Laserfiche WebLink
<br />296 <br /> <br />J. LAVABRE ET AL. <br /> <br />HYDROLOGICAL RESPONSE OF A MEDITERRANEAN BASIN <br /> <br />297 <br /> <br />Brown. I.A.H., 1972. Hydrologic effects of a bushfire in a catchment in south-eastern New <br />South Wales. J. Hydro!., 15: 77-96. <br />Burch, G.J.. Bath, R.K., Moore, J.D. and O'Loughlin. E./M., 1987. Comparative hydrological <br />behaviour of forested and cleared catchments in southeastern Australia. J. Hydro!., 90: <br />19-42. <br />Campbell, R.E., Baker, M.B.J.. FrollicH, P.F., Larson, L.R. and Avery, C.C., 1977. Wildfire <br />effects on a ponderosa pine ecosystem: an Arizona case study. USDA For. Servo Rep., Res. <br />Pap. RM-191, Rocky Mountain For. Range Exp. Stn., Fort Collins, CO, 12 pp. <br />Chandler. c.. Cheney, P., Thomas. P., Trabaud. L. and Williams, D., 1983. Fire effects on soil, <br />water and air. In: Fire in Forestry, Vol. I: Forest fire behaviour and effects. Wiley, New <br />York, pp. 171-202. <br />Cormary, Y. and Guilbot, A., 1973. Etude des relations pluie.debit sur trois basins versants <br />representatifs. In: IAHS Pub. No. 108, Wallingford, pp. 265-279. <br />Editjanoand Michel, C., 1989. Un modele pluie-debitjournalier Ii trois parametres. La Houille <br />Blanche,2: 113-121. <br />Editjano, Michel, C. and Leviandier, T., 1991. Daily lumped rainfall-runoff model with three <br />free parameters. CEMAGREF Rep., Antony, France, 21 ,pp. <br />Gustard, A., Roald, L.A., Delmuth, S., Lumadjens, H.S. and Gross, R., 1989. Flow regimes <br />from experimental and network data (FRENO). Vol. I: hydrological studies. Institute of <br />Hydrology (Editor), Wallingford, 344 pp. <br />Lavabre, J., 1989. Research drainage basin of the Real Collobrier (Mediterranean, France). <br />Flow modelization and regional analysis. In: FRIENDS in Hydrology (Flow regimes from <br />international experimental and network data sets). IAHS Pub!. No. 187, Wallingford, <br />pp. 423-434. <br />Lavabre, J., 1990. Bassin versant representatif et d'etude du Real Collobrier. GIS-Real <br />Collobrier Rep. Aix-en.Provence, 21 pp. <br />Lavabre, J., Martin, C. and Puech, C., 1991. Les feux de forets de I'ete 1990 dans Ie massif des <br />Maures: cartographie Ii I'aide de I'imagerie satellitaire, premieres consequences sur Ie cycle <br />hydrologique, recherches sur les phenomenes d'erosion. Secheresse, 2: 175-181. <br />Lavabre, J., Martin, C. and Wolff, M., 1990. B.V.R.E. du Real Collobrier. Cartographie de <br />d'episode pluvieux du premier actobre 1990. GIS-Real Collobrier Rep., Aix.en-Provence, <br /> <br />29 pp: <br />Loumagne, C., Michel, C. and Normand, M., 1991. Etat hydriquedu sol et prevision des debits <br />(soil-moisture conditions and discharge forecasting). J. Hydrol., 123: 1-17. <br />L'vovich, M.I., 1972. Hydrologic budget of continents and estimate of the balance of global <br />fresh water resources. SOy. Hydro!., 4: 349-360. <br />Martin, C. and Chevalier, Y., 1991. Premieres consequences d'un incendie for foret sur Ie <br />comportement hydrochimie du bassin versant du rimbaud. Hydro!. Continent, 6(2): <br />145-153. <br />Michel, C., 1983. Que peut-on faire en hydrologie avec un modele conceptuel a un seul <br />para metre. La Houille Blanche, 1: 39-44. <br />Michel, c., 1989. Hydrologie appliquee aux bassins versants ruraux. CEMAGREF Rep., <br />Antony (France), 510 pp. <br />Nash, J.E. and Sutcliffe, J;V., 1970. River flow forecasting through