Laserfiche WebLink
<br />on077'1 <br /> <br />and <br /> <br />~.t~:~i <br /> <br />t:~~ <br /> <br />!~t2~~~%;~~:~~X~~: <br />f~;::;:~~\-~ .- -"<:-' <br />~;.~:_.-":. .: -::~ .-." :.:. <br />;~1~<;;:/~<t:: <br /> <br />h = the rise in the water table at any point x, y from the center of <br />the rectangle. <br />Rdn = the incremental rise in the wateJ: table associated with the con- <br />tinuous application of water at rate i for the time interval dn. <br /> <br />For a square area (w = L), the two interioJ: integrals reduce to twice the Prob- <br />ability Integral between 0 and U2 and 0 and U4 so they can be evaluated from <br />existing tables (17). Thus, using Simpsons Rule, the time integral was eva- <br />luated for our measured boundary values (table 1) by computer techniques.7 The <br />theory was evaluated for x and y values as shown in Appendix table 3, and the <br />observed data weJ:e aveJ:aged as shown. Mound contours were then plotted as <br />shown in figure 8. <br /> <br />7Bianchi, W. C., and Cotton, G. A. Computer programs for the transient <br />shape of ground water mounds beneath artificial recharge areas. FJ:esno Field <br />Sta. Ann. Rpt., 90 pp. 1967. [Mimeographed.] <br /> <br />Table 1.--Physica1 constants, methods, and notation <br /> <br />Constant <br /> <br />,~'?/d!i*,. <br />%:s~~:':f~t1;t;. <br />'1r.~.=$II;"'if~ >.;'""". <br /> <br />Plot width, ft <br />Equivalent <br />radius, ft <br />Saturated depth, <br />ft <br />Impeding layer, <br />ft <br />Recharge rate, <br />ft/day <br />Fillab1e void <br /> <br />Hydraulic <br />conductivity, <br />ft/day <br /> <br />Notation <br /> <br />WI <br />a <br /> <br />D <br /> <br />i <br /> <br />v <br /> <br />K <br /> <br />Description of Method <br /> <br />Evaluation <br />Pond No. 1 Pond No. 2 <br /> <br />From plot area. <br /> <br />295 <br />166.4 <br /> <br />295 <br />166.4 <br /> <br />80 <br /> <br />0.35 <br /> <br />0.17 <br /> <br />0.052 <br /> <br />0.022 <br /> <br /> <br />Well logs, electric logs, <br />core sampling. <br />Well test. <br /> <br />75 <br /> <br />16 <br /> <br />26 <br /> <br />,.,___.:".:....~;:5.-;;': <br />:';,:..;~:;: .-;.;::....~.:;: :." <br />';::;". ....;- <br />:.-;-: . ~. . <br />~" ..'j:~::~;,. :-.;-.~:'::~ <br />-;'~'C;:>'_ .'.: '.'. ...; <br />~)~~:~;~~:" :::./.~:~~;-::. <br />..,:.-. -.;.: <br /> <br />Average intake over flood- 0.32 <br />ing period. <br />1. Total pore space minus 0.26 <br />volume moisture prior to <br />passage of wet front; gamma <br />J:ay and neutron probe tech- <br />niques. <br />2. Total pore space minus 0.12 <br />volume pressure afteJ: pass- <br />age of wet fJ:ont; gamma ray <br />and neutron probe techniques. <br />3. Well test data; Theis non- 0.089 <br />equilibrium method average <br />from four lines of partially <br />penetrating observation wells. <br />Well test data; Theis non- 104 <br />equilibrium method average <br />from four lines of partially <br />penetrating observation wells <br />(8). <br /> <br />.... '-'-:..' <br />'"'. .__.~..-.:..' <br /> <br />ISquare. <br /> <br />'-;h" .' <br /> <br />9 <br /> <br />.'~' <br /> <br />........-.- <br /> <br /> <br />{~~fl_filifltffl1Stt~?~_'~~~~rt:;~ <br />