Laserfiche WebLink
e IqI <br />67. G. M. Mace, thesis, University_ of Sussex. Sussex (1979); P. H. Harvey and T. H. <br />Clurton-Brock Evolution 39, 559 (1985); J. L Gitdcman, Am. Nai. 127, 744 <br />(1986). <br />68. P. H. Harvey. D. P. Promislow. A. F. Read, in Comparmive Safoerology, R. Folev <br />and V. Standen. Eds. (British Ecological Society Special Publication. Blackwell. <br />Oxford, in press). <br />69. P. H. Harvey and A. F. Read, in Evolution of Lik Histories: Patten and Theory Jima <br />Mammals, M. S. Boyce, Ed. (Yale Univ. Ptess.:Iew Haven, C.N, 19881, pp. 213- <br />232. <br />M. P. H. Harvey and R. M. Z ammuto. Nature 315, 319 (1985). <br />71. B. E. Seather, ibid. 331, 616 (1988); P. M. Bennett and P. H. Hareev, ibid. 333, <br />216 (1988). <br />72. W. J. Sutherland, A. Grafen. P. H. Harvey. ibid. 320, 88 (1986). <br />73. P. H. Hana•, A F. Read. D. I. Promislow, ibid., in press. <br />74. 1• F. Downhower, ibid. 263.558 (1976);.M. S. Bovice, Am. `at. 114.5 979); <br />K. Rails and P. H. Harvey. Biol. J. Limn. Soc. 25, 119 (1985); S. edt and <br />M. S. Bovcr_ Am. Nat. 125. 873 (1985). <br />75. G. C. William Evolution 11, 398 (1957); A. Comto a Biology of Senescence <br />(Elsevier, New York, ed. 3, 1919). <br />76. P. B. Medawar, An Unsolved Problem of Biol London, 1952). <br />777. G. C. Williams. Evolution 11, 398 (19 <br />78. W. D. Hamilton. J. Theor. Biol 12(1966). <br />K. Kosuda Behav. <br />79. L D. Mueller, Pron. Ned. Sci. U.S.A. 84, 1974 (1987); <br />Genet. 15, 297 (198 <br />80. P. H. Hw%-cv ayd ?i. M. Mace, Nature 305. 14 (1983). <br />81. IL H. M ur and E. O. Wilson. Vie 77teory of island Biogeography (Princeton <br />Univ.yjeis, Princeton, N), 1967); R. H. MacArthur. Geo"Thiosl Ecology (Harper <br />3t Fa5w, New York 1972). <br />0 -?q ag <br />82. M. S. Boyce, Amur. Rev. Ecol. Syst. 15.427 (1984). <br />83. J. Roughipirden, Ecology 52.453 (19711- <br />94. E. R. Pianka, Am. Nac. 104. 59 1970). <br />85. S. C. Stearns, Annat. Rev. Eco . Syst. 8, 145 (1977). <br />inbill. Am' ,vat 13.427 (1979). <br />ience 202. 1 1 (1978); Ecology 65. 1170 (1984); C. E. Taylor and C. <br />voius m , 1183 (1980); 1• H• Buday and P. T. Grcgorv, Am. Nae. <br />(19and F.1. Ayala. Prot. Nad. Arad. Sri. U.S.A. 78, 1303 (1981); M. <br />F. 1. Ayala, Genetics 97, 6i9 (1981). <br />XEA <br />hinson, The Ecolol Theater and the Evolutionary Play (Yak Univ. Press, <br />n, CN, 1965). <br />tserxsladc Am. Nat. 122. 352 (1983). <br />91. R. R. Gksner and D. Tilman. ibid. 112, 659 (1978). <br />92. A. G. Hildrew and C. R. Townsend, in Organisations of Communities Past and Present, <br />1. H. R. Gee and P. S. Giller. Eds. (Blackwell. Oxford, 19877), p. 347. <br />93. 1• P. Grime. Am. Neu. 111, 1169 (1977). <br />94. R.M. Siblv and P. Clloow. Physiolog" Ecology of Animals: An Evolutionary Approach <br />(Blackwell, Oxford, 1986). <br />95. M. Begon, in Behavioral Ecology, R. M. Sibiv and R. H. Smith, Eds. (Blackwell, <br />Oxford, 1985), p. 91. lndividrbls Populations 96. 