My WebLink
|
Help
|
About
|
Sign Out
Home
Browse
Search
FLOOD08610
CWCB
>
Floodplain Documents
>
Backfile
>
8001-9000
>
FLOOD08610
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
1/25/2010 7:15:03 PM
Creation date
10/5/2006 3:45:45 AM
Metadata
Fields
Template:
Floodplain Documents
County
Statewide
Basin
Statewide
Title
Techniques of Water-Resources Investigations of the US Geological Survey Some Statistical Tools in Hydrology
Date
1/1/1969
Prepared By
USGS
Floodplain - Doc Type
Educational/Technical/Reference Information
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
/
44
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
<br />28 <br /> <br />TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS <br /> <br />5000 <br />4000 <br /> <br /> / .5 <br /> / <br /> . <br /> . <br /> .. .~ <br /> /4 8 <br />1 / <br /> / 10 <br /> . <br />2/ 11 9 <br />'/ <br /> <br /> 1 <br /> .3 V <br /> ) / <br /> 4 <br /> 1 8 <br /> /5 <br /> /.'0 <br /> 6 <br />9 <br />/ <br /> <br />. <br /> <br />.05 0.1 0.3 0.6 <br />MEAN FLOW (G)). IN CUBIC FEET PER SECONO <br />PER SQUARE MILE <br /> <br />Figure 20.-GlOphical regression in which one variable is used twice. <br /> <br />03000 <br />z <br />8 <br />w <br />"' <br />'" <br />W <br />Q. <br />I- <br />w <br />w <br />~ <br />01000 <br />a; <br />::> <br /><.> <br />~ <br />ci <br />o <br />o <br />~ <br />~ <br />~ <br />" <br />::> <br />z <br />z <br />" <br />z <br />" <br />w <br />" <br /> <br />100 <br /> <br />100 <br /> <br />1000 <br />ORAINAGE AREA (A), IN SQUARE MILES <br /> <br />General methods <br /> <br />All linear equations in two variables are of <br />the form <br /> <br />Y =a+bX, <br /> <br />and thiB general form is the equation of a <br />straight line on rectangular graph paper. The <br />linear form on log paper is <br /> <br />log Y=log a+b log X, <br /> <br />which, when expressed in the original variables, <br />is the power equation <br /> <br />Y=aX", <br /> <br />A straight line on semilog paper has the linear <br />form <br /> <br />log Y=log a+bX, <br /> <br />which reduces to the exponential equation, <br />Y=a(lO)oi, <br /> <br />If b=c log k in the above equation, then <br />Y=ak"", <br /> <br />Occasionally, points plotted on log paper <br /> <br />3,0 <br /> <br />t;: <br />w <br />~ <br /> <br />I- <br />" <br />1.0 I.L.I <br />> <br />'" <br />::> <br /><.> <br />" <br />o <br />o.sfE <br /> <br />~ <br />" <br />::> <br />o <br />in <br />w <br />'" <br /> <br />0.2 <br /> <br />define a gentle curve rather than a straight line. <br />The locus of the points can sometimes be made <br />linear by adding or subtracting a constant from <br />one of the variables. The relation would be of <br />the form <br /> <br />. <br /> <br />log Y=loga+b log (X+c), <br /> <br />or <br /> <br />Y=a(X+c)', <br /> <br />To determine the equation of any linear two- <br />variable relation, compute the slope of the line, <br />b, as vertical distance divided by horizontal <br />distance, These distances are always measured <br />in arithmetic units even though the plot is on <br />log paper (the b values are not transformed), <br />The scale interval should be the same on both <br />axes or an appropriate arithmetic adjustment <br />made. The intercept, a, is usually read off the <br />graph sheet on the ordinate scale at the appro- <br />priate value of X. For the relation <br /> <br />Y=a+bX, <br /> <br />Y=a when X=O, <br /> <br />and for the relation <br /> <br />log Y=log a+b log X, <br /> <br />Y=awhenX=1. <br /> <br />.1 <br />
The URL can be used to link to this page
Your browser does not support the video tag.