conceptual models, I. A <br />discussion of principles; J. Hydrol., 10: 282-290. <br />Rowe, P.B., Countryman, C.M. and Storey, H.C., 1954. Hydrologic analysis used to determine <br />effects of fire on peak discharge and erosion rates in southern California watershed. U.S. <br />For. Serv. Rep., Unnumbered Rep., Beltsville, MD, 49 pp. <br /> <br />Scott, D.F. and van Wyn, D.B., 1990. The effects of wildfire on soil wettability and hydrological <br />behaviour of an afforested catchment. J. Hydro!., 121: 239-256. <br />Sempere Torres, D., 1990. Calcul de la lame ruisselee dans la modelisation pluie-debit: <br />limitations des approches globales et introduction simplifiee de la topographie et de la <br />variabilite spatiale des pluies. Ph.D. Thesis, Institut National Poly technique de Grenoble. <br />Sempere Torres, D., 1992a. OR3: un model conceptual simple de transfonnaci6 pluja-cabal a <br />escala de conca vessant. UPC-Dept. Hydraul. Eng., Rep. 32/C2.S.92. Barcelona. 8 pp. <br />Servat, E. and Dezeiter. A., 1991. Selection of calibration objective functions in the context of <br />rainfall-runoff modelling in a Sudanese savannah area. Hydro!. Sci. J., 36: 307-330. <br />Tiedemann, A.R., Conrad, C.E., Dieterich, J.H.. Hornbeck, J.W., Megahan, W.F., Viereck, <br />L.A. and Wade, D.O., 1979. Effects of fire on water: a state of knowledge review. USDA <br />For. Serv. Rep., Gen. Tech. Rep. WP-10, Washington, D.C. <br /> <br />APPENDIX: A BRIEF DESCRIPTtON OF THE OR3 MOOEL <br />(From Sempere Torres, 1992a) <br /> <br />Although it is not our aim to describe fully the OR3 model (see for instance <br />Michel, 1983; Michel, 1989; Editjano and Michel, 1989; Servat and Dezeiter, <br />1991; Loumagne et aI., 1991), we thought it would be interesting to review its <br />main points briefly. <br />GR3 is a lumped conceptual model proposed by Michel (1983) based on the <br />work of Cormary and Guilbot (1973). It is a two-reservoir model that needs <br />to calibrate only two or three parameters depending on the time step that is <br />used. It is the reference rainfall-runoff model used in the CEMAGREF <br />studies. In our work we used it with a monthly and a daily time step. <br />Essentially the model is the same, but the daily version introduces some small <br />modifications to fit daily hyetographs beller. <br />First we will summarize the general description and afterwards we will <br />describe the modifications used in the daily time step version. <br />GR3 is made up of two reservoirs (see Fig. AI): the soil moisture reservoir <br />and the routing reservoir. The storage of the soil moisture reservoir, S, <br />controls the evapotranspiration losses and therefore the portion of water that <br />will constitute the runoff. Its maximal storage, A, is the first parameter of the <br />model. The routing reservoir controls the outflow, Q, which is a monotonic <br />function of its storage R. Its maximal storage, B. is the second parameter of <br />the model. <br />As inputs, G R3 needs precipitation, P, and potential evapotranspiration, <br />E. during the time step considered (we used interannual means of the evapo- <br />transpiration measured at the next meteorological station in our case study). <br />Depending on whether the difference P' = P - E is less or greater than zero, <br />there will be two cases: <br />(I) If P' < 0, there will be a loss due to evapotranspiration. In this case the <br /> <br />