My WebLink
|
Help
|
About
|
Sign Out
Home
Browse
Search
FLOOD00764
CWCB
>
Floodplain Documents
>
Backfile
>
1-1000
>
FLOOD00764
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
11/23/2009 10:51:16 AM
Creation date
10/4/2006 9:27:30 PM
Metadata
Fields
Template:
Floodplain Documents
County
Statewide
Community
Nationwide
Title
Use of Extreme Value Theory in Estimating Flood Peaks from Mixed Populations
Date
2/1/1980
Prepared By
Utah State University Water Research Laboratory
Floodplain - Doc Type
Educational/Technical/Reference Information
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
/
43
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
<br />The associated river heights (Q(T)) as <br />eSllmaled by Equation 12 using the respective <br />parameters in Table 6 are shown in Table 10. <br />The goodness-of-f it stat ist ics are tabulated <br />In Table 12. <br /> <br />It is instructive to view the plots <br />of these rivers. Shown in Figures 19 to 29 <br />are the plots for each river. The Cl <br />axis is In(b-X(i)) and the CL axis is <br />10(-ln(i/(n+l)). The maximum likelihood <br />estimaled value of b has been used. <br /> <br />The Saguenay River (Figure 19) manifests <br />a straight line plot and may have nearly <br />homogeneous sources, although the two largest <br />floods could be from another source. The <br />Niger River, location Dire (Figure 20) <br />and locat ion Koul ikoro (Figure 21), exh ib i ts <br />two sharply different components. The <br />Penobscot River (Figure 22) appears to have <br />homogeneous sources with close to a straight <br />line plot. Figure 23 does not exhibit a <br />clear indication of two sources, although <br />there seems a tendency toward two straight <br />lines. Ils estimated parameters indicate <br />likewise, a = 2.30 and a' = 2.30 with c = <br />388.32 an c' = 410.86--very close to identi- <br />cal components. The Vuoksi River (Figure 24) <br /> <br />Table 6. Maximum flood flow b (in m3 /S), scale <br /> factor .sf, and parameters estimated <br /> from Equation 25. <br />No. b sf "I "2 81 82 <br />1 25000 22630 16.33 8.67 4.26 0.001 <br />2 3000 1053 3.53 719.68 3.74 0.52 <br />3 21000 17354 14.05 14.05 0.14 6.06 <br />4 18000 17179 0.91 27.57 0.005 2.92 <br />5 700 562 2.30 2.30 2.34 2.06 <br />6 2500 2167 14.55 2398.16 9.82 4.90 <br />7 6000 5293 22.89 6.69 2.06 1.40 <br />8 1300 1047 6.55 6.59 0.25 11. 32 <br />9 6000 4000 4.89 6.46 0.02 8.56 <br />10 670 347.9 8.98 1.03 0.013 0.14 <br />11 3100 1200 9.31 0.87 5.6 E-4 0.04 <br /> <br />Table 7. Parameter estimates of a, a', c, and <br /> c' for each station. <br />No. b a a' c c' <br />1 25000 16.33 8.67 20706.33 49696.00 <br />2 3000 3.53 7.19 724,52 1053.96 <br />3 21000 14.05 14.05 19932.25 15265.06 <br />4 18000 0.91 27.57 5605113.20 16523.166 <br />5 700 2.30 2.30 388.32 410.86 <br />6 2500 14.55 2989.16 1852.06 2165.81 <br />7 6000 22.89 6.69 5128.49 5033.41 <br />8 1300 6.55 6.59 1297.56 724.48 <br />9 6000 4.89 6.46 8904.89 2869.71 <br />10 670 8.98 1. 03 563.86 2303.15 <br />11 3100 9.31 0.87 2683.34 49293.56 <br /> <br />Table 8. Data values D(T) (in m3/S) as inter- <br /> polated between adjacent observa- <br /> tions by the Chegodayev method. <br /> T in Years <br />No. 2 5 10 20 50 100 <br />1 4655 6125 6766 7811 9166 a <br />2 2335 2562 2641 2664 2677 a <br />3 6250 7066 7670 9065 9590 a <br />4 1738 2342 2342 3124 3929 a <br />5 454 545 578 614 648 a <br />6 703 794 881 933 1139 1157 <br />7 1350 1875 2418 2759 3474 a <br />8 627 726 773 809 927 945 <br />9 3300 3762 4000 4118 4500 4560 <br />10 154 252 423 509 622 a <br />11 540 836 1283 1532 2300 a <br /> 8Beyond the range of the data. <br /> <br />Table 9. Data values D(T) (inm3/S) as inter- <br /> polated between adjacent observa- <br /> tions by the Hazen method. <br /> T in Years <br />No. 2 5 10 20 50 100 <br />1 4655 6111 6761 7714 9128 9244 <br />2 2335 2561 2640 2661 2677 a <br />3 6250 7041 7649 8964 9552 9676 <br />4 1738 2339 2650 3081 3777 4251 <br />5 454 545 577 614 646 655 <br />6 703 794 880 931 1138 1153 <br />7 1350 1867 2412 2700 3401 3655 <br />8 627 726 733 806 927 937 <br />9 3300 3750 4000 4100 4500 4540 <br />10 154 251 422 498 613 644 <br />11 540 835 1253 1518 2149 2607 <br /> aBeyond the range of the data. <br />Table 10. Data values D(T) (in m3/S) as inter- <br /> polated between adjacent observa- <br /> tions by the Weibull method. <br /> T in Years <br />No. 2 5 10 20 50 lui) <br />1 4655 6170 6775 7987 9224 a <br />2 2335 2563 2643 2670 a a <br />3 6250 7103 7701 9216 9648 a <br />4 1738 2346 2673 3188 4156 a <br />5 454 546 579 615 652 a <br />6 703 794 881 935 1142 1164 <br />7 1350 1888 2426 2848 3583 a <br />8 627 727 773 814 927 973 <br />9 3300 3780 4000 4145 4500 4589 <br />10 154 255 425 524 636 a <br />11 540 841 1310 1567 2528 a <br /> aBeyond the range of the data. <br />18 <br />
The URL can be used to link to this page
Your browser does not support the video tag.