

Grand Canyon and the Colorado River

Grand Canyon and the Colorado River

Longitudinal Profile shows long wavelength convexities

Deviation from the average slope is apparent

Each scale of convexity becomes visible

Strong Correlation between convexities and geomorphic reach (Melis 1997)

Inner Granite Gorge (Narrow)

Within Inner Gorge (reach 4) Melis defined a wide subreach

Most large rapids occur on the downside or backslope of convexity

Exceptional Alluvial Input

Lava Falls Rapid

- Six Historic Debris Flows
- Prospect Canyon dumps voluminous alluvium
- Pool/Riffle morphology

Exceptional Alluvial Input

Lava Falls

Profile Convexities

Short, Intermediate, and Long Wavelength Convexities all resulting from alluvial input

Debris Flow Probability

Higher probability tends to occur in geomorphically wider reaches (Griffiths et al., 2003)

We find a strong link between debris flow probability and alluvial convexities.

Alluvial Fan Area

Alluvial material fills the river corridor, creating profile convexities

Alluvial Fan Area

Within narrow Granite Gorge, wider sub-reach generates convexity

- We have profile convexities at all scales: rapids to nearly the length of GC
- At any scale, there is a strong correlation with debris delivery to the river and debris flow probability.
- The short wavelength features are integrated into the long wavelength features.

Conclusions

- Convexities in Grand Canyon driven at multiple scales by the accumulation of coarse-grained alluvium from tributaries.
- Rapids and riffles primarily formed by debris flows create dynamic, small-scale convexities.
- Identified 2 major and 5 intermediate wavelength, stable convexities representing a reach-wide bulge of alluvium.
- Most of these bulges (~30 m of alluvium) probably created over the Holocene.
- River today expends its work removing coarse-grained sediment, not in cutting into fresh bedrock.

Acknowledgements:

Grand Canyon Monitoring and Research (GCMRC)

