Laserfiche WebLink
<br />estimate .of the PMF), FDr a givencDmbination .of values fDr <br />L< and <1>, the RT that yielded the largest PMF varies between <br />the various land-cover distributions in most instances. The <br />design engineer ShDUld: (1) Find the .optimum tempDral "iin- <br />fall distribution for the given spatialla~d-cover distribution; . <br />and (2) find the .optimum stDrm-center locatiDn fDr the given <br />temporal rainfall distribution. The ,aforementioned results "in- <br />dicate that selecting the .optimum temporal rainfall distribu' <br />tion is a very important criterion in obtaining -an accurate <br />PMF estimate, otherwise th~ accuracy. used in selecting,the . <br />optimum values for both the storm orientation and the stann <br />center location may be lost. <br /> <br />VDlume .of RunDff and Its Spatial and TempDral <br />Distributi.on <br /> <br />The following information concerning the runoff is also <br />revealed by this study: (1) The vDlurpe .of ruQDff is mainly a <br />functiDn .of the percent .of fully develDped land-cDver distri- <br />butiDn; (2) the spatial distributiDn .of runDff is .only a functiDn <br />.of tbe spatial distributiDn .of rainfall f.or a spatially hDmDge- <br />r:aequs land-cover distribution, while its mainly a function of <br />the spatial land-cDver distributiDn fDr a spatially nDnhDmO-: <br />geneDus landcover distributiDn; and (3) the tempDraLrunDff ' <br />distributiDn, I, .of the PMF, is mainlya functiDn .of the selected <br />tempDral rainfall distributiDn, It shDuldbe nDted that the tDtal <br />vDlume .of runDff appears tD be the mDst impDrtant factDr <br />.over the spatial distributiDn .of runDff in estimating the PMF, <br />This nDte implies that a change in the percent .of fully de- <br />velDped land-cDver distributiDn has mDre impact on die PMF <br />than the spatial distribution .of a given percent .of fully de' <br />velDped landcDver distributiDn, Furthefl!1Dre, the resulting Ip <br />.of the PMF is directly an effect .of the assumed tempDral <br />'rainfall distributiDn, ' ' <br /> <br />Use .of Guidelines to Estimate PMF <br /> <br />The fDregDing guideli,nes may be used tD assess the effects <br />.of each cDntributing factDr .on the PMF and the interactions <br />between the factDrs, Although the assumptiDns made fDr each <br />factDr included a range .of values that' wDuldbe expected in <br />typical design situatiDns, the guidelines presented here are <br />intended fDr lhe fDIIDwing tWD purposes: (1) To .obtain a <br />plaiining estimate .of the 'PMF. using a single HMRS2/HEC-l <br />computer run and the adjustment factDrs; and (2) tD .obtain <br />a design estimate .of the PMF in which the designer must <br />actually conduct a sensitivity analysis guided by the research <br />resuits. <br /> <br />Obtaining Planning Estimate .of PMI' <br /> <br />TD .obtain a planning estimate .of the PMF, it is recom- <br />mended that the designer make an HMRS2/HEC-l computer <br />run fDr the base point values: 1810 fDr stDrm DrientatiDn (i.e" <br />alDng'the majDraxis .of the drainage area); (0, 0) for storm' <br />center location (i.e... drainage-centered), and a center-peaked <br />tempDral rainfall distributiDn fDr an elliptical iSDhyetal axes <br />ratio 2,5 tD I fDr the design land-cDver distributiDn in the <br />drainage basin, Adjustment factDrs frDm Fig, 4 are applied <br />tD the base pDint PMF tD reflecl changes made in 'the values <br />fDr the cDntributing factDrs. AccDrding tD the results .of the <br />"sensitivity analysis, the base point values for 4>, Le. and Rr <br />, are applicable fDr each .of the five land.CDver distributiDns <br />examined (each land-cover distribution having a different <br />maximum PMF). Therefore, with this assumption (Le., for <br />the base pDint values fDr <1>, L" and Rr), the designer may <br />use the adjustment factDrs from the charts .of Fig" 4 tD de- <br />termine what percentage of the maximum PMF would result <br />for a one-factor. two-factor, or three-factor variation from <br /> <br />.' <br /> <br />t'lo....,rtn...lon <br /> <br />'-' <br /> <br />--- <br /> <br />___181 <br /> <br />PMF 0.' <br />~ <br />max 0.8 __- <br /> <br />-':_210 <br /> <br />0,' <br /> <br />0,' <br /> <br />'-' <br /> <br />early- <br />peaked <br /> <br />eellter- <br />peaked <br /> <br />late- <br />peaked <br /> <br />b.I.O <br /> <br />..0..... o,..~..<1.... <br />181' <br /> <br />0,' <br /> <br />--:~:-- <br /> <br />PHF <br />PH"Fmax 0.' <br /> <br />-~210' <br /> <br />0,' <br /> <br />-- <br /> <br />0,' <br /> <br />0,' <br /> <br />early- <br />peaked <br /> <br />center- <br />peahd <br /> <br />late- <br />peaked <br /> <br /> ',0 <br /> ...... _1....Uti.... <br />. pJotF 0,' <br />~ -- lit" <br /> -x .,. - <br />" <br /> 0,' ,~:=- <br /> -- no" <br /> 0,' - <br /> 0,' <br /> early- center- late- <br /> peaked peaked peaked <br /> <br />Temporal Rainfall Di~tribution <br /> <br />FIG.- 4. Variation of PMF for One-Factor, Two-Factor, and Three- <br />Factor Variation from Base Point Combination of Factors for Fol- <br />lowing Slorm Center Locations: (a) Drainage-Centered; (b) Down- <br />stream Subbaslns-centered; (c) Upstream Subbaslns-Centered <br />(Land-Cover . Distributions .'are Denoted as -=-- :;: Downstream <br />Half Fully Developed; -,--,; Upper Middle Half Fully Developed; <br />---- :;: Homogeneous Fully Undeveloped;.-.-. :;: Homoge- <br />neous Fully Developed; - - ; Upstream Half Fully Developed) <br /> <br />1.06 <br /> <br />---./1l'_09fIlOlllllnclf'O"fIOOf <br />c1o..nst..u. 1I11( full <br />c1fUIOll'c1 <br />-...-"0_""''''0''1.'''111 <br />d,ulop,c1 <br /> <br />PMF-, 1.0" ......... <br />--...-- <br />IllaX 1.0C: <br />at 2.5 <br />to LO 1.00 <br />IsobyeU.l <br />Axea 0.98 <br />Ratio. 0.96 <br /> <br /> <br />~<~ <br />, --.;,~ <br /> <br />0.9. <br />1.0 <br /> <br />- <br /> <br />2.5 <br /> <br />.., <br /> <br />Elliptical Isohyetal A."tes Ratio <br />(to LO) <br />AG. 5. Variation of PMFwith-Change In Isohyetal Axes Ratio from <br />2.5 to 1.0 fo ell her, 1:0 to 1,0 or 4,0 to 1.0 <br /> <br />, , <br />the base pDint cDmbinatiDn .of factDrs, Depending upDn the <br />currently existing land-cover distribution, the designer would <br />. use the appropriate curves in each chart in Fig. 4 to determine <br />the percentage of the maximum PMF. To determine what <br />percentage .of the adjusted planning PMF wDuld result fDr a <br />variatiDn in the iSDhyetal axes ratiD frDm 2,5 tD 1 tD 1.010 I <br />or to 4.0 to 1, the designer may use the adjustment factors <br />from Fig,S. <br />In the case in which either the currently existing land-cover <br />distribution differs significantly from the five distributions <br />examined in this research, or if a change in the existing land- <br />cover distribution is anticipated, the designer may use the <br />dashed line .of Fig, 6 tD adjust fDr the appropriate difference <br /> <br />334/ JOURNAL .oF IRRIGATION AND DRAINAGE ENGINEERING / SEPTEMBER/OCTOBER 1995 <br />