Laserfiche WebLink
<br />Thc coefflcicnts ustCd iT' the ccmput:ltio;J of the unit <br />I'.ydrograph, Ct und Cp, have been determined both from <br />information published in the Urban Storm Drain:lge <br />Cr i tar i.a ~;anual, anu more recent lnforma tlUll rec;:,i ved <br />from the Corps of Engineers on studies of recorded <br />runoff cvents in the Cherry Crcek basiI'>. Our analysis <br />of thesc coefficicnts for each of tl:.e five basir:s gave <br />un uverage value for Ct of .32 and .:Ill avcragu ,',,1\.:e <br />of Cp of .49 for the total basin. Thesl' comp:Hcd to <br />a Ct of .36 and Cp of .47 computed for the basin under <br />the Project REUSE study. Thcse differences perh:lps <br />can be attributcd to the increased developr.,ent in the <br />basin and the existcnce of more storm sewers and paved <br />streets to speed tho runoff process as lI'ell as perhaps <br />a !'lore detailed investigation. <br /> <br />c. <br /> <br />nESIGN HAINFALL <br /> <br />The design rainfall for th(1 study areas "..as taken from <br />isohyetal maps in the Rainfall Section of the Urban <br />Storm Drainage Criteria ~lanual. These maps prOVIde <br />the raInfall depths tor the 2, 10, ~nd 100.year storm <br />frequencies and I and 6 hour storm curations. The <br />rainfall data is tabulated in Table Ill. Since the <br />basin is relatively small, a storm rainfall ty:>ical to <br />the basi.n "..as used rather than nssumin& a different <br />dcsign r'linf;111 over (;:J.ch sub.bash:. <br /> <br />TABLE rII <br /> <br />Ill'S 1 r:~ RAT 'IF,,!,!. <br /> <br />StOTD. Frequency <br />2-year <br />IO-year <br /> <br />Basin <br />1 hour <br />(in.) <br /> <br />1 - S <br />{> hour <br />Tw. ) <br /> <br />.95 <br /> <br />i.5S <br /> <br />2.10 <br /> <br />3.30 <br /> <br />i!)'J ,.~.c. r' <br /> <br />2.55 <br /> <br />, ,- <br />... ~ <br /> <br />FroI:'. the storm rainfall input, the effl'ctive precipitation <br />"as COITLputed following the procedure outlincd in rln' Hunoff <br />Sectien of thel.;anu:il. The effectivc prccipi.::ation is ,l <br />func:: iO~l (Of the del'ree of illlper'/ieus and PI' "vicu~ ;ne;!. <br />surfaco tletontioIl, dej1"ossion storage, infi.1cf;1.tion. H"gC' <br />t:nie:l ir.tercC'T'tlon an,! nol imperviOl's "re:l less pE'H::ent:'l<", <br /> <br />.9- <br /> <br />After evaluation of the ~;oils charac tcr is t j c of the <br />Slaughterhouse Gulch basin, an infiltration rute of <br />l/2 in ./hr. lias s electod ,IS buill?,: typical of the ba~1n. <br />Other j.ydr.;;logi.cal factur~ a%',,"od tu he typical of <br />the IHlsin and used in tr.l.' cc:nputation of the storm <br />i:ydrcgraphs an.': <br /> <br />Imporvi.ous depression/detention 5tOJ\'1-gc: 0.10" <br /> <br />P . 1-'..' .'0" - .40" <br />erviuus ~epTessiun ~e_en,iun S.orage: <br /> <br />ImpuTvious lo~s; S~ <br /> <br />D. <br /> <br />If'iDROCRAPlIS <br /> <br />As ~entioned above, design storm hydro graphs ~ere <br />computed at each of the d.,sign points fot the four storm <br />frcqu.,ncics under consideration and for a projected, <br />total devOllopment condition. Prior to calcul..ting <br />these storm hydrogrilphs at each of the design points, <br />storm hydrcgraphs were calculated for each of the sub- <br />basins. >:ext, cach reach 1\'as evaluated by deter~.ining <br />approximat0 flow times thrcHlgh the reach. This ,,;as <br />done utilizln~: the l" ~ SO' scale IT.J.pping prepared <br />sp~cifically for the project. The onc existing urea <br />th"t h'(lS cOl'.~ideroc for p~)nding is the Po\,ers Park <br />,ktcntion .1H~:J. The flood storage effect of this <br />faciE ty 1,'as an,i lable frolf' a previous ~ tudy. Naluru 1 <br />l'onciinF als\! will\!ccur along the stnam tell<ling to <br />attenUJ t~. the flo\!u hydruf(raph as it progresses down. <br />stream. To COIrputQ th.c peak flow:; at the design poir.ts <br />in n", b.1~in, it w.1~ r,rr."'~.~a"y tn cnmput,-, ttw storm <br />bydrorc'.'lph for 0~(.h 0 r thf" h,,~ i,.,~ and then J af. the <br />llydrogrilph fH,m the upper basin tJHO,lZh the' basin undur <br />con~id('rilti<.::n ;II'\! add it to the storm hydrograph at the <br />design puint. At Po'^,ers P:uk, the stOTt:' hydro graph 1,",IS <br />routc:d through the pond and laggec dOliTIstrc,lm to the <br />next d"5ign point. The hydrogra.ph i~. then :Idded to <br />the storm hydrogr!.ph at tha t pu int. Reca~,se of the com- <br />plexity of this procodur<: and due to the aUhlber of <br />hydn)gral,Ls ',.;hic1: hav,:, to b<.l ce:lsiue~cd in ae analysis <br />of this type, th0 tot31 process of computing the storm <br />~,_,___..__", __n_,., ,..~"._, o_~ ~_Ll,.., ~~ ~'-~ .,~.~ <br />H)~' ....g, ""'" ,...... ~ d , ""0; " ad.... ",",u ,. .w '''~ "u~" <br />~tn'.1m <1e<;ign roint li~<; )-open et't:1[lHtt'ri ct"; tt' opf'n'tp ()!1 <br />all !)IM ) 130 (;,lInpt:tcr 1,~iJlg \1i:>c :>ton1r.", <br /> <br />A sumr:ury of the pCJk fLolld flm,s fer c>ac;h frequency "t <br />the v"rjG~'s dc~igr. l'o'i,~ts i~ "revj,1cd ~n ~1:(' ni~d\;1.rf.(' <br />P:r{l:'~. b; 1 '-',' C\!rv~~;, F' <::J,r" 7., f C-,- bQt 11 t r." m" in.; t '-"'1"" <br />'.II'" Sr)tltl1 ;friiAltnrv of. S1 ~lI>dltprhol\~l' C1:1<.:",. <br />. .. <br /> <br />.1l1- <br />