Laserfiche WebLink
<br />Thus <br /> <br />F(x) <br /> <br />{1 x>b <br />= exp{- (b:Xr-(~,xr}X>b' c>O, 0'>0 <br /> <br />(12) <br /> <br />The bound parameter b was taken to be the <br />same for both componenls. Numerically b is <br />the most difficult of the three paramet~rs to <br />estimate and the one to which the distribu- <br />t ion is least sensitive. <br /> <br />A least squares estimation technique <br />reported in Canfield and Borgman (1975) was <br />improved and used to estimale the parameters <br />of Equat~on 12. Let h(i), i = 1,2, ..., n <br />be the Ith order statistic of n annual <br />maximum flood flows. Estimates of the <br />parameters in Equal ion 12 are taken to be <br />those values which minimize, <br /> <br />n <br />.=" [E(lnF(h(.)))-ln <br />i=l :1 <br /> <br />2 <br />(F(h(i)))J Wi <br /> <br />(13) <br /> <br />where Wi is a weIght factor such that <br /> <br />var <br /> <br />(In F(\i))) <br />(In F(h(i))) <br /> <br />(14) <br /> <br />W = <br />i <br /> <br />var <br /> <br />and E(.) is the expected value operalor. <br />The variance .of ln F(h(i)) is defined by <br /> <br />2i var (In F(h(i))) = E[ln F(h(i)) <br />2 <br />- E(ln F(h(i)))J . <br /> <br />(15) <br /> <br />The values of <br />F (h ( i))) ar e <br />computed USIng <br />trapezoid rule. <br /> <br />EOn F(h(i))) and var <br />nonparametric and may <br />numerical integration by <br /> <br />On <br />be <br />the <br /> <br />E [In F(h(i))J <br /> <br />(i_l)ni(n_i) !1\n F(h(i)) [F(h(i)) Ji-I <br />o <br /> <br />'[I-F(h(i))Jn-idF(h(i)) <br /> <br />(16) <br /> <br />2 <br />E[{E[ln F(h(i))J-ln F(h(i))} J <br />[ 2 2 <br />E (In F(h(i))) J - (E[ln F(h(i)) J} <br /> <br />11 <br />nl 2 i-I <br />(i-l)!(n-i)! [In F(h(i))J [F(h(i))J <br />o <br />In-i <br />'[I-F(h(i)) dF(h(i)} <br /> <br />- (ci-l) 7~n-l) !11 In F(h(i)) <br />. [1-F(h(O) t-idF~h(i)r <br /> <br />[F(h(i))]i-l <br /> <br />Lindgren (1976), page 218, gives the density <br />function of the ith order statistic and, page <br />113, the expectat ion of a funet ion of a <br />random variable. For convenIence let, <br /> <br />ELi = E [In F(h(i))] <br />2 <br />ELSQi E[{E[ln F(h(i))]-ln F(h(i))} ] <br /> <br />Yi = b - h(i) <br /> <br />0.' (0.1,0.2) = (a,a') <br /> <br />8' = (81,82) = (c~ ' (C,\a') <br /> <br />From this information, Equation 13 can be <br />rewrItten as <br />n 0.1 a.2 2 <br />ljJ = L {ELi +81Yi + 82Yi } Wi <br />i=l <br /> <br />al a. 2 2 <br />E {~ ELi + SlYi ~ +82Yi ~} <br />1=1 <br /> <br />(17) <br /> <br />A FORTRAN program for computat ion of ELi <br />and ELSQi are found in A~pendix B. Esti- <br />mat ion ot a, a', c and c is accomplished <br />by estimating a. and 6 and then solvIng for a, <br />a', c and c' respectIvely. <br /> <br />In order to minimize Equat ion <br />appropr iale part ial der ivat ives of 1/1 <br />evaluated and set equal to zero. <br />~ ,n 0'.') n 20.1 <br />-""--,s = I. W~ELi "+91 I: W.Y. <br />1 i=1.L 1=1 :1 1 <br /> <br />17, <br />are <br /> <br />n <br />+62 l: <br />1=1 <br /> <br />0.1+02 <br />W1Y1 <br /> <br />o <br /> <br />(18) <br /> <br />i!t = ~ <br />382 1=1 <br /> <br />n a. +0'. <br />EWy12+8 <br />1=1 i i 2 <br /> <br />n 2il2 <br />E WiY1 <br />1=1 <br /> <br />"2 <br />WiELiYi +61 <br /> <br />o <br /> <br />(19) <br /> <br />l!:L_ n "I n u1+a2 <br />L WiELiYi InYi+82 L WiYi In Yi <br />'"I i=l i=1 <br /> n 2"1 <br /> + 81 E WtYi In Yi 0 (20) <br /> 1=1 <br /> <br />n <br />.3!L = L <br />3a2 1=1 <br /> <br />n al+a2 <br />E WiYi <br />i=1 <br /> <br />In Y. <br />, <br /> <br />"2 <br />WiELiYi In Y1 + 61 <br /> <br />+ 82 <br /> <br />n 202 <br />L WiYi <br />i=1 <br /> <br />In Y. <br />, <br /> <br />o <br /> <br />(21) <br /> <br />Solving Equation 18 for 82 yields, <br /> <br />'2 <br /> <br />n <br />- E W <br />i=1 i <br /> <br />2"1 <br />WiYi <br /> <br />"1 n <br />ELiYi - 61 r <br />i=1 <br />n a1+u2 <br />E Wi Yi <br />i=1 <br /> <br />(22) <br /> <br />16 <br />