<br />296
<br />
<br />J. LAVABRE ET AL.
<br />
<br />HYDROLOGICAL RESPONSE OF A MEDITERRANEAN BASIN
<br />
<br />297
<br />
<br />Brown. I.A.H., 1972. Hydrologic effects of a bushfire in a catchment in south-eastern New
<br />South Wales. J. Hydro!., 15: 77-96.
<br />Burch, G.J.. Bath, R.K., Moore, J.D. and O'Loughlin. E./M., 1987. Comparative hydrological
<br />behaviour of forested and cleared catchments in southeastern Australia. J. Hydro!., 90:
<br />19-42.
<br />Campbell, R.E., Baker, M.B.J.. FrollicH, P.F., Larson, L.R. and Avery, C.C., 1977. Wildfire
<br />effects on a ponderosa pine ecosystem: an Arizona case study. USDA For. Servo Rep., Res.
<br />Pap. RM-191, Rocky Mountain For. Range Exp. Stn., Fort Collins, CO, 12 pp.
<br />Chandler. c.. Cheney, P., Thomas. P., Trabaud. L. and Williams, D., 1983. Fire effects on soil,
<br />water and air. In: Fire in Forestry, Vol. I: Forest fire behaviour and effects. Wiley, New
<br />York, pp. 171-202.
<br />Cormary, Y. and Guilbot, A., 1973. Etude des relations pluie.debit sur trois basins versants
<br />representatifs. In: IAHS Pub. No. 108, Wallingford, pp. 265-279.
<br />Editjanoand Michel, C., 1989. Un modele pluie-debitjournalier Ii trois parametres. La Houille
<br />Blanche,2: 113-121.
<br />Editjano, Michel, C. and Leviandier, T., 1991. Daily lumped rainfall-runoff model with three
<br />free parameters. CEMAGREF Rep., Antony, France, 21 ,pp.
<br />Gustard, A., Roald, L.A., Delmuth, S., Lumadjens, H.S. and Gross, R., 1989. Flow regimes
<br />from experimental and network data (FRENO). Vol. I: hydrological studies. Institute of
<br />Hydrology (Editor), Wallingford, 344 pp.
<br />Lavabre, J., 1989. Research drainage basin of the Real Collobrier (Mediterranean, France).
<br />Flow modelization and regional analysis. In: FRIENDS in Hydrology (Flow regimes from
<br />international experimental and network data sets). IAHS Pub!. No. 187, Wallingford,
<br />pp. 423-434.
<br />Lavabre, J., 1990. Bassin versant representatif et d'etude du Real Collobrier. GIS-Real
<br />Collobrier Rep. Aix-en.Provence, 21 pp.
<br />Lavabre, J., Martin, C. and Puech, C., 1991. Les feux de forets de I'ete 1990 dans Ie massif des
<br />Maures: cartographie Ii I'aide de I'imagerie satellitaire, premieres consequences sur Ie cycle
<br />hydrologique, recherches sur les phenomenes d'erosion. Secheresse, 2: 175-181.
<br />Lavabre, J., Martin, C. and Wolff, M., 1990. B.V.R.E. du Real Collobrier. Cartographie de
<br />d'episode pluvieux du premier actobre 1990. GIS-Real Collobrier Rep., Aix.en-Provence,
<br />
<br />29 pp:
<br />Loumagne, C., Michel, C. and Normand, M., 1991. Etat hydriquedu sol et prevision des debits
<br />(soil-moisture conditions and discharge forecasting). J. Hydrol., 123: 1-17.
<br />L'vovich, M.I., 1972. Hydrologic budget of continents and estimate of the balance of global
<br />fresh water resources. SOy. Hydro!., 4: 349-360.
<br />Martin, C. and Chevalier, Y., 1991. Premieres consequences d'un incendie for foret sur Ie
<br />comportement hydrochimie du bassin versant du rimbaud. Hydro!. Continent, 6(2):
<br />145-153.
