Laserfiche WebLink
<br /> -------- - <br /> e h <br />CASE I: If (Qb < Qv)' then D max (21) <br /> = <br /> max c m+l <br /> h <br />CASE II: If (Qb > Qv)' then D = e h - h + ...:!.- (22) <br /> max c max v m+l <br /> <br />The average velocity in the reach is given by the Manning equation, i.e.: <br /> <br />v <br />c <br /> <br />1.49 1/2 <br />=-S <br />n <br /> <br />2/3 <br />(D ) <br />c <br /> <br />(23) <br /> <br />where S is the slope of the channel from the dam to the routing point. <br /> <br />The average velocity <br />Eq. (24) to determine the <br /> <br />(V ) and hydraulic depth (D ) are substituted into <br />c c <br />average Froude number (F ) in the reach as follows: <br />c <br /> <br />F <br />c <br /> <br />= <br /> <br />V <br />c <br /> <br />(24 ) <br /> <br />./gD <br />c <br />where: g = 32.2 ft/sec2 (acceleration of gravity) <br /> <br />* <br />The dimensionless volume parameter (V ) that identifies the specific <br />member of the curve family for the computed Froude number is the ratio of the <br />reservoir storage volume to the average flow volume within the X reach. The <br />c <br />average cross sectional area of flow (A ) is given by Eq. (25) or (26) as <br />c <br /> <br />follows: <br /> <br />CASE I: <br /> <br />if (Qb < Q ), then <br />max v <br /> <br />A <br />c <br /> <br />K(eh )m D <br />Max c <br /> <br />(25) <br /> <br />CASE II: if (Qb > Qv)' then <br />max <br /> <br />A =ihmD <br />c v c <br /> <br />(26 ) <br /> <br />. <br /> <br />* <br />The volume parameter (V ) is determined by <br /> <br />volume (AcXc) into the reservoir storage volume <br /> <br />dividing the average flow <br />(VOL ), i.e.: <br />r <br /> <br />1-16 <br />