Laserfiche WebLink
<br />20 <br /> <br />SOME STATISTICAL TOOLS IN HYDROLOGY <br /> <br />11 <br /> <br />. <br /> <br /> <br />1~ <br />U> <br />~1O <br />() <br />z <br />~ 8 <br /> <br />::f 6 <br /><C <br />~ 4 <br /><C <br />0: <br /> <br />U> <br />'" <br />:I: <br />~1O <br />- 8 <br />;; <br />::f5 <br />~ <br />z . <br />;;:3 <br />0: <br /> <br />. . <br />. <br /> <br /> <br />. <br />. <br /> <br />~ ~ <br />o 2 4 6 0,3 0.5 1 ~ 3 5 <br /> <br />RUNOFF, IN INCHES RUNOFF, IN INCHES <br /> <br /> <br />Figure 11.-Data from U.S. Geological Survey (1949, p. <br />488) plaNed on natural and 109 scales showing the <br />achievement of equal variance about the regretsion line <br />by use of the log transformation. <br /> <br />Only the log transformation has been used <br />in the above examples because it is by far <br />the most common and useful. Other trans- <br />formations such as the square root may be <br />appropriate for certain data. <br /> <br />Table 2.-Data and computations for example of two- <br />variable regression <br /> <br /> Year Runoff 1 Precipita- XY X' yo <br /> (Y) tlonl(X) <br /> 1928____,,____00_ 12.\ 110 <br />. 192IL..__________ 67 73 <br />1930.____________ .. 74 <br />193L____________ 71 91 <br />19W<L____________ 118 108 <br /> 19311-____________ 1.. 130 <br /> 1934______h_____ 100 162 <br /> 1935__.._________ 138 1M <br /> 1931L____.____u_ 102 118 <br /> 1937___..________ 91 90 <br /> 1938____..___.__+ 125 11. <br /> 1939_____________ 87 77 <br /> 1940_________0___ 54 100 <br /> 1941.____________ OS 54 <br /> 1942..___________ 7<l .. <br /> 1943_____________ 124 m <br /> llK4. ________un 62 70 <br /> 19405..___________ 87 91 <br /> - - - <br /> z________________ 1.799 1,801 192,.0i2 189,291 197.373 <br /> MeBIl...h_______ ..... 100.00 <br /> <br />I Annualrunoff In peroont of mean (Bumping River nearNlle. Wash.), <br />, Annual rainfall In percent of mean (at Bumping Lake, Wash.). <br /> <br />. <br /> <br />Simple linear regression <br /> <br />Comp11tation of a regression equation using <br />the model Y =a+bX is demonstrated using the <br />data given in table 2. That table also shows <br />computations of means, cross products, and <br />squares. The individual cross products and <br />squares need not be recorded; the sum of cross <br />prod11cts, or squares, can be cumulated on a <br />desk calculator. Such calculations are ordinarily <br />checked by repeating the operation. The coeffi- <br />cients a and b in the regression equation, and <br />the standard error of estimate are computed as <br />shown below. <br /> <br />b <br /> <br />L;XY <br />L;X' <br /> <br />L;xL;Y <br />N <br />(L;X)' <br />N <br /> <br />L;XY-NXY <br />,-, <br />L;X'- NX' <br /> <br />(1,80l) (1,799) <br />18 <br />189,291 (1,80l)' <br />18 <br /> <br />192,042 <br />b- <br /> <br />1.325. <br /> <br />Regression coefficient <br /> <br />a= Y -bX=99.94- (1.325) (100.06) = -32.6. <br /> <br />Intercept <br /> <br />Then <br /> <br />Y =a+bX= -32.6+ 1.32X, <br /> <br />or <br /> <br />Y = Y -b(X -X) =99.94- (1.325) (X -100.06), <br />Y = -32.6+ 1.32X. <br />Equation of least-equares line <br /> <br />S~ <br /> <br />L;X' (L;X)' <br />N <br />N-I <br /> <br />189.291- (1,~~I)' <br /> <br />17 <br /> <br />=534.76. Variance of X <br /> <br />~ <br /> <br />L;Y'- (L;Y)' <br />N <br />N-I <br /> <br />197 373 (1,799)' <br />, 18 <br />17 <br /> <br />=1,033.71. Variance of Y <br /> <br />S' _N-l [S' b'S'] 17[ 0 7 <br />"%-N-2 .- % =161,33. 1 <br /> <br />- (1.325)'(534.76) J= 100.8. <br /> <br />S..%=1O.0. <br /> <br />Standard error of estimate of Y <br /> <br />bS% ( 32 ) (23.13) <br />r= S. ~ 1. 5 32.15 ~0.95. <br />Correlation coefficient <br /> <br />The regression coefficient can be tested for <br />significance as follows (Bennett and Franklin, <br />1954, p. 228): <br /> <br />8f. ~,% <br />, L;(x') <br /> <br />100.8 <br />189,291-(1,801)'/18 0.056. <br /> <br />Testing the hypothesis that /l= 0, <br /> <br />b-/l 1.325-0 <br />1..,- S, - 0.236 -5.6. <br />