Results from modeling of sand deposition as a function of discharge and sandbar surveys: How effective are powerplant flows at making new sand deposits?

Stephen Wiele (USGS) Joe Hazel (NAU)

Replenish sand bars with high dam releases

- How high? Are power-plant capacity releases sufficient?
- How long?

Modeling

Compute deposition over range of sand supplies and water discharges

2d model of flow, sand transport, and bed evolution

-- calculate vertically averaged flow field

-- calculate 3d suspended sand field

-- calculate local sand discharge

-- calculate change in bed elevation over a small time step

30-mile during LSSF

Integrate over LSSF spike flow to get total volume of sand transported.

 T_v = time required for total volume of sand to be transported

water discharge, in cubic feet per second

Net change in sand deposit volume

Net change in sand deposit volume

Net change in sand volume above 25k cfs stage

Volume of water required to transport volume of sand transported during the LSSF at 30-mile

discharge, in cfs

NAU survey data

Additional considerations

- •Distribution of sand within recirculation zone
- •Possible increase in likelihood of slumping at highest deposition rates
- •Rates of change of discharge increase with highest discharges

Conclusions

Power-plant capacity flows are ineffective at building sand deposits

Discharges around 45,000 to 60,000 cfs make best use of sand and water