Laserfiche WebLink
<br />28 <br /> <br />TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS <br /> <br />. <br /> <br />5000 <br />4000 <br /> <br /> / .5 <br /> ;,. V <br /> ft- <br /> . '1 <br /> . <br /> 4 8 <br />1 / <br /> / 10 <br /> . <br />2/ 11 9 <br />V <br /> <br />03000 <br />z <br />o <br />u <br />W <br />if> <br />0: <br />W <br />D- <br />e- <br />w <br />w <br />~ <br />u 1000 <br />0; <br />::> <br />u <br />" <br />ci <br />o <br />o <br />~ <br />~ <br />~ <br />0: <br />::> <br />z <br />z <br />0: <br />Z <br />0: <br />w <br />'" <br /> <br />100 <br /> <br />100 <br /> <br />1000 <br />DRAINAGE AREA (A), IN SQUARE MILES <br /> <br /> 1 <br /> .3 / <br /> 2 / <br /> ) 4 <br /> 1 <br /> /" <br /> /5 <br /> /-10 <br /> 6 <br />9 <br />/ <br /> <br />0.2 <br /> <br />3.0 <br /> <br />t;: <br />w <br />~ <br /> <br />e- <br />o: <br />1.0w <br />> <br />0: <br />::> <br />u <br />'" <br />o <br />0.5 e: <br />~ <br />0: <br />::> <br />'" <br />0; <br />W <br />0: <br /> <br />.05 0.1 0.3 0.6 <br />MEAN FLOW (Q), IN CUBIC FEET PER SECOND <br />PER SQUARE MILE <br /> <br />General methods <br /> <br />Figure 20.-Gl'Ophical regression in which one variable is used twice. <br /> <br />All linear equations in two variables are of <br />the form <br /> <br />Y=a+bX, <br /> <br />and this general form is the equation of a <br />straight line on rectangular graph paper. The <br />linear form on log paper is <br /> <br />log Y=log a+b log X, <br /> <br />which, when expressed in the original variables, <br />is the power equation <br /> <br />Y=aX". <br /> <br />A straight line on semilog paper has the linear <br />form <br /> <br />log Y=log a+bX, <br /> <br />which reduces to the exponential equation, <br /> <br />Y=a(lO) 'x. <br />If b=c log k in the above equation, then <br />Y=ak"'. <br /> <br />Occasionally, points plotted on log paper <br /> <br />define a gentle curve rather than a straight line. <br />The locus of the points can sometimes be made <br />linear by adding or subtracting a constant from <br />one of the variables. The relation would be of <br />the form <br /> <br />. <br /> <br />log Y =log a+b log (X +c), <br /> <br />or <br /> <br />Y=a(X+c)'. <br /> <br />To determine the equation of any linear two- <br />variable relation, compute the slope of the line, <br />b, as vertical distance divided by horizontal <br />distance. These distances are always measured <br />in arithmetic units even though the plot is on <br />log paper (the b values are not transformed). <br />The scale interval should be the same on both <br />axes or an appropriate arithmetic adjustment <br />made. The intercept, a, is usually read off the <br />graph sheet on the ordinate scale at the appro- <br />priate value of X. For the relation <br /> <br />Y=a+bX, <br /> <br />Y=a when X=O, <br /> <br />and for the relation <br /> <br />log Y=log a+b log X, <br /> <br />Y=a when X=l. <br /> <br />. <br />