1. L Harper. C. R. Townsend. Ecology: and <br />Communities (Blackwell. oxford, 1986). <br />97. T. IL E. Southwood. Oikos 52, 3 (1988). <br />98. We thank G. Bell. M. Bulmer. A. Burt. A. Kevmer, R. M. Slav, M.1. Morgan, M. <br />Pagel, and A. Read for helpful discussions. LP. is graceful to the Camcehe Trust for <br />the Universities of Scotland and to Edinburgh University for financtal support <br />during the preparation of this article. <br />Genetics and Demography in <br />Biological Conservation <br /> <br />Predicting the extinction of single populations or species <br />requires ecological and evolutionary information. Pri- <br />mary demographic factors affecting population dynamics <br />include social structure, life history variation caused by <br />environmental fluctuation, dispersal in spatially heteroge- <br />neous environments, and local extinction and coloniza- <br />tion. In small populations, inbreeding can greatly reduce <br />the average individual fitness, and loss of genetic variabili- <br />ty from random genetic drift can diminish future adapt- <br />ability to a changing environment. Theory and empirical <br />examples suggest that demography is usually of more <br />immediate importance than population genetics in deter- <br />mining the minimum viable sizes of wild populations. The <br />practical need in biological conservation for understand- <br />ing the interaction of demographic and genetic factors in <br />extinction may provide a focus for fundamental advances <br />at the interface of ecology and evolution. <br />DESTRUCTION AND FRAGMENTATION OF NATURAL AREAS, <br />especially tropical rain forests with their high species <br />diversity', is now causing extinction of species at a rate that <br />is orders of magnitude as high as normal background rates of <br />exnn rion (1). If there are anv paleontologists in the distant future, <br />our "modem age"-the 20th and 21st centuries-will likeiv be <br />u V, <br />i; <br />U <br />recorded as a period of one of the greatest mass extinctions of all <br />time, comparable to the event 65 million years ago in which it can be <br />estimated that the majority of species then living on Earth perished <br />(1, 2). In addition to the ethical problem of extirpating life forms <br />that evolved over millions of years, there arc practical reasons for <br />conserving wild areas containing species of potential medical, <br />agricultural, recreational, and industrial value (3). Ultimately, suffi- <br />cient alteration of natural ecosystems may destabilize regional and <br />global climate and biogeochemical evcles, with potentially disastrous <br />effects (4). <br />Awareness of the benefits of conserving biological diversity is <br />growing rapidly in many countries, but it remains to be seen <br />whether conservation efforts will increase fast enough in relation to <br />the rate of destruction to preserve much of the natural diversity that <br />existed in the last century. As the remaining natural areas become <br />smaller and more fragmented, it is increasingly important to under- <br />stand the ecological and evolutionary dynamics of small populatipps <br />in order to effectively manage and preserve them for a time when <br />future restoration of natural areas may allow expansion of their <br />ranges. Propagation of endangered species in captivity, for example, <br />in zoos and arboreta, can contribute significantly to global conserva- <br />tion ctlorts; this alone, however, is not a viable alternative because <br />limited facilities are available and because inevitable genetic changes <br />from random genetic drift and selection in artificial environments <br />The author is in the Department of Ecology and Evolution. Umversxty of Chicagci, <br />Chicago. IL 60637. <br />ARTICLES tics <br />Th :1 Tree,.,,,-n ,.,,2V <br />RUSSELL LANDE <br />4 v ? err ,_F ? ?-,.