Bed-Sediment Grain Size and Influence on Sediment Transport

David M. Rubin¹
Brian Lockwood²
David J. Topping³
Theodore S. Melis³
Henry Chezar⁴

- Importance of changing bed sediment
- How to monitor

Calculate from suspended sediment Observe the bed

1996 FLOOD DEPOSIT

COARSE

FINE

Rubin, Nelson, and Topping, 1998, Geology.

1996 Flood Experiment

This observed change in grain size on the bed caused concentration to increase by several orders of magnitude (for constant water discharge).

DISCHARGE (m3/s)

- Importance of changing bed sediment
- How to monitor

Calculate from suspended sediment Observe the bed

Use observations of suspended-sediment concentration and grain size to calculate relative coarseness of bed sediment.

$$\beta = \frac{D_b}{D_b}$$

$$\frac{D_b}{\overline{D}_b} = \left(\frac{C}{\overline{C}}\right)^{-0.1} \quad \left(\frac{D_s}{\overline{D}_s}\right)^{0.17}$$

From Rubin and Topping, 2001, Water Resources Research.

- Importance of changing bed sediment
- How to monitor

Calculate from suspended sediment Observe the bed

Colorado River at Lees Ferry Gage Year 2000

Sub-Aqueous Digital Video Microscopy: aka "The Flying Eyeball"

Eyeball Calibration Samples

Mile 2-3:

Grand Canyon Eyeball Data Mean Grain Size Plot: Reach 2

Grain Size (mm)

Flying Eyeball Mean Grain Size Plot

Flying Eyeball Mean Grain Size Plot

Flying Eyeball Mean Grain Size Plot

Conclusions of 2000 Spike Flow: All Reaches

- Mean grain size of surficial bed sediment coarsened most dramatically between river miles 1 and 3 (from 0.17 mm to 0.58 mm)
- Mean grain size coarsened at four sites between river miles 29 and 45 (from 0.17 mm to 0.26 mm)
- Between river miles 59 and 68, three sites coarsened slightly, and one site fined (from 0.22 mm to 0.11 mm)

Field Samples Collected by the Beachball: Sub-Aerial Microscopy

