Laserfiche WebLink
<br />e <br /> <br />, <br /> <br />e <br /> <br />- <br /> <br />. <br /> <br />e <br /> <br />Wingwall flare Sw = 450 with lO foot apron <br /> <br />Find: Flow condition at end of apron - Y and v. <br /> <br />solution: <br /> <br />l. Find outlet velocity from figure III-9 with <br /> <br />Q/BD3/2=4.83 and TW/D~O <br />Yo/D =0.68 <br />Yo=0.68(5)=3.40 <br />Vo=d/A=270/3.4(5)=l5.88 fps <br /> <br />2. Find outlet Froude number <br /> <br />Fr = Vo/lgyo = l5.88/ll09.48' = l.52 <br /> <br />3. Find S <br /> <br />tanS = l/3Fr = l/3(l.52) = 0.22 <br />S = l2.37 <br /> <br />4. <br /> <br />Apron Length/Diameter = lO/5 =, 2 <br />Use figure IV-A-4 for average depth, YA' <br /> <br />YA = 0.26(3.4) = 0.88 feet <br /> <br />5. <br /> <br />From figure IV-A-2 the average velocity VA is: <br /> <br />VAlVo = 1. 2 <br />VA = l5.88(1.2) <br />VA = V2 = 19.1 fps <br /> <br />6. Sw>S use Sw <br /> <br />W2 = Wo + 2L tan (SW) <br />W2 = 5 + 2(lO) (1.0) = 25 feet <br /> <br />7. <br /> <br />Sw was used: <br /> <br />Y2 = YA = 0.88 feet <br />W2 = Q/VAYA = 270/(l9.l)0.88 <br />W2 = 16.1 ft.< 25 ft. <br /> <br />Alternate Solutions Using Energy Equation <br /> <br />(l) Assume W2 = full width between wingwalls at the <br />end of the apron <br /> <br />W2 = Wo + 2L tan 450 = 25 feet <br />A2 = W2Y2 = 25 Y2, V2 = Q/A2 = 270/25Y2 = lO.8/Y2 <br /> <br />IV-A-5 <br />