Laserfiche WebLink
<br />EM 1110-2.2504 <br />31 Mar 94 <br /> <br /> <br /> <br /> 24 <br />. r CLASSICAL E/JRTH PRESSURE <br /> IIAXIIIUU VALUE FOR 8 - 0 <br />.. <br /> D. <br /> :;c 20 <br />. <br /> .... <br /> U <br /> II: <br /> 0 <br /> "- 16 <br /> .... . TRANSLATING WALL <br /> II: -J I-A <br /> ::0 <br /> VI <br /> VI <br /> .... I, r. t:t: <br /> II: 12 I, " <br /> n. II " <br /> I. I' <br /> :J: " I' Q <br /> .... I, II <br /> ~ . ROTATING WALL <br /> .... 8 <br /> ~ -J I-A <br /> .... <br /> z <br /> 0 t <br /> N <br /> it: 4 Q:t: <br /> 0 <br /> :J: <br /> <br />o <br />0.22 <br /> <br />y -110 lB/fT3 <br /><I> - 35. <br />K - 270 <br />n - 0.5 <br />Rfa 0.8 <br />II - 0.3 <br />8-0 <br /> <br />CLASSICAL <br />E/JRTH PRESSURE <br />IIINIIIUII VALUE FOR <br />8 - 07 <br /> <br />0.18 <br /> <br />0,14 0.10 0.06 0,02 0 0.02 0.06 0.10 0.14 <br />_ TOWARD BACKFill A IFEETI AWAY FROM BACKFlll- <br /> <br />. <br /> <br />Figure ....3, Ver.tlona 01 Nrth preaaure force with well move_nt celcu.ted by finite "e_nt enelya.. (after <br />Clough end Duncen 1871) <br /> <br />sIresseS due to wa1l/soil friction in !he case of granular <br />soils or in wal1lsoil adhesion for cohesive soils. lbis <br />will have an effecl on !he magnitude of !he minimum <br />and maximum horizonlal earth pressures. For Ihe mini- <br />mum or active limil slale. wall friction or adhesion will <br />slighlly decrease the horizonl31 earth pressure, For !he <br />maximum or passive limil stale. wall friction or adhe- <br />sion may significanlly increase the horizonlal earth <br />Pressure depending on ils magnilUde. <br /> <br />4-3. Eanh Pressure Calculations <br /> <br />Several earth pressures Iheories are available for esti- <br />mating !he minimum (active) and maximum (passive) <br />1aIera1 earth pressures Ihat can develop in a soil mass <br />surrounding a wall, A detailed discussion of various <br />theories is presented by Mosher and Oner (1989). The <br />Coulomb !heery for IaIera1 earth pressure will be used <br />for the design of sheet pile walls. <br /> <br />. <br /> <br />Q. Coulomb Theory. 1be evaluation of !he earth <br />pressures is based on Ihe assumption Ihat a failure plane <br />develops in the soil mass. and along Ihat failure the <br />shear and lIOI1Ilal forces are related by !he shear streng!h <br /> <br />expression (Equation 4-2). This makes !he problem <br />s1atica1ly delenninale. Free-body diagrams of a wedge <br />of homogeneous soil bounded by Ihe soil surface. !he <br />sheet pile wall. and a failure plane are shown in Fig- <br />. ure 4-4. Equilibrium analysis of Ihe forces shown in <br />Figure 4-4 allows !he active force. p., or passive force, <br />P p' to be expressed in lenns of Ihe geometty and shear <br />strenglh: <br /> <br />"f = unit weight of Ihe homogeneous soil <br /> <br />. = angle of inlcma1 soil friction <br /> <br />c = cohesive stteng!h of the soil <br /> <br />Ii = angle of wall friction <br /> <br />.9 = angle between !he wall and !he failure plane <br /> <br />z = deplh below Ihe ground surface <br /> <br />p = slope of the soil surface <br /> <br />For !he limit stale (minimum and maximum), active or <br />passive. the angle i, aitical angle at failure. is obtained <br />from dPld9 = O. Finally, !he soil pressure at deplh z is <br />.oolained from p . dPldz. These operations resull in <br /> <br />4-3 <br />