e IqI
<br />67. G. M. Mace, thesis, University_ of Sussex. Sussex (1979); P. H. Harvey and T. H.
<br />Clurton-Brock Evolution 39, 559 (1985); J. L Gitdcman, Am. Nai. 127, 744
<br />(1986).
<br />68. P. H. Harvey. D. P. Promislow. A. F. Read, in Comparmive Safoerology, R. Folev
<br />and V. Standen. Eds. (British Ecological Society Special Publication. Blackwell.
<br />Oxford, in press).
<br />69. P. H. Harvey and A. F. Read, in Evolution of Lik Histories: Patten and Theory Jima
<br />Mammals, M. S. Boyce, Ed. (Yale Univ. Ptess.:Iew Haven, C.N, 19881, pp. 213-
<br />232.
<br />M. P. H. Harvey and R. M. Z ammuto. Nature 315, 319 (1985).
<br />71. B. E. Seather, ibid. 331, 616 (1988); P. M. Bennett and P. H. Hareev, ibid. 333,
<br />216 (1988).
<br />72. W. J. Sutherland, A. Grafen. P. H. Harvey. ibid. 320, 88 (1986).
<br />73. P. H. Hana•, A F. Read. D. I. Promislow, ibid., in press.
<br />74. 1• F. Downhower, ibid. 263.558 (1976);.M. S. Bovice, Am. `at. 114.5 979);
<br />K. Rails and P. H. Harvey. Biol. J. Limn. Soc. 25, 119 (1985); S. edt and
<br />M. S. Bovcr_ Am. Nat. 125. 873 (1985).
<br />75. G. C. William Evolution 11, 398 (1957); A. Comto a Biology of Senescence
<br />(Elsevier, New York, ed. 3, 1919).
<br />76. P. B. Medawar, An Unsolved Problem of Biol London, 1952).
<br />777. G. C. Williams. Evolution 11, 398 (19
<br />78. W. D. Hamilton. J. Theor. Biol 12(1966).
<br />K. Kosuda Behav.
<br />79. L D. Mueller, Pron. Ned. Sci. U.S.A. 84, 1974 (1987);
<br />Genet. 15, 297 (198
<br />80. P. H. Hw%-cv ayd ?i. M. Mace, Nature 305. 14 (1983).
<br />81. IL H. M ur and E. O. Wilson. Vie 77teory of island Biogeography (Princeton
<br />Univ.yjeis, Princeton, N), 1967); R. H. MacArthur. Geo"Thiosl Ecology (Harper
<br />3t Fa5w, New York 1972).
<br />0 -?q ag
<br />82. M. S. Boyce, Amur. Rev. Ecol. Syst. 15.427 (1984).
<br />83. J. Roughipirden, Ecology 52.453 (19711-
<br />94. E. R. Pianka, Am. Nac. 104. 59 1970).
<br />85. S. C. Stearns, Annat. Rev. Eco . Syst. 8, 145 (1977).
<br />inbill. Am' ,vat 13.427 (1979).
<br />ience 202. 1 1 (1978); Ecology 65. 1170 (1984); C. E. Taylor and C.
<br />voius m , 1183 (1980); 1• H• Buday and P. T. Grcgorv, Am. Nae.
<br />(19and F.1. Ayala. Prot. Nad. Arad. Sri. U.S.A. 78, 1303 (1981); M.
<br />F. 1. Ayala, Genetics 97, 6i9 (1981).
<br />XEA
<br />hinson, The Ecolol Theater and the Evolutionary Play (Yak Univ. Press,
<br />n, CN, 1965).
<br />tserxsladc Am. Nat. 122. 352 (1983).
<br />91. R. R. Gksner and D. Tilman. ibid. 112, 659 (1978).
<br />92. A. G. Hildrew and C. R. Townsend, in Organisations of Communities Past and Present,
<br />1. H. R. Gee and P. S. Giller. Eds. (Blackwell. Oxford, 19877), p. 347.
<br />93. 1• P. Grime. Am. Neu. 111, 1169 (1977).