<br />Michel, C., 1983. Que peut-on faire en hydrologie avec un modele conceptuel a un seul
<br />para metre. La Houille Blanche, 1: 39-44.
<br />Michel, c., 1989. Hydrologie appliquee aux bassins versants ruraux. CEMAGREF Rep.,
<br />Antony (France), 510 pp.
<br />Nash, J.E. and Sutcliffe, J;V., 1970. River flow forecasting through conceptual models, I. A
<br />discussion of principles; J. Hydrol., 10: 282-290.
<br />Rowe, P.B., Countryman, C.M. and Storey, H.C., 1954. Hydrologic analysis used to determine
<br />effects of fire on peak discharge and erosion rates in southern California watershed. U.S.
<br />For. Serv. Rep., Unnumbered Rep., Beltsville, MD, 49 pp.
<br />
<br />Scott, D.F. and van Wyn, D.B., 1990. The effects of wildfire on soil wettability and hydrological
<br />behaviour of an afforested catchment. J. Hydro!., 121: 239-256.
<br />Sempere Torres, D., 1990. Calcul de la lame ruisselee dans la modelisation pluie-debit:
<br />limitations des approches globales et introduction simplifiee de la topographie et de la
<br />variabilite spatiale des pluies. Ph.D. Thesis, Institut National Poly technique de Grenoble.
<br />Sempere Torres, D., 1992a. OR3: un model conceptual simple de transfonnaci6 pluja-cabal a
<br />escala de conca vessant. UPC-Dept. Hydraul. Eng., Rep. 32/C2.S.92. Barcelona. 8 pp.
<br />Servat, E. and Dezeiter. A., 1991. Selection of calibration objective functions in the context of
<br />rainfall-runoff modelling in a Sudanese savannah area. Hydro!. Sci. J., 36: 307-330.
<br />Tiedemann, A.R., Conrad, C.E., Dieterich, J.H.. Hornbeck, J.W., Megahan, W.F., Viereck,
<br />L.A. and Wade, D.O., 1979. Effects of fire on water: a state of knowledge review. USDA
<br />For. Serv. Rep., Gen. Tech. Rep. WP-10, Washington, D.C.
<br />
<br />APPENDIX: A BRIEF DESCRIPTtON OF THE OR3 MOOEL
<br />(From Sempere Torres, 1992a)
<br />
<br />Although it is not our aim to describe fully the OR3 model (see for instance
<br />Michel, 1983; Michel, 1989; Editjano and Michel, 1989; Servat and Dezeiter,
<br />1991; Loumagne et aI., 1991), we thought it would be interesting to review its
<br />main points briefly.
<br />GR3 is a lumped conceptual model proposed by Michel (1983) based on the
<br />work of Cormary and Guilbot (1973). It is a two-reservoir model that needs
<br />to calibrate only two or three parameters depending on the time step that is
<br />used. It is the reference rainfall-runoff model used in the CEMAGREF
<br />studies. In our work we used it with a monthly and a daily time step.
<br />Essentially the model is the same, but the daily version introduces some small
<br />modifications to fit daily hyetographs beller.
<br />First we will summarize the general description and afterwards we will
<br />describe the modifications used in the daily time step version.
<br />GR3 is made up of two reservoirs (see Fig. AI): the soil moisture reservoir
<br />and the routing reservoir. The storage of the soil moisture reservoir, S,
<br />controls the evapotranspiration losses and therefore the portion of water that
<br />will constitute the runoff. Its maximal storage, A, is the first parameter of the
<br />model. The routing reservoir controls the outflow, Q, which is a monotonic
<br />function of its storage R. Its maximal storage, B. is the second parameter of
<br />the model.
<br />As inputs, G R3 needs precipitation, P, and potential evapotranspiration,
<br />E. during the time step considered (we used interannual means of the evapo-
<br />transpiration measured at the next meteorological station in our case study).
<br />Depending on whether the difference P' = P - E is less or greater than zero,
<br />there will be two cases:
<br />(I) If P' < 0, there will be a loss due to evapotranspiration. In this case the
<br />
<br />
|