Laserfiche WebLink
<br />td(hr) 3 <br /> <br />[24,2 VOLr <br />t (hr) + - <br />Pi Q - Q <br />Pi 0 <br /> <br />"(h<J c::: ::) <br /> <br />(39) <br /> <br />where VOLr is the reservoir storage volume (ac-ft). <br /> <br />To route the peak flow downstream to cross sections 3,4,..., the user <br /> <br /> <br />must determine the distance weighted average cross section between the dam <br /> <br />- - <br />and the routing point and fit new K and m parameters to this cross <br /> <br /> <br />section. From the reduced data, a distance weighted average cross section <br /> <br /> <br />may be determined using the following algorithm. <br /> <br />For each depth (hi)' the distance weighted topwidth (Bi) is given by <br />the relation: <br /> <br />(Bi,l + Bi,2) <br />2 (X2-Xl) <br /> <br />+ ... <br /> <br />+ (Bi.J-l + Bi.J) <br />(X J-X J-l) <br /> <br />(40) <br /> <br />Bi = <br /> <br />(XJ - Xl) <br /> <br />Where: hi is the ith depth, i = 1,2,3 ... 1 (number of topwidths per <br /> <br /> <br />X-section <br /> <br /> <br />Bi'j is the ith topwidth (corresponding to the ith depth hi) at <br /> <br /> <br />the jth X-section where j = 1,2,3, ... J (number of X-sections) <br /> <br />B. is the weighted ith topwidth <br />~ <br /> <br />X. is the downstream distance to the jth X-section. <br />J <br /> <br />The table of values produced by defining a distance weighted topwidth <br /> <br /> <br />(Hi) for each depth (hi) may then be used for fitting a single equation of <br /> <br /> <br />the form B = Khm to define the prismatic channel geometry. The fitting <br /> <br /> <br />coefficients K and m may be computed using the least squares algorithm given <br /> <br />in Eqs. (Sa)-(6c). <br /> <br />1-22 <br />