My WebLink
|
Help
|
About
|
Sign Out
Home
Browse
Search
9500
CWCB
>
UCREFRP
>
Copyright
>
9500
Metadata
Thumbnails
Annotations
Entry Properties
Last modified
7/14/2009 5:01:47 PM
Creation date
5/20/2009 11:04:38 AM
Metadata
Fields
Template:
UCREFRP
UCREFRP Catalog Number
9500
Author
Pitlick, J. and R. Cress
Title
Downstream Changes in the Channel Geometry of a Large Gravel Bed River
USFW Year
2002
USFW - Doc Type
American Geophysical Union
Copyright Material
YES
There are no annotations on this page.
Document management portal powered by Laserfiche WebLink 9 © 1998-2015
Laserfiche.
All rights reserved.
/
11
PDF
Print
Pages to print
Enter page numbers and/or page ranges separated by commas. For example, 1,3,5-12.
After downloading, print the document using a PDF reader (e.g. Adobe Reader).
Show annotations
View images
View plain text
34-4 PITLICK AND CRESS: DOWNSTREAM CHANGES IN CHANNEL GEOMETRY <br />Table 2. Summary Information for Main Stem Gauging Stations on the Colorado River <br /> USGS Drainage Mean Annual Annual Suspended <br />Location Number Area, kmz Discharge, m3/s Sediment Load, t/yr <br />Glenwood Springs 9072500 11,800 64 0.37 x 106 <br />Cameo 9095500 20,800 111 1.53 x 10' <br />State Line 9163500 46,200 180 3.43 x 106 <br />Cisco 9180500 62,400 200 5.43 x 106 <br />"The station at Glenwood Springs is located upstream of the study area; locations of other stations are shown in <br />Figure 1. Annual discharges and sediment loads were estimated on the basis of flow records from 1934-1997, except <br />at the State Line gauge, where the records begin in 1952 (from Pillick and Cress [2000]). <br />Subsurface samples were taken by collecting 100-150 kg <br />of the sediment underneath the surface layer. These samples <br />were nearly always large enough to ensure that the coarsest <br />particle represented no more than 5% of the total weight. <br />The coarse fraction of this sediment was sieved in the field, <br />while the line Fraction was sieved in the laboratory. A total <br />of 78 surface samples and 27 subsurface samples were taken <br />in the 260-km study reach. <br />[12] The average channel slope of the 10 individual <br />reaches was measured with a global positioning system <br />(GPS) supplemented in a few places by measurements from <br />topographic maps. Readings of the water surface were taken <br />every 0.8-km with a mapping-grade GPS (Trimble Path- <br />finder Pro-XR). These data were subsequently corrected <br />with differential post-processing techniques, yielding verti- <br />cal positions with errors of f0.5-0.3 in. These errors tend to <br />be random and are small in comparison to the total drop in <br />elevation through most reaches (25-50 m). As a further <br />check on accuracy, we compared slopes derived from the <br />GPS measurements with those derived from topographic <br />snaps and found that they were essentially the same. <br />[13] The hypothesis stated in the introduction implies that <br />gravel bed rivers adjust their bank-full width B, depth H, and <br />slope S to transport bed load at shear stresses slightly above <br />the threshold for motion. If so, the width, depth, slope and <br />grain size should change simultaneously downstream to give <br />a constant bank-full dimensionless shear stress Tb. The <br />dimensionless shear stress, or Shields stress, is defined as <br />r* - T [(p, - p) o D]- 1, where T - p o H S is the bank-full <br />shear stress, h,. and p are the densities of sediment and water, <br />respectively, g is the gravitational acceleration, and D is the <br />grain size. We formulated individual values of Tb for each <br />cross section using the measured bank-full depth, the reach- <br />average slope, and the reach-average median grain size of <br />the surface sediment, D50. Reach-average values of S and <br />Dip were used largely for practical reasons: we could not <br />measure the surface grain size or slope at every cross section, <br />thus we combined measurements in each of the 10 reaches. <br />In our experience reach-average slopes do not differ greatly <br />from local slopes at bank-full flow [Pitlick and Van Steeter, <br />1998], and variations in grain size have as much to do with <br />the local topography and sedimentology of individual bars as <br />with systematic downstream fining or tributary inputs. <br />[14] Standard statistical tests were used to evaluate the <br />significance of regression relations between In transfonned <br />values of grain size, width, depth, T, and -rb, and distance <br />downstream. We examined trends within individual reaches <br />as well as overall trends. T test comparisons were used to <br />assess differences in local versus regional trends in grain size <br />and to assess the correlation between downstream changes in <br />grain size and shear stress. Analysis of covariance was used <br />to examine differences in channel geometry between alluvial <br />and quasi-alluvial reaches [Kleinbaum and Kupper, 1978]. <br />Field Observations and Results <br />4.1. Channel Slope <br />[15] The longitudinal profile of this portion of the Colo- <br />rado River is made up of four concave segments separated by <br />three breaks in slope (Figure 3). The breaks in slope occur in <br />P <br />U <br />0 <br />at <br /> <br />160 <br />140 ..? ? ?? ?, ?, ? • <br />120 <br />1 c u <br />i. <br />° a <br />16 <br />100 LO <br />4,0? <br />! o <br />00 <br />C., t - o <br />80 <br />0.6 <br />0.4 <br />C <br />° 0.2 <br />to <br />0.0 <br />a <br />Gi L <br />10 -0.2 <br />-0.4 <br />Figure 2. Trends in (a) water surface width and (b) <br />average bed elevation at USGS gauging stations near <br />Cameo, Colorado (open circles), and near Cisco, Utah (solid <br />circles). Water surface widths were taken directly from <br />discharge notes; bed elevations were computed by taking <br />the difference between the observed gauge height and the <br />mean flow depth. <br />1984 1988 1992 1996 2000
The URL can be used to link to this page
Your browser does not support the video tag.