Laserfiche WebLink
<br />MAR-28-2000 rUE 10:44 AM <br /> <br />, <br />ES,~,,; ~'~~'.'~'1;";~'~'~1:;:.:?~ l~;':" '\I:')'~, I" <br />~ll' ~"\, f lli.,.~~i( 4.... ~~1;. I .~~.~,~. <br />'" '.~, ...... . ' :.l.... "..-.....:-- l 'J 'I,. \' . ,.:..;. ~, ' <br /> <br />FAX NO, <br /> <br />p, 03 <br /> <br /> <br />t.:sti1l1l\tian or the lIF.Cl Los$ PanllnetcTS for l{outin~ the Probable Maximum Flood <br /> <br />ilLSI'Qction uf isohyoLal maps of 40 storm ovents <br />...,,,,,,10<1 Lhal only four ot'tholn provided a rell~onaLly <br />II iJ i 101'10 l.overnge over the F.ngh,wood watershed, due <br />l" the large surface arC!!n of tho watershed, A sm,lll <br />nnmher of storm l,vonL:; dOl':; IIol provide statistically <br />i"l'liaLle estimates of tho rainlilUloss pnrn.mllter:;. By <br />,,,,-,L..,,.t, 20 of the original 10 storms appeared to pro- <br />,id,. II rcnsoll"bly uniform precipitation over n sub- <br />1"lsin of Lhe water:;hed, Lhe Dradfonl sub-basin (area <br />l\If, mi"), 1"'<:n\1sll tho topography and tho soil cover- <br />;.l~~lJ wurc. CS:-icntially the SOIlU} throughout the Engle. <br />",,,,,,I wntershed (o~den at ai" 1900), the Bradfortl <br />,"illm.in was lIsed in this study to estimate the logs <br />rat". liH' the entire Englewood watershed, <br />'rho scluctedl!O sLorms occurrod ovcr tho Bradford <br />",hh.IS;11 dUl,jng' the 2.1-yenr period from 1967 to 1990 <br />I:;,,,, '1'"bk 1). '1'he toLal "mOU11t of rainfall varicd <br />ild,wl,cn 1.07 and 4,Hli inches, lIourly rainfall data <br />I'l'(,'lIr..1cd nt the Grcl!nvillu Wntcr Plant W'~l"c ohtained <br />f1'OUl tho National Ocen nic and Atmospheric "'Iminis- <br />tral,ion (NOAA). Greenville is nea,' the center ofgnwi- <br />ty lof the Braclford sllbhilsin. Rainfllll dlltn mcasul'l,,1 <br />at other locations within the Englewood watershed <br />Wl.1'<1 l1ut considcrmllhm La their relatively low woi~ht <br />Oil till! Bmdfortl suhlmsin, '\'ho GreQlwille hourly data <br />"'et'll "xp""s",[ as two-hour rainfall pulse's by adding <br />twu l'onsC!cutivo ono-hour pulses. <br /> <br />.';U't'lllllflOlf1 nll/lJ. <br /> <br />! <br />" <br />. <br />I <br />, <br />" <br /> <br />SIIWnll I(t'l;O lInla for Groenville Creck nellr Brnd- <br />liml, l'xpressed as bl-hourly river stages, wero provid- <br />(,(1 lly Lhe Miami Conservancy District, These dnta <br />WorlJ cnnverted to sLre:unflows using II rating table <br />""d n silllple ForLran code that interpolates the stage <br />Iin""rly ll"Lwecn two othllr known v"luc., <br /> <br />I <br />, <br />': <br /> <br />l:,<t;lIwt;"n ofll"".IloLl" Ullit llydrograph <br /> <br />, <br />, <br />i <br />; <br />j <br />i <br />I <br />',; <br />'I <br />! <br />; <br /> <br />Use of ~;qllatiol1 (1) requires volues of the unit <br />hyd ,'ogrnph for the 13rndford subbasin, The District <br />l'l"ovidcd It six-hour unit hytlrograph for the sulJhasin, <br />'1'0 ensure It time interval consistent with the <br />(:r,.enville }lrcdpiLntlon data, the .ix-hour hydl'o' <br />l:ra)Jh ol'lllnnles were cOllvorled to two-hllur unit <br />l,yd"u!:rnph ordinaLos using' the "forward-l1ilcllwarcl S- <br />11",11\0<1" (TllUl<e, lD78), 'rho rosuHing twu-hour unit <br />hY'!"'Jgrnph has a pC'll< vnluo of about 3700 cfslillch, a <br />li".