm & > 250 mm)
- Diet proportion differs spatially (i.e., above and below LCR) within larger size class
- Diet proportion does not differ spatially (i.e., above and below LCR) within the smaller size class
- Total biomass in fore-gut differs spatially, temporally and between trout species
- Incidence of predation greatest for BNT, alternately RBT are the least predaceous but highest in abundance