Laserfiche WebLink
<br />r <br /> <br />TABLE 5. Difference of Actual vs Predicted for Regressions <br /> <br />PARAMETER DESCRIPTION 5 YEAR 100 YEAR I <br /> Q % Difference Q % Difference ~ <br />Gumbel Regression 763 1544 , <br /> , <br />30% Imperv.lSCS CoD 573 -24.9 1987 28.7 <br />40% Imperv.lSCS CoD 872 14.3 2688 74.1 <br />27% Imperv.lSCS CoD 502 -34.2 1805 16.9 <br />30% Imperv.lSCS C-D/fj-1.0 655 -14.1 2081 34.8 <br />30% Imperv.lSCS C-Dlfj=fo-0.5 683 -10.5 2114 36.9 <br />30% Imperv.lSCS B 479 -37.2 1874 21.4 <br />40% Imperv.lSCS B 764 0.1 2568 66.3 <br />Semi-Log Regression 744 1751 <br />30% Imperv.lSCS CoD 573 -23.0 1987 13.5 <br />40% Imperv.lSCS CoD 872 17.2 2688 53.5 <br />Log-Gumbel Regression 765 3397 <br />30% Imperv.lSCS CoD 573 -25.1 1987 -41.5 <br />40% Imperv.lSCS C-D 872 14.0 2688 -20.9 <br />Log-Normal Regression 769 1883 <br />30% Imperv.lSCS B 479 -37.7 1874 -0.5 <br />40% Imperv.lSCS B 764 -0.7 2568 36.4 <br />30% Imperv.lSCS CoD 573 -25.5 1987 5.5 <br />40% Imperv.lSCS CoD 872 13.4 2688 42.8 <br /> <br />(greater than observed) bias. In general, the log-normal regression showed <br />much less high return period bias than the Gumbel method. As stated <br />previously, the UDFCD precipitation values (and consequently the peak flow <br />values) show marked exponential growth character and therefore fit much better <br />with a logarithmic scale. The log-Gumbel regression comparisons for class CoD <br />soils also correlated well, however neither the AMS data nor the CUHP data fit a <br />log-Gumbel regression very well (~= 0.9219). In any event, the parameters that <br />produce peak runoff that best fit the observed data include SCS class B or CoD <br />soils and an effective imperviousness of 40 percent. Complete details of the <br />parameters found to best 'calibrate' CUHP are described in table 6. <br /> <br />Application and Evaluation of CUHP <br /> <br />Page 14 of 52 <br />