My WebLink
|
Help
|
About
|
Sign Out
Home
Browse
Search
FLOOD01900
CWCB
>
Floodplain Documents
>
Backfile
>
1001-2000
>
FLOOD01900
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
11/23/2009 10:40:54 AM
Creation date
10/4/2006 10:26:47 PM
Metadata
Fields
Template:
Floodplain Documents
County
Statewide
Community
Nationwide
Title
Techniques of Weather-Resources Investigations of the USGS Book 4, Chapter A1
Date
1/1/1968
Floodplain - Doc Type
Educational/Technical/Reference Information
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
/
44
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
<br />SOME STATISTICAL TOOLS IN HYDROLOGY <br /> <br />11 <br /> <br />. 12 <br />'" . <br />w <br />J:1O <br />u <br />;: <br />;: 8 <br /> <br />-1 <br />~ 6 <br />'" <br />~ <br />~ 4 <br />" <br /> <br /> <br /> 20 <br /> '" <br /> w <br /> J: . . <br /> ~ 10 . <br /> -8 . <br /> ;: . <br /> :d 5 <br /> '" <br /> ~ . . <br /> ~ 3 <br /> " <br /> 2 <br />4 6 0.3 0.5 1 2 3 5 <br />INCHES RUNOFF, IN INCHES <br /> <br /> <br />2 <br />o 2 <br /> <br />RUNOFF, IN <br /> <br /> <br />Figure 11.-Data from U.S. Geological Survey (19491 p. <br />488) plotted on natural and log scales showing the <br />achievement of equal variance about the regression line <br />by use of the log transformation. <br /> <br />Only the log transformation has been used <br />in the above examples because it is by far <br />the most common and useful. Other trans- <br />formations such as the square root may be <br />appropriate for certain data. <br /> <br />Table 2,-Data and computations for example of two- <br />variable regression <br /> <br />. <br /> <br />Yo", Runoff I PreclpitB- XY X' yo <br /> (Y) tion~ (X) <br />1928._______u___ 125 110 <br />1929.____________ 87 73 <br />1930__.___.m___ 08 ,. <br />193L______n____ 71 01 <br />1932.____________ 118 158 <br />1933.____________ 144 130 <br />1934____h_______ 160 152 <br />193~L____________ 188 134 <br />1936_____________ 102 " <br />1937.____________ 01 90 <br />1938.____________ 125 110 <br />1939____00_______ 87 77 <br />1940_____________ " 100 <br />194:L.___________ " " <br />1942..___________ 7\l 85 <br />1943_____________ 124 115 <br />1944_____________ 52 70 <br />1945.____________ 87 ., <br /> - <br />%__u_u_________ l.m 1,SOl 192,042 189,291 197,373 <br />Mean_hh_______ 99.4.4 100.06 <br /> <br />I Annualrunoff in percent of mean (B~ping River near Nile, Wash.). <br />2 Annual rainfall in percent of mean (a.t Bumping Lake, Wash_). <br /> <br />. <br /> <br />. Simple linear regression <br /> <br />Computation of a regression equation using <br />the model Y =a+bX is demonstrated using the <br />data given in table 2. That table also shows <br />computations of means, cross products, and <br />squares. The individual cross products and <br />squares need not be recorded; the sum of cross <br />products, or squares, can be cumulated on a <br />desk calculator. Such calculations are ordinarily <br />checked by repeating the operation. The coeffi- <br />cients a and b in the regression equation, and <br />the standard error of estimate are computed as <br />shown below. <br />2,'W---622 0-67-3 <br /> <br />L;XY <br />b- <br /> <br />L;xL;Y <br />N <br />(L;X)' <br />N <br /> <br />L;XY-NXY <br />. , <br />L;X'-NX' <br /> <br />L;X' <br /> <br />b <br /> <br />192,042 (1,801) (1,799) <br />18 <br />189 291- (1,801)' <br />, 18 <br /> <br />1.325. <br /> <br />Regression coefficient <br />a=Y -bX=99.94- (1.325)(100.06) = -32.6. <br />Intercept <br /> <br />Then <br /> <br />Y =a+bX= -32.6+ 1.32X, <br /> <br />or <br /> <br />Y =Y -b(X -X) =99.94- (1.325) (X -100.06), <br />Y = -32.6+ 1.32X. <br />Equation of least-squares line <br /> <br />(L;X)' <br />N <br />N-l <br /> <br />189.291 <br /> <br />(1,801)' <br />18 <br /> <br />L;X' <br />S'- <br />,- <br /> <br />17 <br />= 534.76. <br /> <br />Variance of X <br /> <br />L;Y'- (L;Y)' <br />N <br />~-- N-l <br /> <br />(1,799)' <br />18 <br /> <br />197,373 <br />17 <br />=1,033.71. Variance of Y <br /> <br />"" _N-l [S' b2S,]_17[1 7 <br />o"'-N_2 ,- '-16 ,033.1 <br />- (1.325)'( 534.76)]= 100.8. <br /> <br />S,.,=1O.0. <br /> <br />Standard error of estimate of Y <br /> <br />bS, ( 2) (23.13) <br />r~S;= 1.3 5 32.15 ~0.95. <br />Correlation coefficient <br /> <br />The regression coefficient can be tested for <br />significance as follows (Bennett and Franklin, <br />1954, p. 228): <br /> <br />&. 8;.3: <br />. L;(x') <br /> <br />100.8 <br />189,291-(1,801)'/18 <br /> <br />0.056. <br /> <br />Testing the hypothesis that fJ=O, <br /> <br />tn_2 <br /> <br />b-fJ <br />S, <br /> <br />1.325-0 <br />0.236 5.6. <br />
The URL can be used to link to this page
Your browser does not support the video tag.