Laserfiche WebLink
<br />INTROGRESSION IN COLORADO RIVER CATOSTOMIDS <br /> <br />105 <br /> <br />TABLE I. -Genotypic distributions for 21 locia scored from all sampled individuals of llannelmouth sucker from <br />four localities and of razorback sucker from three localities. Numbers of individuals of each genotype are in <br />parentheses; N = sample size; a, b, and c are allelic products. The contingency chi-square (x2) analyses were based <br />on the arrays of the intraspecifically variable loci. <br /> <br />Locus <br /> <br />Acp-A <br /> <br />Adh-A <br /> <br />Ck-A <br /> <br />G6pi-AI <br /> <br />G6pi-A2 <br /> <br />G6pi-BI <br /> <br />G6pi-BZ <br /> <br />G3pdh-A <br /> <br />M-/cdh-A <br /> <br />S-/cdh:A2 <br /> <br />Ldh-A <br /> <br />S-Mdh-AI <br /> <br />S-Mdh-A2 <br /> <br />Pgm-A <br /> <br />S-Sod-A2 <br /> <br />Virgin <br />River. <br />N=15 <br /> <br />bb (15) <br /> <br />bb (15) <br /> <br />aa (12) <br />ab (3) <br />aa (2) <br />ab (8) <br />bb (5) <br />aa (15) <br /> <br />aa (15) <br /> <br />bb (15) <br /> <br />bb (15) <br /> <br />bb (15) <br /> <br />aa (15) <br /> <br />aa (15) <br /> <br />aa (15) <br /> <br />aa (15) <br /> <br />cc (15) <br /> <br />Pari a <br />River. <br />N=3 <br /> <br />bb (3) <br /> <br />bb (3) <br /> <br />aa (3) <br /> <br />aa (2) <br />ab (I) <br /> <br />aa (3) <br /> <br />aa (2) <br />ab (I) <br />ab (I) <br />bb (2) <br /> <br />bb (3) <br /> <br />bb (3) <br /> <br />aa (3) <br /> <br />aa (3) <br /> <br />aa (3) <br /> <br />aa (3) <br /> <br />cc (3) <br /> <br />Flannelmouth sucker <br /> <br />Lillie <br />Colorado <br />River, <br />N=16 <br /> <br />bb (16) <br /> <br />bb (16) <br /> <br />aa (16) <br /> <br />aa (16) <br /> <br />aa (16) <br /> <br />aa (16) <br /> <br />bb (16) <br /> <br />aa (2) <br />ab (8) <br />bb (6) <br />bb (16) <br /> <br />aa (16) <br /> <br />aa (16) <br /> <br />aa (16) <br /> <br />aa (16) <br /> <br />cc (16) <br /> <br />Upper <br />Colorado <br />River, <br />N=39 <br /> <br />ab (I) <br />bb (38) <br /> <br />ab (I) <br />bb (38) <br /> <br />aa (38) <br />ab (I) <br /> <br />aa (38) <br />ab (I) <br /> <br />aa (39) <br /> <br />aa (38) <br />ab (I) <br />ab (I) <br />bb (33) <br />be (5) <br />aa (I) <br />ab (9) <br />bb (29) <br />bb (39) <br /> <br />aa (38) <br />ab (I) <br />aa (39) <br /> <br />aa (39) <br /> <br />aa (39) <br /> <br />ac (I) <br />cc (38) <br /> <br />aa (15) aa (3) aa (16) aa (39) <br />x2=126.157, df=30, total P=O.oo <br /> <br />Probablity <br />that geno- <br />typic arra y <br />represen ts <br />one <br />randomly <br />breeding <br />population <br /> <br />0.83077 <br /> <br />0.83077 <br /> <br />0.05439 <br /> <br />0.00000 <br /> <br />0.01042 <br /> <br />0.01505 <br /> <br />0.00038 <br /> <br />0.83077 <br /> <br />0.83077 <br /> <br />Lake <br />Mohave <br />(sample <br />la), <br />N=18 <br /> <br />bb (18) <br /> <br />bb (17) <br />be (I) <br />ab (I) <br />bb (17) <br />aa (18) <br /> <br />bb (16) <br />be (2) <br />aa (18) <br /> <br />ab (I) <br />bb (16) <br />be (I) <br />bb (18) <br /> <br />aa (17) <br />ab (I) <br />aa (18) <br /> <br />aa (18) <br /> <br />aa (12) <br />ab (5) <br />bb (I) <br />aa (18) <br /> <br />ac (I) <br />cc (17) <br /> <br />Razorback sucker <br /> <br />Senator <br />Wash <br />Reservoir. <br />N=14 <br /> <br />bb (14) <br /> <br />bb (14) <br /> <br />bb (14) <br /> <br />aa (14) <br /> <br />bb (14) <br /> <br />aa (14) <br /> <br />bb (14) <br /> <br />bb (14) <br /> <br />aa (14) <br /> <br />aa (14) <br /> <br />aa (14) <br /> <br />Dexter <br />Hatchery, <br />N=52 <br /> <br />bb (52) <br /> <br />bb (50) <br />be (2) <br />bb (52) <br /> <br />aa (52) <br /> <br />bb (52) <br /> <br />aa (49) <br />ab (3) <br />ab (I) <br />bb (50) <br />be (I) <br />bb (48) <br />be (4) <br /> <br />aa (50) <br />ab (2) <br />aa (52) <br /> <br />aa (51) <br />ab (I) <br />aa (43) <br />ab (6) <br />bb (3) <br />aa (52) <br /> <br />cc (52) <br /> <br />a The S-/cdh-AI. Ldh-B'. M-Mdh-AI. M-Mdh-A2. S-Mdh-B. and S-Sod-A'loci were monoallelic in all samples. <br /> <br />nelmouth sucker (Table I). Genotypic arrays <br />(numbers of individuals expressing each allelic <br />combination) were tested for conformance with <br />Hardy-Weinberg equilibrium expectations via chi- <br />square analyses with Levene's (1949) correction <br />for small sample size (see Spiess 1977). None of <br />these tests yielded statistical significance (all P > <br />0.05). Thus, all genotype arrays conformed to <br /> <br />aa (10) <br />ab (3) <br />bb (I) <br />aa (12) <br />ab (2) <br />ac (I) <br />be (I) <br />cc (12) <br />bb (18) bb (14) bb (52) <br />x2=9.6 I I, df= 10, total P=O.4 7 <br /> <br />Probability <br />that non- <br />hatchery <br />genotype <br />array <br />represents <br />one <br />randomly <br />breeding <br />population <br /> <br />0.37406 <br /> <br />0.37406 <br /> <br />0.20509 <br /> <br />0.44804 <br /> <br />0.37406 <br /> <br />0.87178 <br /> <br />0.10327 <br /> <br />0.50942 <br /> <br />Hardy-Weinberg expectations within each geo- <br />graphic sample (Table 2). <br />A contingency chi-square analysis (see Spiess <br />1977) was performed for each of the nine poly- <br />morphic loci for the four geographic samples of <br />flannelmouth suckers to test for significant depar- <br />ture from Hardy-Weinberg equilibrium expecta- <br />tions between samples (Table 1). For four of the <br />