Laserfiche WebLink
<br />0,5 <br /> <br />0,4 <br /> <br />LINE OF REGRESSION - <br />($Y = 0.0159 + 0.7677 $e) <br /> <br />I ONE STANDARD ERROR <br />OF ESTIMATE <br /> <br />:;: . <br />~ 0,3 . ...." <br />0 . . ..... <br />...J ..... . <br />w .... . . . <br />:;: A <br /> ,.. .... <br />U .... .... <br />u: .... .... <br />U 0,2 .... <br /> . .... <br />w .... <br />Il. .... . . .... <br />Vl .... .... <br /> .... .... . <br /> .... . .... <br /> .... .... . . <br /> .... .... . <br /> 0,1 .... . ..... <br /> .... .... . <br /> ..... . ... <br /> .... . <br /> .... <br /> .... <br /> .... <br /> .... <br /> .... <br /> 00 0,' 0,2 0,3 0,4 0,5 <br /> <br /> <br /> <br />EFFECTIVE POROSITY (~e) <br />Figure 6. Linear regression relation of specific yiElld on effective porosity. <br /> <br />Table 3. Mean specific yield from laboratory analyses of <br />core, effective-porosity regression, and apparent grain- <br />density regression <br /> <br />Mean speclllc yield <br /> <br /> Number Effective- Apparent <br />Aquifer 01 Core porosity grain- <br /> eemples analyses regres- density <br /> slon regres- <br /> sion <br />Dawson 19 0.15 0.16 0.15 <br />Denver 20 .16 .16 .16 <br />Arapahoe 25 ,22 .21 ,20 <br /> <br />Apparent Grain-Density Log <br /> <br />Specific yield has been related to the grain size <br />of aquifer material in this report and in published lit- <br />erature (fig. 2). Therefore, a geophysical log that pro- <br />vides a measure of lithology in a clastic environment <br />also can provide a measure of specific yield. Schlum- <br />berger's Cyberlook package (Schlumberger Wen Ser- <br />vices, 1987) provides two logs that indicate the fine- <br />to coarse-grained character of formations. The first <br />log, the minimum shale index log, is a qualitative <br /> <br />interpretation of the sand-shale content of formations. <br />The log is useful in interpreting general lithology, but it <br />is not totally quantitative because some operator judg- <br />ment is involved in its production. The second log, the <br />apparent grain-density log, is quantitative and closely <br />corresponds in shape to the minimum shale index log. <br />The apparent grain-density log is calculated by the <br />equation: <br /> <br />Pma <br /> <br />Ph- tPraPf <br />l-tPta <br /> <br />(4) <br /> <br />where <br />Pma <br />Ph <br /> <br />tPta <br /> <br />= apparent grain density, <br />= bulk density from the gamma-density log, <br />= apparent total porosity derived from <br />neutron-density and neutron-sonic cross <br />plots, and <br />Pf = pore fluid density. <br />Regressions of apparent grain density on various <br />grain-size characteristics indicated that the two vari- <br />ables are correlated and apparent grain density is a <br />valid indicator of grain size. <br />The same set of core data (64 samples) used to <br />develop the regression of specific yield on effective <br />porosity was used to develop the regression of specific <br /> <br />SPECIFIC-YIELD ESTIMATES FROM GEOPHYSICAL LOGS 15 <br />