

Long-Term Monitoring to Determine Status and Trends of Native Fish in the Colorado River through Grand Canyon

Helene C. (Lainie) Johnstone SWCA Environmental Consultants

COOPERATORS

SWCA — Mainstem native Fish Monitoring (TK, HB, SN)

AGFD — Mainstem trout monitoring (EF)

FWS - LCR HBC population est.

GCMRC -Trout removal, data synthesis, logistics

HSS – Boatman support

GCNP - Permits

VOLUNTEERS - Field help

Goals and Objectives

- Develop and implement a long-term native fish monitoring program to track status and trends in:
 - a. Distribution
 - b. Range
 - c. Relative abundance

- 2. Trial period of 5 years is necessary to determine trends
 - a. Target Coefficient of Variation (CV) is 0.10.
 - b. This CV would be sufficient to detect a 20% change in relative abundance.

Why?

So we have a baseline

•TROUT REMOVAL •EXPERIMENTAL FLOWS •AMBIENT RIVER TEMP •RELATIVE CHANGES IN **POPULATION**

METHODS

Sample allocation

- Stratified-random
- Input historical data
- Sample.exe
- •11 geomorphic reaches

Sample gear

- Trammel nets (TK)
- Hoop nets (HB)
- •Seine (SN)

Sample trips

- Stratified random samples
- HBC aggregations
- Seining for YOY

Methods: Analysis

- Stratified random sampling (Sampling.exe)
- Relative abundance Trend analysis using CPE index
 - 20% change per year over 5 years
- Distribution
 - Descriptive
- Length Distribution
- Will not allow true abundance estimates

Methods: Estimating Sample Size and Allocation Using Sampling.exe (C. Walters unpublished)

- Input file historic data: catch per mile by gear type and species
- Monte Carlo resampling of data to estimate number of samples needed to minimize CV (target of 0.1)
- Allocated to 11 Geomorphic reaches based on historic distribution of captures
- Limitations historic data collection was not random so allocation is clumped at frequently sampled sites
- Correction increase sample sizes at less frequently sampled sites

Sampling.exe Output

TRAMMEL NETS								
Number of Samples per year								
Reach	No/year No/year No/year							
	BHS FMS HBC			Output	Expected	Actual		
1	8	4	4	30	60	30		
2	47	15	6	47	30	60		
3	152	60	38	152	150	90		
4	46	6	4	46	60	60		
5	26	10	2	30	120	150		
6	6	0	1	30	90	90		
7	2	0	0	30	90	89		
8	20	6	0	30	60	60		
9	78	16	1	78	30	50		
10	11	4	1	30	60	90		
11	11	1	0	30	30	49		
	407	122	57	533	780	818		

HOOP NETS									
TIOOT NETS									
Novel on all Ormales manages									
Number of Samples per year									
Reach				No/year	No/year	No/year			
	BHS	FMS	HBC	Output	Expected	Actual			
1	0	120	19	36	72	36			
2	0	431	0	36	36	72			
3	569	227	332	332	180	72			
4	0	0	0	36	72	69			
5	336	43	8	36	144	180			
6	39	20	22	36	108	108			
7	53	13	0	36	108	144			
8	0	0	0	36	72	36			
9	0	143	0	36	36	72			
10	0	0	0	36	72	108			
11	0	0	0	36	36	0			
	997	997	381	692	936	897			

Site Selection

Trammel and hoop nets

- Start miles
 - Number of samples per reach needed
 - Divide by number of samples possible per night
 (30 trammel, 2-hr sets; 36 hoop, overnight sets)
 - Yields number of nights per reach
 (Total of 30 nights = two sample trips in July and September)
 - Assign start miles for each night with random numbers in excel
 - Place nets within sampleable area 1.0 to 1.5 miles MUST include start mile

Seines

Opportunistic: one backwater each 1 to 2 miles as available

Distribution

HBC aggregations

Seine

Trammel Nets CPE (Fish/Hour)

Trammel	BHS	BNT	CCF	CRP	FMS	HBC	RBT	STB	Total
Fish	54	70	26	35	52	38	163	3	441
Samples	818	818	818	818	818	818	818	818	818
Variance	0.02	0.07	0.01	0.02	0.02	0.03	0.21	0.00	0.40
Mean	0.04	0.04	0.02	0.02	0.03	0.02	0.10	0.00	0.28
ST Dev	0.15	0.26	0.12	0.12	0.15	0.16	0.46	0.03	0.64
ST Error	0.01	0.01	0.00	0.00	0.01	0.01	0.02	0.00	0.02
Var/Mean	0.66	1.47	0.89	0.69	0.69	1.03	2.08	0.50	1.44
CV (SE/Mean)	0.15	0.20	0.26	0.20	0.16	0.23	0.16	0.58	0.08
Sets with Fish	46	45	20	30	44	27	90	3	243
CV with Sample Size Doubled	0.11	0.14	0.18	0.14	0.11	0.16	0.11	0.41	0.08

Power as related to CV for a 2-tailed test negative change

Conclusions

•Stratified-random sampling provides important baseline information from which to gauge effects of management actions

- •We have some work to do:
 - Adjust sampling strategy to address CV problem
 - Repopulate sample allocation program with new data
 - Account for HBC aggregations
 - Address need for PopulationEstimates without compromisinglong-term monitoring

Conclusions

Backwaters
 continue to be
 important for young
 fish

 Mainstem water temperatures are warming do to low lake levels

Power as related to CV for a 2-tailed test negative change