<;-tu'l,,'"k Ill' HI hOllr~, and II bllse time of64 hours. <br />All J\ltl'rnati\'c method for the derivation of short <br />,I"meiun L1nit hydrogmphs from \lOit hYllrographs of <br />1uIII',"" ,111l"tlLiun is pruvidcd in the work by Bouflldcl <br />( 1 ~J~IH). <br /> <br />TABLE 1, S,onns Selected ror Ralnfnll 1-0.. Slud~, <br /> n..inr.U llunoCC ne(!(,.~silln <br />Storm n.,'lh Du.rlltion ClJon:>fillU, <br />N\lmb~r Slorm nate (inch) lhour) kld.)') <br />1 May 1, 1967 1.40 26 20,4 <br />2 May 5, 1967 2,21 40 S2.7 <br />:l December la, 1967 1,07 21 25,2 <br />,) May 22, 10G8 2,96 31 3~.5 <br />r. M.y 25,1968 1.11 11 30,5 <br />6 January 17,1959 1.30 24 24,7 <br />7 Al1!:Uat 10, 196~ 1.75 24 SI,O <br />II April 1, 1970 1,72 12 -1-1.9 <br />II Fehruary 22,1975 3,14 32 25.1 <br />HI March 2'/,1975 1,20 38 25,6 <br />11 June I, Ill.O :1.08 SG 88.0 <br />]2 API'il 30, 1983 1,28 22 21,5 <br />IS O'~l>cr 1, 1986 1,47 12 32.8 <br />l-l O,...oor 3, 1086 2,77 82 32,8 <br />15 JUM 30, 1!lS7 4,BG 32 27.4 <br />16 May 22, lIl89 1,98 20 30.5 <br />17 May 28,1080 2,G3 24 49,5 <br />18 S.plembor 1, ]080 2.13 10 30.4 <br />19 September l4, 1089 1,1-\ ]0 33,2 <br />20 ~'cbi'o.l"l' H, 1990 2.67 50 39,2 <br /> Av..raJot'G I: <br /> 33,4 . I,G <br /> dnYil <br />Basef10w Separation <br /> <br />As illustrated in Equation (1), it is neccssnry to <br />deduct the baseflow from the total streamflow to sol\'e <br />for the lo~s rate, llnseflow was liSsumed to reCllde at <br />nn e:<ponential rate: <br /> <br />B ~ Bo l<;xp ( -1;) <br /> <br />(2) <br /> <br />where Ho is th" streamflow at time t = 0 (beginning of <br />basellow), llnd k is the recession consLant discllSsed <br />earlier, With this model, baseflow can bo isolated with <br />three simple steps (Barnes, 1939); (l) plot the logn- <br />rithm of the lotnl runoff Q(t) against tima on a linear <br />scale; iriClally, thCl rClcession curve will plot as a <br />straight line; (2) extend this straight line back to the <br />time of the inflection point (which is t = 0) on the <br />recession limb of the hydrut:raph; and (3) COllnllet tloi8 <br />slrnight Une oxten.;'Jll to a point at U,o bOlllnul"lI Ill' <br />the rising 11mb oCthe hydro graph, <br />These steps Sejlarate the discharge hydl'ogrnph <br />inl,o all upper and a lower region. The upper reg-ion 1" <br />Lhe surface runoff; the lower region is the basoflow, <br />An iIIusLration oflhi,~ t.I!chnique can be seen in Fi~\iro <br />