Laserfiche WebLink
<br />The table of values produced by defining an average topwidth (Bi) for <br /> <br /> <br />each depth (hi) may then be used for fitting (using least squares or a log- <br /> <br /> <br />log plot) a single equation of the form B = Khm to define the prismatic <br /> <br /> <br />channel geometry. The fitting coefficients K and m may be computed using <br /> <br />the following least squares algorithm: <br /> <br />L [(log hi) (log Bi)] - (L log hi) (L log iii) <br /> I <br />m = 2 <br /> L 2 (I log hi) <br /> (log hi) - I <br />L log Bi - m (L l;g hi ) <br />log K = I <br /> <br />(Sa) <br /> <br />(6b) <br /> <br />K = 10(log K) (6c) <br /> <br />Using these average cross-section fitting coefficients, the user must <br /> <br /> <br />recompute the maximum depth at the dam using Eq. (8) or (11). Note, <br /> <br /> <br />however, that a new check for submergence need not be made. This redefined <br /> <br /> <br />value for hmax will be used in computing the routing parameters given in the <br /> <br />following section. <br /> <br />Routing Parameters <br /> <br />The distance parameter (Xc) is calculated using either Eq. (19) or <br />(19a). If the height (Hd) of the dam is less than hv (defined earlier), the <br />dista~ce parameter is computed as follows: <br /> <br />X (ft) <br />c <br /> <br />= (~l) (VO~r ) ( <br />K HIIlH 1+4 <br />d <br /> <br />(:'S)~l) <br /> <br />. <br /> <br />(19) <br /> <br />1-14 <br />