<br />94. R.M. Siblv and P. Clloow. Physiolog" Ecology of Animals: An Evolutionary Approach
<br />(Blackwell, Oxford, 1986).
<br />95. M. Begon, in Behavioral Ecology, R. M. Sibiv and R. H. Smith, Eds. (Blackwell,
<br />Oxford, 1985), p. 91. lndividrbls Populations 96. 1. L Harper. C. R. Townsend. Ecology: and
<br />Communities (Blackwell. oxford, 1986).
<br />97. T. IL E. Southwood. Oikos 52, 3 (1988).
<br />98. We thank G. Bell. M. Bulmer. A. Burt. A. Kevmer, R. M. Slav, M.1. Morgan, M.
<br />Pagel, and A. Read for helpful discussions. LP. is graceful to the Camcehe Trust for
<br />the Universities of Scotland and to Edinburgh University for financtal support
<br />during the preparation of this article.
<br />Genetics and Demography in
<br />Biological Conservation
<br />
<br />Predicting the extinction of single populations or species
<br />requires ecological and evolutionary information. Pri-
<br />mary demographic factors affecting population dynamics
<br />include social structure, life history variation caused by
<br />environmental fluctuation, dispersal in spatially heteroge-
<br />neous environments, and local extinction and coloniza-
<br />tion. In small populations, inbreeding can greatly reduce
<br />the average individual fitness, and loss of genetic variabili-
<br />ty from random genetic drift can diminish future adapt-
<br />ability to a changing environment. Theory and empirical
<br />examples suggest that demography is usually of more
<br />immediate importance than population genetics in deter-
<br />mining the minimum viable sizes of wild populations. The
<br />practical need in biological conservation for understand-
<br />ing the interaction of demographic and genetic factors in
<br />extinction may provide a focus for fundamental advances
<br />at the interface of ecology and evolution.
<br />DESTRUCTION AND FRAGMENTATION OF NATURAL AREAS,
<br />especially tropical rain forests with their high species
<br />diversity', is now causing extinction of species at a rate that
<br />is orders of magnitude as high as normal background rates of
<br />exnn rion (1). If there are anv paleontologists in the distant future,
<br />our "modem age"-the 20th and 21st centuries-will likeiv be
<br />u V,
<br />i;
<br />U
<br />recorded as a period of one of the greatest mass extinctions of all
<br />time, comparable to the event 65 million years ago in which it can be
<br />estimated that the majority of species then living on Earth perished
<br />(1, 2). In addition to the ethical problem of extirpating life forms
<br />that evolved over millions of years, there arc practical reasons for
<br />conserving wild areas containing species of potential medical,
<br />agricultural, recreational, and industrial value (3). Ultimately, suffi-
<br />cient alteration of natural ecosystems may destabilize regional and
<br />global climate and biogeochemical evcles, with potentially disastrous
<br />effects (4).
<br />Awareness of the benefits of conserving biological diversity is
<br />growing rapidly in many countries, but it remains to be seen
<br />whether conservation efforts will increase fast enough in relation to
<br />the rate of destruction to preserve much of the natural diversity that
<br />existed in the last century. As the remaining natural areas become
<br />smaller and more fragmented, it is increasingly important to under-
<br />stand the ecological and evolutionary dynamics of small populatipps
<br />in order to effectively manage and preserve them for a time when
<br />future restoration of natural areas may allow expansion of their
<br />ranges. Propagation of endangered species in captivity, for example,
<br />in zoos and arboreta, can contribute significantly to global conserva-
<br />tion ctlorts; this alone, however, is not a viable alternative because
<br />limited facilities are available and because inevitable genetic changes
<br />from random genetic drift and selection in artificial environments
<br />The author is in the Department of Ecology and Evolution. Umversxty of Chicagci,
<br />Chicago. IL 60637.
<br />ARTICLES tics
<br />Th :1 Tree,.,,,-n ,.,,2V
<br />RUSSELL LANDE
<br />4 v ? err ,_F ? ?-,.
|